Coronavirus and schools: Reflections on education one year into the pandemic

Subscribe to the center for universal education bulletin, daphna bassok , daphna bassok nonresident senior fellow - governance studies , brown center on education policy @daphnabassok lauren bauer , lauren bauer fellow - economic studies , associate director - the hamilton project @laurenlbauer stephanie riegg cellini , stephanie riegg cellini nonresident senior fellow - governance studies , brown center on education policy helen shwe hadani , helen shwe hadani former brookings expert @helenshadani michael hansen , michael hansen senior fellow - brown center on education policy , the herman and george r. brown chair - governance studies @drmikehansen douglas n. harris , douglas n. harris nonresident senior fellow - governance studies , brown center on education policy , professor and chair, department of economics - tulane university @douglasharris99 brad olsen , brad olsen senior fellow - global economy and development , center for universal education @bradolsen_dc richard v. reeves , richard v. reeves president - american institute for boys and men @richardvreeves jon valant , and jon valant director - brown center on education policy , senior fellow - governance studies @jonvalant kenneth k. wong kenneth k. wong nonresident senior fellow - governance studies , brown center on education policy.

March 12, 2021

  • 11 min read

One year ago, the World Health Organization declared the spread of COVID-19 a worldwide pandemic. Reacting to the virus, schools at every level were sent scrambling. Institutions across the world switched to virtual learning, with teachers, students, and local leaders quickly adapting to an entirely new way of life. A year later, schools are beginning to reopen, the $1.9 trillion stimulus bill has been passed, and a sense of normalcy seems to finally be in view; in President Joe Biden’s speech last night, he spoke of “finding light in the darkness.” But it’s safe to say that COVID-19 will end up changing education forever, casting a critical light on everything from equity issues to ed tech to school financing.

Below, Brookings experts examine how the pandemic upended the education landscape in the past year, what it’s taught us about schooling, and where we go from here.

Daphna_Bassok_photo.jpg?crop=1519px%2C84px%2C1746px%2C1746px&w=120&ssl=1

In the United States, we tend to focus on the educating roles of public schools, largely ignoring the ways in which schools provide free and essential care for children while their parents work. When COVID-19 shuttered in-person schooling, it eliminated this subsidized child care for many families. It created intense stress for working parents, especially for mothers who left the workforce at a high rate.

The pandemic also highlighted the arbitrary distinction we make between the care and education of elementary school children and children aged 0 to 5 . Despite parents having the same need for care, and children learning more in those earliest years than at any other point, public investments in early care and education are woefully insufficient. The child-care sector was hit so incredibly hard by COVID-19. The recent passage of the American Rescue Plan is a meaningful but long-overdue investment, but much more than a one-time infusion of funds is needed. Hopefully, the pandemic represents a turning point in how we invest in the care and education of young children—and, in turn, in families and society.

LB_headshot_square-1.png?w=120&crop=0%2C0px%2C100%2C120px&ssl=1

Congressional reauthorization of Pandemic EBT for  this school year , its  extension  in the American Rescue Plan (including for summer months), and its place as a  central plank  in the Biden administration’s anti-hunger agenda is well-warranted and evidence based. But much more needs to be done to ramp up the program–even  today , six months after its reauthorization, about half of states do not have a USDA-approved implementation plan.

stephanie-cellini_58392-1_headshot.jpg?w=120&crop=0%2C20px%2C100%2C120px&ssl=1

In contrast, enrollment is up in for-profit and online colleges. The research repeatedly finds weaker student outcomes for these types of institutions relative to community colleges, and many students who enroll in them will be left with more debt than they can reasonably repay. The pandemic and recession have created significant challenges for students, affecting college choices and enrollment decisions in the near future. Ultimately, these short-term choices can have long-term consequences for lifetime earnings and debt that could impact this generation of COVID-19-era college students for years to come.

Helen_Hadani.jpg?crop=0px%2C2px%2C427px%2C427px&w=120&ssl=1

Many U.S. educationalists are drawing on the “build back better” refrain and calling for the current crisis to be leveraged as a unique opportunity for educators, parents, and policymakers to fully reimagine education systems that are designed for the 21st rather than the 20th century, as we highlight in a recent Brookings report on education reform . An overwhelming body of evidence points to play as the best way to equip children with a broad set of flexible competencies and support their socioemotional development. A recent article in The Atlantic shared parent anecdotes of children playing games like “CoronaBall” and “Social-distance” tag, proving that play permeates children’s lives—even in a pandemic.

hansen.jpg?w=120&crop=0%2C30px%2C100%2C120px&ssl=1

Tests play a critical role in our school system. Policymakers and the public rely on results to measure school performance and reveal whether all students are equally served. But testing has also attracted an inordinate share of criticism, alleging that test pressures undermine teacher autonomy and stress students. Much of this criticism will wither away with  different  formats. The current form of standardized testing—annual, paper-based, multiple-choice tests administered over the course of a week of school—is outdated. With widespread student access to computers (now possible due to the pandemic), states can test students more frequently, but in smaller time blocks that render the experience nearly invisible. Computer adaptive testing can match paper’s reliability and provides a shorter feedback loop to boot. No better time than the present to make this overdue change.

Douglas-Harris-High-Res-2010-e1469537794791.jpg?w=120&crop=0%2C0px%2C100%2C120px&ssl=1

A third push for change will come from the outside in. COVID-19 has reminded us not only of how integral schools are, but how intertwined they are with the rest of society. This means that upcoming schooling changes will also be driven by the effects of COVID-19 on the world around us. In particular, parents will be working more from home, using the same online tools that students can use to learn remotely. This doesn’t mean a mass push for homeschooling, but it probably does mean that hybrid learning is here to stay.

brad_olsen_2021.jpg?crop=0px%2C685px%2C1625px%2C1625px&w=120&ssl=1

I am hoping we will use this forced rupture in the fabric of schooling to jettison ineffective aspects of education, more fully embrace what we know works, and be bold enough to look for new solutions to the educational problems COVID-19 has illuminated.

Reeves-headshot.jpg?crop=0px%2C28px%2C580px%2C580px&w=120&ssl=1

There is already a large gender gap in education in the U.S., including in  high school graduation rates , and increasingly in college-going and college completion. While the pandemic appears to be hurting women more than men in the labor market, the opposite seems to be true in education.

jon-valant-headshot_cr.jpg?w=120&crop=0%2C10px%2C100%2C120px&ssl=1

Looking through a policy lens, though, I’m struck by the timing and what that timing might mean for the future of education. Before the pandemic, enthusiasm for the education reforms that had defined the last few decades—choice and accountability—had waned. It felt like a period between reform eras, with the era to come still very unclear. Then COVID-19 hit, and it coincided with a national reckoning on racial injustice and a wake-up call about the fragility of our democracy. I think it’s helped us all see how connected the work of schools is with so much else in American life.

We’re in a moment when our long-lasting challenges have been laid bare, new challenges have emerged, educators and parents are seeing and experimenting with things for the first time, and the political environment has changed (with, for example, a new administration and changing attitudes on federal spending). I still don’t know where K-12 education is headed, but there’s no doubt that a pivot is underway.

Kenneth-Wong-vert_1131-copy.jpg?crop=261px%2C183px%2C1346px%2C1347px&w=120&ssl=1

  • First, state and local leaders must leverage commitment and shared goals on equitable learning opportunities to support student success for all.
  • Second, align and use federal, state, and local resources to implement high-leverage strategies that have proven to accelerate learning for diverse learners and disrupt the correlation between zip code and academic outcomes.
  • Third, student-centered priority will require transformative leadership to dismantle the one-size-fits-all delivery rule and institute incentive-based practices for strong performance at all levels.
  • Fourth, the reconfigured system will need to activate public and parental engagement to strengthen its civic and social capacity.
  • Finally, public education can no longer remain insulated from other policy sectors, especially public health, community development, and social work.

These efforts will strengthen the capacity and prepare our education system for the next crisis—whatever it may be.

Higher Education K-12 Education

Brookings Metro Economic Studies Global Economy and Development Governance Studies

Brown Center on Education Policy Center for Universal Education

Annelies Goger, Katherine Caves, Hollis Salway

May 16, 2024

Sofoklis Goulas, Isabelle Pula

Melissa Kay Diliberti, Elizabeth D. Steiner, Ashley Woo

Mission: Recovering Education in 2021

The World Bank

THE CONTEXT

The COVID-19 pandemic has caused abrupt and profound changes around the world.  This is the worst shock to education systems in decades, with the longest school closures combined with looming recession.  It will set back progress made on global development goals, particularly those focused on education. The economic crises within countries and globally will likely lead to fiscal austerity, increases in poverty, and fewer resources available for investments in public services from both domestic expenditure and development aid. All of this will lead to a crisis in human development that continues long after disease transmission has ended.

Disruptions to education systems over the past year have already driven substantial losses and inequalities in learning. All the efforts to provide remote instruction are laudable, but this has been a very poor substitute for in-person learning.  Even more concerning, many children, particularly girls, may not return to school even when schools reopen. School closures and the resulting disruptions to school participation and learning are projected to amount to losses valued at $10 trillion in terms of affected children’s future earnings.  Schools also play a critical role around the world in ensuring the delivery of essential health services and nutritious meals, protection, and psycho-social support. Thus, school closures have also imperilled children’s overall wellbeing and development, not just their learning.   

It’s not enough for schools to simply reopen their doors after COVID-19. Students will need tailored and sustained support to help them readjust and catch-up after the pandemic. We must help schools prepare to provide that support and meet the enormous challenges of the months ahead. The time to act is now; the future of an entire generation is at stake.

THE MISSION

Mission objective:  To enable all children to return to school and to a supportive learning environment, which also addresses their health and psychosocial well-being and other needs.

Timeframe : By end 2021.

Scope : All countries should reopen schools for complete or partial in-person instruction and keep them open. The Partners - UNESCO , UNICEF , and the World Bank - will join forces to support countries to take all actions possible to plan, prioritize, and ensure that all learners are back in school; that schools take all measures to reopen safely; that students receive effective remedial learning and comprehensive services to help recover learning losses and improve overall welfare; and their teachers are prepared and supported to meet their learning needs. 

Three priorities:

1.    All children and youth are back in school and receive the tailored services needed to meet their learning, health, psychosocial wellbeing, and other needs. 

Challenges : School closures have put children’s learning, nutrition, mental health, and overall development at risk. Closed schools also make screening and delivery for child protection services more difficult. Some students, particularly girls, are at risk of never returning to school. 

Areas of action : The Partners will support the design and implementation of school reopening strategies that include comprehensive services to support children’s education, health, psycho-social wellbeing, and other needs. 

Targets and indicators

2.    All children receive support to catch up on lost learning.

Challenges : Most children have lost substantial instructional time and may not be ready for curricula that were age- and grade- appropriate prior to the pandemic. They will require remedial instruction to get back on track. The pandemic also revealed a stark digital divide that schools can play a role in addressing by ensuring children have digital skills and access.

Areas of action : The Partners will (i) support the design and implementation of large-scale remedial learning at different levels of education, (ii) launch an open-access, adaptable learning assessment tool that measures learning losses and identifies learners’ needs, and (iii) support the design and implementation of digital transformation plans that include components on both infrastructure and ways to use digital technology to accelerate the development of foundational literacy and numeracy skills. Incorporating digital technologies to teach foundational skills could complement teachers’ efforts in the classroom and better prepare children for future digital instruction.   

While incorporating remedial education, social-emotional learning, and digital technology into curricula by the end of 2021 will be a challenge for most countries, the Partners agree that these are aspirational targets that they should be supporting countries to achieve this year and beyond as education systems start to recover from the current crisis.

3.   All teachers are prepared and supported to address learning losses among their students and to incorporate  digital technology into their teaching.

Challenges : Teachers are in an unprecedented situation in which they must make up for substantial loss of instructional time from the previous school year and teach the current year’s curriculum. They must also protect their own health in school. Teachers will need training, coaching, and other means of support to get this done. They will also need to be prioritized for the COVID-19 vaccination, after frontline personnel and high-risk populations.  School closures also demonstrated that in addition to digital skills, teachers may also need support to adapt their pedagogy to deliver instruction remotely. 

Areas of action : The Partners will advocate for teachers to be prioritized in COVID-19 vaccination campaigns, after frontline personnel and high-risk populations, and provide capacity-development on pedagogies for remedial learning and digital and blended teaching approaches. 

Country level actions and global support

UNESCO, UNICEF, and World Bank are joining forces to support countries to achieve the Mission, leveraging their expertise and actions on the ground to support national efforts and domestic funding.

Country Level Action

1.  Mobilize team to support countries in achieving the three priorities

The Partners will collaborate and act at the country level to support governments in accelerating actions to advance the three priorities.

2.  Advocacy to mobilize domestic resources for the three priorities

The Partners will engage with governments and decision-makers to prioritize education financing and mobilize additional domestic resources.

Global level action

1.  Leverage data to inform decision-making

The Partners will join forces to   conduct surveys; collect data; and set-up a global, regional, and national real-time data-warehouse.  The Partners will collect timely data and analytics that provide access to information on school re-openings, learning losses, drop-outs, and transition from school to work, and will make data available to support decision-making and peer-learning.

2.  Promote knowledge sharing and peer-learning in strengthening education recovery

The Partners will join forces in sharing the breadth of international experience and scaling innovations through structured policy dialogue, knowledge sharing, and peer learning actions.

The time to act on these priorities is now. UNESCO, UNICEF, and the World Bank are partnering to help drive that action.

Last Updated: Mar 30, 2021

  • (BROCHURE, in English) Mission: Recovering Education 2021
  • (BROCHURE, in French) Mission: Recovering Education 2021
  • (BROCHURE, in Spanish) Mission: Recovering Education 2021
  • (BLOG) Mission: Recovering Education 2021
  • (VIDEO, Arabic) Mission: Recovering Education 2021
  • (VIDEO, French) Mission: Recovering Education 2021
  • (VIDEO, Spanish) Mission: Recovering Education 2021
  • World Bank Education and COVID-19
  • World Bank Blogs on Education

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here .

Stanford Social Innovation Review Logo

  • Arts & Culture
  • Civic Engagement
  • Economic Development
  • Environment
  • Human Rights
  • Social Services
  • Water & Sanitation
  • Foundations
  • Nonprofits & NGOs
  • Social Enterprise
  • Collaboration
  • Design Thinking
  • Impact Investing
  • Measurement & Evaluation
  • Organizational Development
  • Philanthropy & Funding
  • Current Issue
  • Sponsored Supplements
  • Global Editions
  • In-Depth Series
  • Stanford PACS
  • Submission Guidelines

A Better Education for All During—and After—the COVID-19 Pandemic

Research from the Abdul Latif Jameel Poverty Action Lab (J-PAL) and its partners shows how to help children learn amid erratic access to schools during a pandemic, and how those solutions may make progress toward the Sustainable Development Goal of ensuring a quality education for all by 2030.

  • order reprints
  • related stories

By Radhika Bhula & John Floretta Oct. 16, 2020

essay education during pandemic

Five years into the Sustainable Development Goals (SDGs), the world is nowhere near to ensuring a quality education for all by 2030. Impressive gains in enrollment and attendance over recent decades have not translated into corresponding gains in learning. The World Bank’s metric of "learning poverty," which refers to children who cannot read and understand a simple text by age 10, is a staggering 80 percent in low-income countries .

The COVID-19 crisis is exacerbating this learning crisis. As many as 94 percent of children across the world have been out of school due to closures. Learning losses from school shutdowns are further compounded by inequities , particularly for students who were already left behind by education systems. Many countries and schools have shifted to online learning during school closures as a stop-gap measure. However, this is not possible in many places, as less than half of households in low- and middle-income countries (LMICs) have internet access.  

Rethinking Social Change in the Face of Coronavirus

Many education systems around the world are now reopening fully, partially, or in a hybrid format, leaving millions of children to face a radically transformed educational experience. As COVID-19 cases rise and fall during the months ahead, the chaos will likely continue, with schools shutting down and reopening as needed to balance educational needs with protecting the health of students, teachers, and families. Parents, schools, and entire education systems—especially in LMICs—will need to play new roles to support student learning as the situation remains in flux, perhaps permanently. As they adjust to this new reality, research conducted by more than 220 professors affiliated with the Abdul Latif Jameel Poverty Action Lab (J-PAL) and innovations from J-PAL's partners provide three insights into supporting immediate and long-term goals for educating children.

1. Support caregivers at home to help children learn while schools are closed . With nearly 1.6 billion children out of school at the peak of the pandemic, many parents or caregivers, especially with young children, have taken on new roles to help with at-home learning. To support them and remote education efforts, many LMICs have used SMS, phone calls, and other widely accessible, affordable, and low-technology methods of information delivery. While such methods are imperfect substitutes for schooling, research suggests they can help engage parents in their child’s education and contribute to learning , perhaps even after schools reopen.

Preliminary results from an ongoing program and randomized evaluation in Botswana show the promise of parental support combined with low-technology curriculum delivery. When the pandemic hit, the NGO Young 1ove was working with Botswana's Ministry of Education to scale up the  Teaching at the Right Level approach to primary schools in multiple districts. After collecting student, parent, and teacher phone numbers, the NGO devised two strategies to deliver educational support. The first strategy sent SMS texts to households with a series of numeracy “problems of the week.” The second sent the same texts combined with 20-minute phone calls with Young 1ove staff members, who walked parents and students through the problems. Over four to five weeks, both interventions significantly improved learning . They halved the number of children who could not do basic mathematical operations like subtraction and division. Parents became more engaged with their children's education and had a better understanding of their learning levels. Young 1ove is now evaluating the impact of SMS texts and phone calls that are tailored to students’ numeracy levels.

In another example, the NGO Educate! reoriented its in-school youth skills model to be delivered through radio, SMS, and phone calls in response to school closures in East Africa. To encourage greater participation, Educate! called the students' caregivers to tell them about the program. Their internal analysis indicates that households that received such encouragement calls had a 29 percent increase in youth participation compared to those that did not receive the communication.

In several Latin American countries , researchers are evaluating the impact of sending SMS texts to parents on how to support their young children who have transitioned to distance-learning programs. Similar efforts to support parents and evaluate the effects are underway in Peru . Both will contribute to a better understanding of how to help caregivers support their child’s education using affordable and accessible technology.

Other governments and organizations in areas where internet access is limited are also experimenting with radio and TV to support parents and augment student learning. The Côte d’Ivoire government created a radio program on math and French for children in grades one to five. It involved hundreds of short lessons. The Indian NGO Pratham collaborated with the Bihar state government and a television channel to produce 10 hours of learning programming per week, creating more than 100 episodes to date. Past randomized evaluations of such “edutainment” programs from other sectors in Nigeria , Rwanda , and Uganda suggest the potential of delivering content and influencing behavior through mass media, though context is important, and more rigorous research is needed to understand the impact of such programs on learning.

2. As schools reopen, educators should use low-stakes assessments to identify learning gaps. As of September 1, schools in more than 75 countries were open to some degree. Many governments need to be prepared for the vast majority of children to be significantly behind in their educations as they return—a factor exacerbated by the low pre-pandemic learning levels, particularly in LMICs . Rather than jumping straight into grade-level curriculum, primary schools in LMICs should quickly assess learning levels to understand what children know (or don’t) and devise strategic responses. They can do so by using simple tools to frequently assess students, rather than focusing solely on high-stakes exams, which may significantly influence a child’s future by, for example, determining grade promotion.

Orally administered assessments—such as ASER , ICAN , and Uwezo —are simple, fast, inexpensive, and effective. The ASER math tool, for example, has just four elements: single-digit number recognition, double-digit number recognition, two-digit subtraction, and simple division. A similar tool exists for assessing foundational reading abilities. Tests like these don’t affect a child’s grades or promotion, help teachers to get frequent and clear views into learning levels, and can enable schools to devise plans to help children master the basics.

3. Tailor children's instruction to help them master foundational skills once learning gaps are identified. Given low learning levels before the pandemic and recent learning loss due to school disruptions, it is important to focus on basic skills as schools reopen to ensure children maintain and build a foundation for a lifetime of learning. Decades of research from Chile, India, Kenya, Ghana, and the United States shows that tailoring instruction to children’s’ education levels increases learning. For example, the Teaching at the Right Level (TaRL) approach, pioneered by Indian NGO Pratham and evaluated in partnership with J-PAL researchers through six randomized evaluations over the last 20 years, focuses on foundational literacy and numeracy skills through interactive activities for a portion of the day rather than solely on the curriculum. It involves regular assessments of students' progress and is reaching more than 60 million children in India and several African countries .

Toward Universal Quality Education

As countries rebuild and reinvent themselves in response to COVID-19, there is an opportunity to accelerate the thinking on how to best support quality education for all. In the months and years ahead, coalitions of evidence-to-policy organizations, implementation partners, researchers, donors, and governments should build on their experiences to develop education-for-all strategies that use expansive research from J-PAL and similar organizations. In the long term, evidence-informed decisions and programs that account for country-specific conditions have the potential to improve pedagogy, support teachers, motivate students, improve school governance, and address many other aspects of the learning experience. Perhaps one positive outcome of the pandemic is that it will push us to overcome the many remaining global educational challenges sooner than any of us expect. We hope that we do.

Support  SSIR ’s coverage of cross-sector solutions to global challenges.  Help us further the reach of innovative ideas.  Donate today .

Read more stories by Radhika Bhula & John Floretta .

SSIR.org and/or its third-party tools use cookies, which are necessary to its functioning and to our better understanding of user needs. By closing this banner, scrolling this page, clicking a link or continuing to otherwise browse this site, you agree to the use of cookies.

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Headshot of Robin Bernstein.

Footnote leads to exploration of start of for-profit prisons in N.Y.

Moderator David E. Sanger (from left) with Ivo Daalder, Karen Donfried, and Stephen Hadley.

Should NATO step up role in Russia-Ukraine war?

Lance Oppenheim.

It’s on Facebook, and it’s complicated

Rubén Rodriguez/Unsplash

Time to fix American education with race-for-space resolve

Harvard Staff Writer

Paul Reville says COVID-19 school closures have turned a spotlight on inequities and other shortcomings

This is part of our Coronavirus Update series in which Harvard specialists in epidemiology, infectious disease, economics, politics, and other disciplines offer insights into what the latest developments in the COVID-19 outbreak may bring.

As former secretary of education for Massachusetts, Paul Reville is keenly aware of the financial and resource disparities between districts, schools, and individual students. The school closings due to coronavirus concerns have turned a spotlight on those problems and how they contribute to educational and income inequality in the nation. The Gazette talked to Reville, the Francis Keppel Professor of Practice of Educational Policy and Administration at Harvard Graduate School of Education , about the effects of the pandemic on schools and how the experience may inspire an overhaul of the American education system.

Paul Reville

GAZETTE: Schools around the country have closed due to the coronavirus pandemic. Do these massive school closures have any precedent in the history of the United States?

REVILLE: We’ve certainly had school closures in particular jurisdictions after a natural disaster, like in New Orleans after the hurricane. But on this scale? No, certainly not in my lifetime. There were substantial closings in many places during the 1918 Spanish Flu, some as long as four months, but not as widespread as those we’re seeing today. We’re in uncharted territory.

GAZETTE: What lessons did school districts around the country learn from school closures in New Orleans after Hurricane Katrina, and other similar school closings?

REVILLE:   I think the lessons we’ve learned are that it’s good [for school districts] to have a backup system, if they can afford it. I was talking recently with folks in a district in New Hampshire where, because of all the snow days they have in the wintertime, they had already developed a backup online learning system. That made the transition, in this period of school closure, a relatively easy one for them to undertake. They moved seamlessly to online instruction.

Most of our big systems don’t have this sort of backup. Now, however, we’re not only going to have to construct a backup to get through this crisis, but we’re going to have to develop new, permanent systems, redesigned to meet the needs which have been so glaringly exposed in this crisis. For example, we have always had large gaps in students’ learning opportunities after school, weekends, and in the summer. Disadvantaged students suffer the consequences of those gaps more than affluent children, who typically have lots of opportunities to fill in those gaps. I’m hoping that we can learn some things through this crisis about online delivery of not only instruction, but an array of opportunities for learning and support. In this way, we can make the most of the crisis to help redesign better systems of education and child development.

GAZETTE: Is that one of the silver linings of this public health crisis?

REVILLE: In politics we say, “Never lose the opportunity of a crisis.” And in this situation, we don’t simply want to frantically struggle to restore the status quo because the status quo wasn’t operating at an effective level and certainly wasn’t serving all of our children fairly. There are things we can learn in the messiness of adapting through this crisis, which has revealed profound disparities in children’s access to support and opportunities. We should be asking: How do we make our school, education, and child-development systems more individually responsive to the needs of our students? Why not construct a system that meets children where they are and gives them what they need inside and outside of school in order to be successful? Let’s take this opportunity to end the “one size fits all” factory model of education.

GAZETTE: How seriously are students going to be set back by not having formal instruction for at least two months, if not more?

“The best that can come of this is a new paradigm shift in terms of the way in which we look at education, because children’s well-being and success depend on more than just schooling,” Paul Reville said of the current situation. “We need to look holistically, at the entirety of children’s lives.”

Stephanie Mitchell/Harvard file photo

REVILLE: The first thing to consider is that it’s going to be a variable effect. We tend to regard our school systems uniformly, but actually schools are widely different in their operations and impact on children, just as our students themselves are very different from one another. Children come from very different backgrounds and have very different resources, opportunities, and support outside of school. Now that their entire learning lives, as well as their actual physical lives, are outside of school, those differences and disparities come into vivid view. Some students will be fine during this crisis because they’ll have high-quality learning opportunities, whether it’s formal schooling or informal homeschooling of some kind coupled with various enrichment opportunities. Conversely, other students won’t have access to anything of quality, and as a result will be at an enormous disadvantage. Generally speaking, the most economically challenged in our society will be the most vulnerable in this crisis, and the most advantaged are most likely to survive it without losing too much ground.

GAZETTE: Schools in Massachusetts are closed until May 4. Some people are saying they should remain closed through the end of the school year. What’s your take on this?

REVILLE: That should be a medically based judgment call that will be best made several weeks from now. If there’s evidence to suggest that students and teachers can safely return to school, then I’d say by all means. However, that seems unlikely.

GAZETTE: The digital divide between students has become apparent as schools have increasingly turned to online instruction. What can school systems do to address that gap?

REVILLE: Arguably, this is something that schools should have been doing a long time ago, opening up the whole frontier of out-of-school learning by virtue of making sure that all students have access to the technology and the internet they need in order to be connected in out-of-school hours. Students in certain school districts don’t have those affordances right now because often the school districts don’t have the budget to do this, but federal, state, and local taxpayers are starting to see the imperative for coming together to meet this need.

Twenty-first century learning absolutely requires technology and internet. We can’t leave this to chance or the accident of birth. All of our children should have the technology they need to learn outside of school. Some communities can take it for granted that their children will have such tools. Others who have been unable to afford to level the playing field are now finding ways to step up. Boston, for example, has bought 20,000 Chromebooks and is creating hotspots around the city where children and families can go to get internet access. That’s a great start but, in the long run, I think we can do better than that. At the same time, many communities still need help just to do what Boston has done for its students.

Communities and school districts are going to have to adapt to get students on a level playing field. Otherwise, many students will continue to be at a huge disadvantage. We can see this playing out now as our lower-income and more heterogeneous school districts struggle over whether to proceed with online instruction when not everyone can access it. Shutting down should not be an option. We have to find some middle ground, and that means the state and local school districts are going to have to act urgently and nimbly to fill in the gaps in technology and internet access.

GAZETTE : What can parents can do to help with the homeschooling of their children in the current crisis?

“In this situation, we don’t simply want to frantically struggle to restore the status quo because the status quo wasn’t operating at an effective level and certainly wasn’t serving all of our children fairly.”

More like this

U.S. map dotted with To Serve Better icons.

The collective effort

Jonathan Savilonis and sons Julius and Lysander with their LEGO model of Harvard's Music Building.

Notes from the new normal

Illustration of work-life balance.

‘If you remain mostly upright, you are doing it well enough’

REVILLE: School districts can be helpful by giving parents guidance about how to constructively use this time. The default in our education system is now homeschooling. Virtually all parents are doing some form of homeschooling, whether they want to or not. And the question is: What resources, support, or capacity do they have to do homeschooling effectively? A lot of parents are struggling with that.

And again, we have widely variable capacity in our families and school systems. Some families have parents home all day, while other parents have to go to work. Some school systems are doing online classes all day long, and the students are fully engaged and have lots of homework, and the parents don’t need to do much. In other cases, there is virtually nothing going on at the school level, and everything falls to the parents. In the meantime, lots of organizations are springing up, offering different kinds of resources such as handbooks and curriculum outlines, while many school systems are coming up with guidance documents to help parents create a positive learning environment in their homes by engaging children in challenging activities so they keep learning.

There are lots of creative things that can be done at home. But the challenge, of course, for parents is that they are contending with working from home, and in other cases, having to leave home to do their jobs. We have to be aware that families are facing myriad challenges right now. If we’re not careful, we risk overloading families. We have to strike a balance between what children need and what families can do, and how you maintain some kind of work-life balance in the home environment. Finally, we must recognize the equity issues in the forced overreliance on homeschooling so that we avoid further disadvantaging the already disadvantaged.

GAZETTE: What has been the biggest surprise for you thus far?

REVILLE: One that’s most striking to me is that because schools are closed, parents and the general public have become more aware than at any time in my memory of the inequities in children’s lives outside of school. Suddenly we see front-page coverage about food deficits, inadequate access to health and mental health, problems with housing stability, and access to educational technology and internet. Those of us in education know these problems have existed forever. What has happened is like a giant tidal wave that came and sucked the water off the ocean floor, revealing all these uncomfortable realities that had been beneath the water from time immemorial. This newfound public awareness of pervasive inequities, I hope, will create a sense of urgency in the public domain. We need to correct for these inequities in order for education to realize its ambitious goals. We need to redesign our systems of child development and education. The most obvious place to start for schools is working on equitable access to educational technology as a way to close the digital-learning gap.

GAZETTE: You’ve talked about some concrete changes that should be considered to level the playing field. But should we be thinking broadly about education in some new way?

REVILLE: The best that can come of this is a new paradigm shift in terms of the way in which we look at education, because children’s well-being and success depend on more than just schooling. We need to look holistically, at the entirety of children’s lives. In order for children to come to school ready to learn, they need a wide array of essential supports and opportunities outside of school. And we haven’t done a very good job of providing these. These education prerequisites go far beyond the purview of school systems, but rather are the responsibility of communities and society at large. In order to learn, children need equal access to health care, food, clean water, stable housing, and out-of-school enrichment opportunities, to name just a few preconditions. We have to reconceptualize the whole job of child development and education, and construct systems that meet children where they are and give them what they need, both inside and outside of school, in order for all of them to have a genuine opportunity to be successful.

Within this coronavirus crisis there is an opportunity to reshape American education. The only precedent in our field was when the Sputnik went up in 1957, and suddenly, Americans became very worried that their educational system wasn’t competitive with that of the Soviet Union. We felt vulnerable, like our defenses were down, like a nation at risk. And we decided to dramatically boost the involvement of the federal government in schooling and to increase and improve our scientific curriculum. We decided to look at education as an important factor in human capital development in this country. Again, in 1983, the report “Nation at Risk” warned of a similar risk: Our education system wasn’t up to the demands of a high-skills/high-knowledge economy.

We tried with our education reforms to build a 21st-century education system, but the results of that movement have been modest. We are still a nation at risk. We need another paradigm shift, where we look at our goals and aspirations for education, which are summed up in phrases like “No Child Left Behind,” “Every Student Succeeds,” and “All Means All,” and figure out how to build a system that has the capacity to deliver on that promise of equity and excellence in education for all of our students, and all means all. We’ve got that opportunity now. I hope we don’t fail to take advantage of it in a misguided rush to restore the status quo.

This interview has been condensed and edited for length and clarity.

Share this article

You might like.

Historian traces 19th-century murder case that brought together historical figures, helped shape American thinking on race, violence, incarceration

Moderator David E. Sanger (from left) with Ivo Daalder, Karen Donfried, and Stephen Hadley.

National security analysts outline stakes ahead of July summit

Lance Oppenheim.

‘Spermworld’ documentary examines motivations of prospective parents, volunteer donors who connect through private group page 

Epic science inside a cubic millimeter of brain

Researchers publish largest-ever dataset of neural connections

Finding right mix on campus speech policies

Legal, political scholars discuss balancing personal safety, constitutional rights, academic freedom amid roiling protests, cultural shifts

Good genes are nice, but joy is better

Harvard study, almost 80 years old, has proved that embracing community helps us live longer, and be happier

How to Write About Coronavirus in a College Essay

Students can share how they navigated life during the coronavirus pandemic in a full-length essay or an optional supplement.

Writing About COVID-19 in College Essays

Serious disabled woman concentrating on her work she sitting at her workplace and working on computer at office

Getty Images

Experts say students should be honest and not limit themselves to merely their experiences with the pandemic.

The global impact of COVID-19, the disease caused by the novel coronavirus, means colleges and prospective students alike are in for an admissions cycle like no other. Both face unprecedented challenges and questions as they grapple with their respective futures amid the ongoing fallout of the pandemic.

Colleges must examine applicants without the aid of standardized test scores for many – a factor that prompted many schools to go test-optional for now . Even grades, a significant component of a college application, may be hard to interpret with some high schools adopting pass-fail classes last spring due to the pandemic. Major college admissions factors are suddenly skewed.

"I can't help but think other (admissions) factors are going to matter more," says Ethan Sawyer, founder of the College Essay Guy, a website that offers free and paid essay-writing resources.

College essays and letters of recommendation , Sawyer says, are likely to carry more weight than ever in this admissions cycle. And many essays will likely focus on how the pandemic shaped students' lives throughout an often tumultuous 2020.

But before writing a college essay focused on the coronavirus, students should explore whether it's the best topic for them.

Writing About COVID-19 for a College Application

Much of daily life has been colored by the coronavirus. Virtual learning is the norm at many colleges and high schools, many extracurriculars have vanished and social lives have stalled for students complying with measures to stop the spread of COVID-19.

"For some young people, the pandemic took away what they envisioned as their senior year," says Robert Alexander, dean of admissions, financial aid and enrollment management at the University of Rochester in New York. "Maybe that's a spot on a varsity athletic team or the lead role in the fall play. And it's OK for them to mourn what should have been and what they feel like they lost, but more important is how are they making the most of the opportunities they do have?"

That question, Alexander says, is what colleges want answered if students choose to address COVID-19 in their college essay.

But the question of whether a student should write about the coronavirus is tricky. The answer depends largely on the student.

"In general, I don't think students should write about COVID-19 in their main personal statement for their application," Robin Miller, master college admissions counselor at IvyWise, a college counseling company, wrote in an email.

"Certainly, there may be exceptions to this based on a student's individual experience, but since the personal essay is the main place in the application where the student can really allow their voice to be heard and share insight into who they are as an individual, there are likely many other topics they can choose to write about that are more distinctive and unique than COVID-19," Miller says.

Opinions among admissions experts vary on whether to write about the likely popular topic of the pandemic.

"If your essay communicates something positive, unique, and compelling about you in an interesting and eloquent way, go for it," Carolyn Pippen, principal college admissions counselor at IvyWise, wrote in an email. She adds that students shouldn't be dissuaded from writing about a topic merely because it's common, noting that "topics are bound to repeat, no matter how hard we try to avoid it."

Above all, she urges honesty.

"If your experience within the context of the pandemic has been truly unique, then write about that experience, and the standing out will take care of itself," Pippen says. "If your experience has been generally the same as most other students in your context, then trying to find a unique angle can easily cross the line into exploiting a tragedy, or at least appearing as though you have."

But focusing entirely on the pandemic can limit a student to a single story and narrow who they are in an application, Sawyer says. "There are so many wonderful possibilities for what you can say about yourself outside of your experience within the pandemic."

He notes that passions, strengths, career interests and personal identity are among the multitude of essay topic options available to applicants and encourages them to probe their values to help determine the topic that matters most to them – and write about it.

That doesn't mean the pandemic experience has to be ignored if applicants feel the need to write about it.

Writing About Coronavirus in Main and Supplemental Essays

Students can choose to write a full-length college essay on the coronavirus or summarize their experience in a shorter form.

To help students explain how the pandemic affected them, The Common App has added an optional section to address this topic. Applicants have 250 words to describe their pandemic experience and the personal and academic impact of COVID-19.

"That's not a trick question, and there's no right or wrong answer," Alexander says. Colleges want to know, he adds, how students navigated the pandemic, how they prioritized their time, what responsibilities they took on and what they learned along the way.

If students can distill all of the above information into 250 words, there's likely no need to write about it in a full-length college essay, experts say. And applicants whose lives were not heavily altered by the pandemic may even choose to skip the optional COVID-19 question.

"This space is best used to discuss hardship and/or significant challenges that the student and/or the student's family experienced as a result of COVID-19 and how they have responded to those difficulties," Miller notes. Using the section to acknowledge a lack of impact, she adds, "could be perceived as trite and lacking insight, despite the good intentions of the applicant."

To guard against this lack of awareness, Sawyer encourages students to tap someone they trust to review their writing , whether it's the 250-word Common App response or the full-length essay.

Experts tend to agree that the short-form approach to this as an essay topic works better, but there are exceptions. And if a student does have a coronavirus story that he or she feels must be told, Alexander encourages the writer to be authentic in the essay.

"My advice for an essay about COVID-19 is the same as my advice about an essay for any topic – and that is, don't write what you think we want to read or hear," Alexander says. "Write what really changed you and that story that now is yours and yours alone to tell."

Sawyer urges students to ask themselves, "What's the sentence that only I can write?" He also encourages students to remember that the pandemic is only a chapter of their lives and not the whole book.

Miller, who cautions against writing a full-length essay on the coronavirus, says that if students choose to do so they should have a conversation with their high school counselor about whether that's the right move. And if students choose to proceed with COVID-19 as a topic, she says they need to be clear, detailed and insightful about what they learned and how they adapted along the way.

"Approaching the essay in this manner will provide important balance while demonstrating personal growth and vulnerability," Miller says.

Pippen encourages students to remember that they are in an unprecedented time for college admissions.

"It is important to keep in mind with all of these (admission) factors that no colleges have ever had to consider them this way in the selection process, if at all," Pippen says. "They have had very little time to calibrate their evaluations of different application components within their offices, let alone across institutions. This means that colleges will all be handling the admissions process a little bit differently, and their approaches may even evolve over the course of the admissions cycle."

Searching for a college? Get our complete rankings of Best Colleges.

10 Ways to Discover College Essay Ideas

Doing homework

Tags: students , colleges , college admissions , college applications , college search , Coronavirus

2024 Best Colleges

essay education during pandemic

Search for your perfect fit with the U.S. News rankings of colleges and universities.

College Admissions: Get a Step Ahead!

Sign up to receive the latest updates from U.S. News & World Report and our trusted partners and sponsors. By clicking submit, you are agreeing to our Terms and Conditions & Privacy Policy .

Ask an Alum: Making the Most Out of College

You May Also Like

10 destination west coast college towns.

Cole Claybourn May 16, 2024

essay education during pandemic

Scholarships for Lesser-Known Sports

Sarah Wood May 15, 2024

essay education during pandemic

Should Students Submit Test Scores?

Sarah Wood May 13, 2024

essay education during pandemic

Poll: Antisemitism a Problem on Campus

Lauren Camera May 13, 2024

essay education during pandemic

Federal vs. Private Parent Student Loans

Erika Giovanetti May 9, 2024

essay education during pandemic

14 Colleges With Great Food Options

Sarah Wood May 8, 2024

essay education during pandemic

Colleges With Religious Affiliations

Anayat Durrani May 8, 2024

essay education during pandemic

Protests Threaten Campus Graduations

Aneeta Mathur-Ashton May 6, 2024

essay education during pandemic

Protesting on Campus: What to Know

Sarah Wood May 6, 2024

essay education during pandemic

Lawmakers Ramp Up Response to Unrest

Aneeta Mathur-Ashton May 3, 2024

essay education during pandemic

COVID-19 and education: The lingering effects of unfinished learning

As this most disrupted of school years draws to a close, it is time to take stock of the impact of the pandemic on student learning and well-being. Although the 2020–21 academic year ended on a high note—with rising vaccination rates, outdoor in-person graduations, and access to at least some in-person learning for 98 percent of students—it was as a whole perhaps one of the most challenging for educators and students in our nation’s history. 1 “Burbio’s K-12 school opening tracker,” Burbio, accessed May 31, 2021, cai.burbio.com. By the end of the school year, only 2 percent of students were in virtual-only districts. Many students, however, chose to keep learning virtually in districts that were offering hybrid or fully in-person learning.

Our analysis shows that the impact of the pandemic on K–12 student learning was significant, leaving students on average five months behind in mathematics and four months behind in reading by the end of the school year. The pandemic widened preexisting opportunity and achievement gaps, hitting historically disadvantaged students hardest. In math, students in majority Black schools ended the year with six months of unfinished learning, students in low-income schools with seven. High schoolers have become more likely to drop out of school, and high school seniors, especially those from low-income families, are less likely to go on to postsecondary education. And the crisis had an impact on not just academics but also the broader health and well-being of students, with more than 35 percent of parents very or extremely concerned about their children’s mental health.

The fallout from the pandemic threatens to depress this generation’s prospects and constrict their opportunities far into adulthood. The ripple effects may undermine their chances of attending college and ultimately finding a fulfilling job that enables them to support a family. Our analysis suggests that, unless steps are taken to address unfinished learning, today’s students may earn $49,000 to $61,000 less over their lifetime owing to the impact of the pandemic on their schooling. The impact on the US economy could amount to $128 billion to $188 billion every year as this cohort enters the workforce.

Federal funds are in place to help states and districts respond, though funding is only part of the answer. The deep-rooted challenges in our school systems predate the pandemic and have resisted many reform efforts. States and districts have a critical role to play in marshaling that funding into sustainable programs that improve student outcomes. They can ensure rigorous implementation of evidence-based initiatives, while also piloting and tracking the impact of innovative new approaches. Although it is too early to fully assess the effectiveness of postpandemic solutions to unfinished learning, the scope of action is already clear. The immediate imperative is to not only reopen schools and recover unfinished learning but also reimagine education systems for the long term. Across all of these priorities it will be critical to take a holistic approach, listening to students and parents and designing programs that meet academic and nonacademic needs alike.

What have we learned about unfinished learning?

As the 2020–21 school year began, just 40 percent of K–12 students were in districts that offered any in-person instruction. By the end of the year, more than 98 percent of students had access to some form of in-person learning, from the traditional five days a week to hybrid models. In the interim, districts oscillated among virtual, hybrid, and in-person learning as they balanced the need to keep students and staff safe with the need to provide an effective learning environment. Students faced multiple schedule changes, were assigned new teachers midyear, and struggled with glitchy internet connections and Zoom fatigue. This was a uniquely challenging year for teachers and students, and it is no surprise that it has left its mark—on student learning, and on student well-being.

As we analyze the cost of the pandemic, we use the term “unfinished learning” to capture the reality that students were not given the opportunity this year to complete all the learning they would have completed in a typical year. Some students who have disengaged from school altogether may have slipped backward, losing knowledge or skills they once had. The majority simply learned less than they would have in a typical year, but this is nonetheless important. Students who move on to the next grade unprepared are missing key building blocks of knowledge that are necessary for success, while students who repeat a year are much less likely to complete high school and move on to college. And it’s not just academic knowledge these students may miss out on. They are at risk of finishing school without the skills, behaviors, and mindsets to succeed in college or in the workforce. An accurate assessment of the depth and extent of unfinished learning will best enable districts and states to support students in catching up on the learning they missed and moving past the pandemic and into a successful future.

Students testing in 2021 were about ten points behind in math and nine points behind in reading, compared with matched students in previous years.

Unfinished learning is real—and inequitable

To assess student learning through the pandemic, we analyzed Curriculum Associates’ i-Ready in-school assessment results of more than 1.6 million elementary school students across more than 40 states. 2 The Curriculum Associates in-school sample consisted of 1.6 million K–6 students in mathematics and 1.5 million in reading. The math sample came from all 50 states, but 23 states accounted for 90 percent of the sample. The reading sample came from 46 states, with 21 states accounting for 90 percent of the sample. Florida accounted for 29 percent of the math and 30 percent of the reading sample. In general, states that had reopened schools are overweighted given the in-school nature of the assessment. We compared students’ performance in the spring of 2021 with the performance of similar students prior to the pandemic. 3 Specifically, we compared spring 2021 results to those of historically matched students in the springs of 2019, 2018, and 2017. Students testing in 2021 were about ten points behind in math and nine points behind in reading, compared with matched students in previous years.

To get a sense of the magnitude of these gaps, we translated these differences in scores to a more intuitive measure—months of learning. Although there is no perfect way to make this translation, we can get a sense of how far students are behind by comparing the levels students attained this spring with the growth in learning that usually occurs from one grade level to the next. We found that this cohort of students is five months behind in math and four months behind in reading, compared with where we would expect them to be based on historical data. 4 The conversion into months of learning compares students’ achievement in the spring of one grade level with their performance in the spring of the next grade level, treating this spring-to-spring difference in historical scores as a “year” of learning. It assumes a ten-month school year with a two-month summer vacation. Actual school schedules vary significantly, and i-Ready’s typical growth numbers for a “year” of learning are based on 30 weeks of actual instruction between the fall and the spring rather than on a spring-to-spring calendar-year comparison.

Unfinished learning did not vary significantly across elementary grades. Despite reports that remote learning was more challenging for early elementary students, 5 Marva Hinton, “Why teaching kindergarten online is so very, very hard,” Edutopia, October 21, 2020, edutopia.org. our results suggest the impact was just as meaningful for older elementary students. 6 While our analysis only includes results from students who tested in-school in the spring, many of these students were learning remotely for meaningful portions of the fall and the winter. We can hypothesize that perhaps younger elementary students received more help from parents and older siblings, and that older elementary students were more likely to be struggling alone.

It is also worth remembering that our numbers capture the “average” progress by grade level. Especially in early reading, this average can conceal a wide range of outcomes. Another way of cutting the data looks instead at which students have dropped further behind grade levels. A recent report suggests that more first and second graders have ended this year two or more grade levels below expectations than in any previous year. 7 Academic achievement at the end of the 2020–2021 school year , Curriculum Associates, June 2021, curriculumassociates.com. Given the major strides children at this age typically make in mastering reading, and the critical importance of early reading for later academic success, this is of particular concern.

While all types of students experienced unfinished learning, some groups were disproportionately affected. Students of color and low-income students suffered most. Students in majority-Black schools ended the school year six months behind in both math and reading, while students in majority-white schools ended up just four months behind in math and three months behind in reading. 8 To respect students’ privacy, we cannot isolate the race or income of individual students in our sample, but we can look at school-level demographics. Students in predominantly low-income schools and in urban locations also lost more learning during the pandemic than their peers in high-income rural and suburban schools (Exhibit 1).

In fall 2020, we projected that students could lose as much as five to ten months of learning in mathematics, and about half of that in reading, by the end of the school year. Spring assessment results came in toward the lower end of these projections, suggesting that districts and states were able to improve the quality of remote and hybrid learning through the 2020–21 school year and bring more students back into classrooms.

Indeed, if we look at the data over time, some interesting patterns emerge. 9 The composition of the fall student sample was different from that of the spring sample, because more students returned to in-person assessments in the spring. Some of the increase in unfinished learning from fall to spring could be because the spring assessment included previously virtual students, who may have struggled more during the school year. Even so, the spring data are the best reflection of unfinished learning at the end of the school year. Taking math as an example, as schools closed their buildings in the spring of 2020, students fell behind rapidly, learning almost no new math content over the final few months of the 2019–20 school year. Over the summer, we assume that they experienced the typical “summer slide” in which students lose some of the academic knowledge and skills they had learned the year before. Then they resumed learning through the 2020–21 school year, but at a slower pace than usual, resulting in five months of unfinished learning by the end of the year (Exhibit 2). 10 These lines simplify the pattern of typical learning through the year. In a typical year, students learn more in the fall and less in the spring, and only learn during periods of instruction (the chart includes the well-documented learning loss that happens during the summer, but does not include shorter holidays when students are not in school receiving instruction).

In reading, however, the story is somewhat different. As schools closed their buildings in March 2020, students continued to progress in reading, albeit at a slower pace. During the summer, we assume that students’ reading level stayed roughly flat, as in previous years. The pace of learning increased slightly over the 2020–21 school year, but the difference was not as great as it was in math, resulting in four months of unfinished learning by the end of the school year (Exhibit 3). Put another way, the initial shock in reading was less severe, but the improvements to remote and hybrid learning seem to have had less impact in reading than they did in math.

Before we celebrate the improvements in student trajectories between the initial school shutdowns and the subsequent year of learning, we should remember that these are still sobering numbers. On average, students who took the spring assessments in school are half a year behind in math, and nearly that in reading. For Black and Hispanic students, the losses are not only greater but also piled on top of historical inequities in opportunity and achievement (Exhibit 4).

Furthermore, these results likely represent an optimistic scenario. They reflect outcomes for students who took interim assessments in the spring in a school building 11 Students who took the assessment out of school are not included in our sample because we could not guarantee fidelity and comparability of results, given the change in the testing environment. Out-of-school students represent about a third of the students taking i-Ready assessments in the spring, and we will not have an accurate understanding of the pandemic’s impact on their learning until they return to school buildings, likely in the fall. —and thus exclude students who remained remote throughout the entire school year, and who may have experienced the most disruption to their schooling. 12 Initial results from Texas suggest that districts with mostly virtual instruction experienced more unfinished learning than those with mostly in-person instruction. The percent of students meeting math expectations dropped 32 percent in mostly virtual districts but just 9 percent in mostly in-person ones. See Reese Oxner, “Texas students’ standardized test scores dropped dramatically during the pandemic, especially in math,” Texas Tribune , June 28, 2021, texastribune.org. The Curriculum Associates data cover a broad variety of schools and states across the country, but are not fully representative, being overweighted for rural and southeastern states that were more likely to get students back into the classrooms this year. Finally, these data cover only elementary schools. They are silent on the academic impact of the pandemic for middle and high schoolers. However, data from school districts suggest that, even for older students, the pandemic has had a significant effect on learning. 13 For example, in Salt Lake City, the percentage of middle and high school students failing a class jumped by 60 percent, from 2,500 to 4,000, during the pandemic. To learn about increased failure rates across multiple districts from the Bay Area to New Mexico, Austin, and Hawaii, see Richard Fulton, “Failing Grades,” Inside Higher Ed , March 8, 2021, insidehighered.com.

The harm inflicted by the pandemic goes beyond academics

Students didn’t just lose academic learning during the pandemic. Some lost family members; others had caregivers who lost their jobs and sources of income; and almost all experienced social isolation.

These pressures have taken a toll on students of all ages. In our recent survey of 16,370 parents across every state in America, 35 percent of parents said they were very or extremely concerned about their child’s mental health, with a similar proportion worried about their child’s social and emotional well-being. Roughly 80 percent of parents had some level of concern about their child’s mental health or social and emotional health and development since the pandemic began. Parental concerns about mental health span grade levels but are slightly lower for parents of early elementary school students. 14 While 30.7% percent of all K–2 parents were very or extremely concerned, a peak of 37.6% percent of eighth-grade parents were.

Parents also report increases in clinical mental health conditions among their children, with a five-percentage-point increase in anxiety and a six-percentage-point increase in depression. They also report increases in behaviors such as social withdrawal, self-isolation, lethargy, and irrational fears (Exhibit 5). Despite increased levels of concern among parents, the amount of mental health assessment and testing done for children is 6.1 percent lower than it was in 2019 —the steepest decline in assessment and testing rates of any age group.

Broader student well-being is not independent of academics. Parents whose children have fallen significantly behind academically are one-third more likely to say that they are very or extremely concerned about their children’s mental health. Black and Hispanic parents are seven to nine percentage points more likely than white parents to report higher levels of concern. Unaddressed mental-health challenges will likely have a knock-on effect on academics going forward as well. Research shows that trauma and other mental-health issues can influence children’s attendance, their ability to complete schoolwork in and out of class, and even the way they learn. 15 Satu Larson et al., “Chronic childhood trauma, mental health, academic achievement, and school-based health center mental health services,” Journal of School Health , 2017, 87(9), 675–86, escholarship.org.

In our recent survey of 16,370 parents across every state in America, 35 percent of parents said they were very or extremely concerned about their child’s mental health.

The impact of unfinished learning on diminished student well-being seems to be playing out in the choices that students are making. Some students have already effectively dropped out of formal education entirely. 16 To assess the impact of the pandemic on dropout rates, we have to look beyond official enrollment data, which are only published annually, and which only capture whether a child has enrolled at the beginning of the year, not whether they are engaged and attending school. Chronic absenteeism rates provide clues as to which students are likely to persist in school and which students are at risk of dropping out. Our parent survey suggests that chronic absenteeism for eighth through 12th graders has increased by 12 percentage points, and 42 percent of the students who are new to chronic absenteeism are attending no school at all, according to their parents. Scaled up to the national level, this suggests that 2.3 million to 4.6 million additional eighth- to 12th-grade students were chronically absent from school this year, in addition to the 3.1 million who are chronically absent in nonpandemic years. State and district data on chronic absenteeism are still emerging, but data released so far also suggest a sharp uptick in absenteeism rates nationwide, particularly in higher grades. 17 A review of available state and district data, including data released by 14 states and 11 districts, showed increases in chronic absenteeism of between three and 16 percentage points, with an average of seven percentage points. However, many states changed the definition of absenteeism during the pandemic, so a true like-for-like comparison is difficult to obtain. According to emerging state and district data, increases in chronic absenteeism are highest among populations with historically low rates. This is reflected also in our survey results. Black students, with the highest historical absenteeism rates, saw more modest increases during the pandemic than white or Hispanic students (Exhibit 6).

It remains unclear whether these pandemic-related chronic absentees will drop out at rates similar to those of students who were chronically absent prior to the pandemic. Some students could choose to return to school once in-person options are restored; but some portion of these newly absent students will likely drop out of school altogether. Based on historical links between chronic absenteeism and dropout rates, as well as differentials in absenteeism between fully virtual and fully in-person students, we estimate that an additional 617,000 to 1.2 million eighth–12th graders could drop out of school altogether because of the pandemic if efforts are not made to reengage them in learning next year. 18 The federal definition of chronic absenteeism is missing more than 15 days of school each year. According to the Utah Education Policy Center’s research brief on chronic absenteeism, the overall correlation between one year of chronic absence between eighth and 12th grade and dropping out of school is 0.134. For more, see Utah Education Policy Center, Research brief: Chronic absenteeism , July 2012, uepc.utah.edu. We then apply the differential in chronic absenteeism between fully virtual and fully in-person students to account for virtual students reengaging when in-person education is offered. For students who were not attending school at all, we assumed that 50 to 75 percent would not return to learning. This estimation is partly based on The on-track indicator as a predictor of high school graduation from the UChicago Consortium on School Research, which estimates that up to 75 percent of high school students who are “off track”—either failing or behind in credits—do not graduate in five years. For more, see Elaine Allensworth and John Q. Easton, The on-track indicator as a predictor of high school graduation , UChicago Consortium on School Research, 2005, consortium.uchicago.edu.

Even among students who complete high school, many may not fulfill their dreams of going on to postsecondary education. Our survey suggests that 17 percent of high school seniors who had planned to attend postsecondary education abandoned their plans—most often because they had joined or were planning to join the workforce or because the costs of college were too high. The number is much higher among low-income high school seniors, with 26 percent abandoning their plans. Low-income seniors are more likely to state cost as a reason, with high-income seniors more likely to be planning to reapply the following year or enroll in a gap-year program. This is consistent with National Student Clearinghouse reports that show overall college enrollment declines, with low-income, high-poverty, and high-minority high schools disproportionately affected. 19 Todd Sedmak, “Fall 2020 college enrollment update for the high school graduating class of 2020,” National Student Clearinghouse, March 25, 2021, studentclearinghouse.org; Todd Sedmak, “Spring 2021 college enrollment declines 603,000 to 16.9 million students,” National Student Clearinghouse, June 10, 2021, studentclearinghouse.org.

Unfinished learning has long-term consequences

The cumulative effects of the pandemic could have a long-term impact on an entire generation of students. Education achievement and attainment are linked not only to higher earnings but also to better health, reduced incarceration rates, and greater political participation. 20 See, for example, Michael Grossman, “Education and nonmarket outcomes,” in Handbook of the Economics of Education, Volume 1 , ed. Eric Hanushek and Finis Welch (Amsterdam: Elsevier, 2006), 577–633; Lance Lochner and Enrico Moretti, “The effect of education on crime: Evidence from prison inmates, arrests, and self-reports,” American Economic Review , 2004, Volume 94, Number 1, pp. 155–89; Kevin Milligan, Enrico Moretti, and Philip Oreopoulos, “Does education improve citizenship? Evidence from the United States and the United Kingdom,” Journal of Public Economics , August 2004, Volume 88, Number 9–10, pp. 1667–95; and Education transforms lives , UNESCO, 2013, unesdoc.unesco.org. We estimate that, without immediate and sustained interventions, pandemic-related unfinished learning could reduce lifetime earnings for K–12 students by an average of $49,000 to $61,000. These costs are significant, especially for students who have lost more learning. While white students may see lifetime earnings reduced by 1.4 percent, the reduction could be as much as 2.4 percent for Black students and 2.1 percent for Hispanic students. 21 Projected earnings across children’s lifetimes using current annual incomes for those with at least a high school diploma, discounting the earnings by a premium established in Murnane et al., 2000, which tied cognitive skills and future earnings. See Richard J. Murnane et al., “How important are the cognitive skills of teenagers in predicting subsequent earnings?,” Journal of Policy Analysis and Management , September 2000, Volume 19, Number 4, pp. 547–68.

Lower earnings, lower levels of education attainment, less innovation—all of these lead to decreased economic productivity. By 2040 the majority of this cohort of K–12 students will be in the workforce. We anticipate a potential annual GDP loss of $128 billion to $188 billion from pandemic-related unfinished learning. 22 Using Hanushek and Woessmann 2008 methodology to map national per capita growth associated with decrease in academic achievement, then adding additional impact of pandemic dropouts on GDP. For more, see Eric A. Hanushek and Ludger Woessmann, “The role of cognitive skills in economic development,” Journal of Economic Literature , September 2008, Volume 46, Number 3, pp. 607–68.

This increases by about one-third the existing hits to GDP from achievement gaps that predated COVID-19. Our previous research indicated that the pre-COVID-19 racial achievement gap was equivalent to $426 billion to $705 billion in lost economic potential every year (Exhibit 7). 23 This is the increase in GDP that would result if Black and Hispanic students achieved the same levels of academic performance as white students. For more information on historical opportunity and achievement gaps, please see Emma Dorn, Bryan Hancock, Jimmy Sarakatsannis, and Ellen Viruleg, “ COVID-19 and student learning in the United States: The hurt could last a lifetime ,” June 1, 2020.

What is the path forward for our nation’s students?

There is now significant funding in place to address these critical issues. Through the Coronavirus Aid, Relief, and Economic Security Act (CARES Act); the Coronavirus Response and Relief Supplemental Appropriations Act (CRRSAA); and the American Rescue Plan (ARP), the federal government has already committed more than $200 billion to K–12 education over the next three years, 24 The CARES Act provided $13 billion to ESSER and $3 billion to the Governor’s Emergency Education Relief (GEER) Fund; CRRSAA provided $54 billion to ESSER II, $4 billion to Governors (GEER II and EANS); ARP provided $123 billion to ESSER III, $3 billion to Governors (EANS II), and $10 billion to other education programs. For more, see “CCSSO fact sheet: COVID-19 relief funding for K-12 education,” Council of Chief State School Officers, 2021, https://753a0706.flowpaper.com/CCSSOCovidReliefFactSheet/#page=2. a significant increase over the approximately $750 billion spent annually on public schooling. 25 “The condition of education 2021: At a glance,” National Center for Education Statistics, accessed June 30, 2021, nces.ed.gov. The majority of these funds are routed through the Elementary and Secondary School Emergency Relief Fund (ESSER), of which 90 percent flows to districts and 10 percent to state education agencies. These are vast sums of money, particularly in historical context. As part of the 2009 American Recovery and Reinvestment Act (ARRA), the Obama administration committed more than $80 billion toward K–12 schools—at the time the biggest federal infusion of funds to public schools in the nation’s history. 26 “The American Recovery and Reinvestment Act of 2009: Saving and Creating Jobs and Reforming Education,” US Department of Education, March 7, 2009, ed.gov. Today’s funding more than doubles that previous record and gives districts much more freedom in how they spend the money. 27 Andrew Ujifusa, “What Obama’s stimulus had for education that the coronavirus package doesn’t,” Education Week , March 31, 2020, www.edweek.org.

However, if this funding can mitigate the impact of unfinished learning, it could prevent much larger losses to the US economy. Given that this generation of students will likely spend 35 to 40 years in the workforce, the cumulative impact of COVID-19 unfinished learning over their lifetimes could far exceed the investments that are being made today.

Furthermore, much of today’s federal infusion will likely be spent not only on supporting students in catching up on the unfinished learning of the pandemic but also on tackling deeper historical opportunity and achievement gaps among students of different races and income levels.

As districts consider competing uses of funding, they are juggling multiple priorities over several time horizons. The ARP funding needs to be obligated by September 2023. This restricts how monies can be spent. Districts are balancing the desire to hire new personnel or start new programs with the risk of having to close programs because of lack of sustained funds in the future. Districts are also facing decisions about whether to run programs at the district level or to give more freedom to principals in allocating funds; about the balance between academics and broader student needs; about the extent to which funds should be targeted to students who have struggled most or spread evenly across all students; and about the balance between rolling out existing evidence-based programs and experimenting with innovative approaches.

It is too early to answer all of these questions decisively. However, as districts consider this complex set of decisions, leading practitioners and thinkers have come together to form the Coalition to Advance Future Student Success—and to outline priorities to ensure the effective and equitable use of federal funds. 28 “Framework: The Coalition to Advance Future Student Success,” Council of Chief State School Officers, accessed June 30, 2021, learning.ccsso.org.

These priorities encompass four potential actions for schools:

  • Safely reopen schools for in-person learning.
  • Reengage students and reenroll them into effective learning environments.
  • Support students in recovering unfinished learning and broader needs.
  • Recommit and reimagine our education systems for the long term.

Across all of these actions, it is important for districts to understand the changing needs of parents and students as we emerge from the pandemic, and to engage with them to support students to learn and to thrive. The remainder of this article shares insights from our parent survey of more than 16,000 parents on these changing needs and perspectives, and highlights some early actions by states and districts to adapt to meet them.

1. Safely reopen schools for in-person learning

The majority of school districts across the country are planning to offer traditional five-days-a-week in-person instruction in the fall, employing COVID-19-mitigation strategies such as staff and student vaccination drives, ongoing COVID-19 testing, mask mandates, and infrastructure updates. 29 “Map: Where Were Schools Required to Be Open for the 2020-21 School Year?,” Education Week , updated May 2021, edweek.org. The evidence suggests that schools can reopen buildings safely with the right protocols in place, 30 For a summary of the evidence on safely reopening schools, see John Bailey, Is it safe to reopen schools? , CRPE, March 2021, crpe.org. but health preparedness will likely remain critical as buildings reopen. Indeed, by the end of the school year, a significant subset of parents remain concerned about safety in schools, with nearly a third still very or extremely worried about the threat of COVID-19 to their child’s health. Parents also want districts to continue to invest in safety—39 percent say schools should invest in COVID-19 health and safety measures this fall.

2. Reengage and reenroll students in effective learning environments

Opening buildings safely is hard enough, but encouraging students to show up could be even more challenging. Some students will have dropped out of formal schooling entirely, and those who remain in school may be reluctant to return to physical classrooms. Our survey results suggest that 24 percent of parents are still not convinced they will choose in-person instruction for their children this fall. Within Black communities, that rises to 34 percent. But many of these parents are still open to persuasion. Only 4 percent of parents (and 6 percent of Black parents) say their children will definitely not return to fully in-person learning—which is not very different from the percentage of parents who choose to homeschool or pursue other alternative education options in a typical year. For students who choose to remain virtual, schools should make continual efforts to improve virtual learning models, based on lessons from the past year.

For parents who are still on the fence, school districts can work to understand their needs and provide effective learning options. Safety concerns remain the primary reason that parents remain hesitant about returning to the classroom; however, this is not the only driver. Some parents feel that remote learning has been a better learning environment for their child, while others have seen their child’s social-emotional and mental health improve at home.

Still, while remote learning may have worked well for some students, our data suggest that it failed many. In addition to understanding parent needs, districts should reach out to families and build confidence not just in their schools’ safety precautions but also in their learning environment and broader role in the community. Addressing root causes will likely be more effective than punitive measures, and a broad range of tactics may be needed, from outreach and attendance campaigns to student incentives to providing services families need, such as transportation and childcare. 31 Roshon R. Bradley, “A comprehensive approach to improving student attendance,” St. John Fisher College, August 2015, Education Doctoral, Paper 225, fisherpub.sjfc.edu; a 2011 literature review highlights how incentives can effectively be employed to increase attendance rates. Across all of these, a critical component will likely be identifying students who are at risk and ensuring targeted outreach and interventions. 32 Elaine M. Allensworth and John Q. Easton, “What matters for staying on-track and graduating in Chicago Public Schools: A close look at course grades, failures, and attendance in the freshman year,” Consortium on Chicago School Research at the University of Chicago, July 2007, files.eric.ed.gov.

Chicago Public Schools, in partnership with the University of Chicago, has developed a student prioritization index (SPI) that identifies students at highest risk of unfinished learning and dropping out of school. The index is based on a combination of academic, attendance, socio-emotional, and community vulnerability inputs. The district is reaching out to all students with a back-to-school marketing campaign while targeting more vulnerable students with additional support. Schools are partnering with community-based organizations to carry out home visits, and with parents to staff phone banks. They are offering various paid summer opportunities to reduce the trade-offs students may have to make between summer school and summer jobs, recognizing that many have found paid work during the pandemic. The district will track and monitor the results to learn which tactics work. 33 “Moving Forward Together,” Chicago Public Schools, June 2021, cps.edu.

In Florida’s Miami-Dade schools, each school employee was assigned 30 households to contact personally, starting with a phone call and then showing up for a home visit. Superintendent Alberto Carvalho personally contacted 30 families and persuaded 23 to return to in-person learning. The district is starting the transition to in-person learning by hosting engaging in-person summer learning programs. 34 Hannah Natanson, “Schools use home visits, calls to convince parents to choose in-person classes in fall,” Washington Post , July 7, 2021, washingtonpost.com.

3. Support students in recovering unfinished learning and in broader needs

Even if students reenroll in effective learning environments in the fall, many will be several months behind academically and may struggle to reintegrate into a traditional learning environment. School districts are therefore creating strategies to support students  as they work to make up unfinished learning, and as they work through broader mental health issues and social reintegration. Again, getting parents and students to show up for these programs may be harder than districts expect.

Our research suggests that parents underestimate the unfinished learning caused by the pandemic. In addition, their beliefs about their children’s learning do not reflect racial disparities in unfinished learning. In our survey, 40 percent of parents said their child is on track and 16 percent said their child is progressing faster than in a usual year. Black parents are slightly more likely than white parents to think their child is on track or better, Hispanic parents less so. However, across all races, more than half of parents think their child is doing just fine. Only 14 percent of parents said their child has fallen significantly behind.

Even if programs are offered for free, many parents may not take advantage of them, especially if they are too academically oriented. Only about a quarter of parents said they are very likely to enroll their child in tutoring, after-school, or summer-school programs, for example. Nearly 40 percent said they are very likely to enroll their students in enrichment programs such as art or music. Districts therefore should consider not only offering effective evidence-based programs, such as high-dosage tutoring and vacation academies, but also ensuring that these programs are attractive to students.

In Rhode Island, for example, the state is taking a “Broccoli and Ice Cream” approach to summer school to prepare students for the new school year, combining rigorous reading and math instruction with fun activities provided by community-based partners. Enrichment activities such as sailing, Italian cooking lessons, and Olympic sports are persuading students to participate. 35 From webinar with Angélica Infante-Green, Rhode Island Department of Education, https://www.ewa.org/agenda/ewa-74th-national-seminar-agenda. The state-run summer program is open to students across the state, but the Rhode Island Department of Education has also provided guidance to district-run programs, 36 Learning, Equity & Accelerated Pathways Task Force Report , Rhode Island Department of Education, April 2021, ride.ri.gov. encouraging partnerships with community-based organizations, a dual focus on academics and enrichment, small class sizes, and a strong focus on relationships and social-emotional support.

In Louisiana, the state has provided guidance and support 37 Staffing and scheduling best practices guidance , Louisiana Department of Education, June 3, 2021, louisianabelieves.com. to districts in implementing recovery programs to ensure evidence-based approaches are rolled out state-wide. The guidance includes practical tips on ramping up staffing, and on scheduling high-dosage tutoring and other dedicated acceleration blocks. The state didn’t stop at guidance, but also flooded districts with support and two-way dialogue through webinars, conferences, monthly calls, and regional technical coaching. By scheduling acceleration blocks during the school day, rather than an add-on after school, districts are not dependent on parents signing up for programs.

For students who have experienced trauma, schools will likely need to address the broader fallout from the pandemic. In southwest Virginia, the United Way is partnering with five school systems to establish a trauma-informed schools initiative, providing teachers and staff with training and resources on trauma recovery. 38 Mike Still, “SWVA school districts partner to help students in wake of pandemic,” Kingsport Times News, June 26, 2021, timesnews.net. San Antonio is planning to hire more licensed therapists and social workers to help students and their families, leveraging partnerships with community organizations to place a licensed social worker on every campus. 39 Brooke Crum, “SAISD superintendent: ‘There are no shortcuts’ to tackling COVID-related learning gaps,” San Antonio Report, April 12, 2021, sanantonioreport.org.

4. Recommit and reimagine our education systems for the long term

Opportunity gaps have existed in our school systems for a long time. As schools build back from the pandemic, districts are also recommitting to providing an excellent education to every child. A potential starting point could be redoubling efforts to provide engaging, high-quality grade-level curriculum and instruction delivered by diverse and effective educators in every classroom, supported by effective assessments to inform instruction and support.

Beyond these foundational elements, districts may consider reimagining other aspects of the system. Parents may also be open to nontraditional models. Thirty-three percent of parents said that even when the pandemic is over, the ideal fit for their child would be something other than five days a week in a traditional brick-and-mortar school. Parents are considering hybrid models, remote learning, homeschooling, or learning hubs over the long term. Even if learning resumes mostly in the building, parents are open to the use of new technology to support teaching.

Edgecombe County Public Schools in North Carolina is planning to continue its use of learning hubs this fall to better meet student needs. In the district’s hub-and-spoke model, students will spend half of their time learning core content (the “hub”). For the other half they will engage in enrichment activities aligned to learning standards (the “spokes”). For elementary and middle school students, enrichment activities will involve interest-based projects in science and social studies; for high schoolers, activities could include exploring their passions through targeted English language arts and social studies projects or getting work experience—either paid or volunteer. The district is redeploying staff and leveraging community-based partnerships to enable these smaller-group activities with trusted adults who mirror the demographics of the students. 40 “District- and community-driven learning pods,” Center on Reinventing Public Education, crpe.org.

In Tennessee, the new Advanced Placement (AP) Access for All program will provide students across the state with access to AP courses, virtually. The goal is to eliminate financial barriers and help students take AP courses that aren’t currently offered at their home high school. 41 Amy Cockerham, “TN Department of Education announces ‘AP Access for All program,’” April 28, 2021, WJHL-TV, wjhl.com.

The Dallas Independent School District is rethinking the traditional school year, gathering input from families, teachers, and school staff to ensure that school communities are ready for the plunge. More than 40 schools have opted to add five additional intercession weeks to the year to provide targeted academics and enrichment activities. A smaller group of schools will add 23 days to the school year to increase time for student learning and teacher planning and collaboration. 42 “Time to Learn,” Dallas Independent School District, dallasisd.org.

It is unclear whether all these experiments will succeed, and school districts should monitor them closely to ensure they can scale successful programs and sunset unsuccessful ones. However, we have learned in the pandemic that some of the innovations born of necessity met some families’ needs better. Continued experimentation and fine-tuning could bring the best of traditional and new approaches together.

Thanks to concerted efforts by states and districts, the worst projections for learning outcomes this past year have not materialized for most students. However, students are still far behind where they need to be, especially those from historically marginalized groups. Left unchecked, unfinished learning could have severe consequences for students’ opportunities and prospects. In the long term, it could exact a heavy toll on the economy. It is not too late to mitigate these threats, and funding is now in place. Districts and states now have the opportunity to spend that money effectively to support our nation’s students.

Emma Dorn is a senior expert in McKinsey’s Silicon Valley office; Bryan Hancock and Jimmy Sarakatsannis are partners in the Washington, DC, office; and Ellen Viruleg is a senior adviser based in Providence, Rhode Island.

The authors wish to thank Alice Boucher, Ezra Glenn, Ben Hayes, Cheryl Healey, Chauncey Holder, and Sidney Scott for their contributions to this article.

Explore a career with us

Related articles.

Teacher survey: Learning loss is global—and significant

Teacher survey: Learning loss is global—and significant

COVID-19 and learning loss—disparities grow and students need help

COVID-19 and learning loss—disparities grow and students need help

Reimagining a more equitable and resilient K–12 education system

Reimagining a more equitable and resilient K–12 education system

  • Frontiers in Psychology
  • Educational Psychology
  • Research Topics

Learning in times of COVID-19: Students’, Families’, and Educators’ Perspectives

Total Downloads

Total Views and Downloads

About this Research Topic

The COVID-19 pandemic has had a profound and sudden impact on many areas of life; work, leisure time and family alike. These changes have also affected educational processes in formal and informal learning environments. Public institutions such as childcare settings, schools, universities and further ...

Keywords : COVID-19, distance learning, home learning, student-teacher relationships, digital teaching and learning, learning

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, recent articles, submission deadlines.

Submission closed.

Participating Journals

Total views.

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

World Bank Blogs Logo

Educational challenges and opportunities of the Coronavirus (COVID-19) pandemic

Jaime saavedra.

Ecole secondaire de Shreeshitalacom au Népal. © Banque mondiale

We are living amidst what is potentially one of the greatest threats in our lifetime to global education, a gigantic educational crisis. As of March 28, 2020, the COVID-19 pandemic is causing more than 1.6 billion children and youth to be out of school in 161 countries. This is close to 80% of the world’s enrolled students.  We were already experiencing a global leaning crisis, as many students were in school, but were not learning the fundamental skills needed for life. The World Bank’s “ Learning Poverty ” indicator – the % of children who cannot read and understand at age 10 – stood at 53% of children in low- and middle-income countries – before the outbreak started. This pandemic has the potential to worsen these outcomes even more if we do not act fast.

What should we be worried about in this phase of the crisis that might have an immediate impact on children and youth? (1) Losses in learning (2) Increased dropout rates (3) Children missing their most important meal of the day. Moreover, most countries have very unequal education systems, and these negative impacts will be felt disproportionately by poor children. When it rains, it pours for them.    

Learning . Starting the school year late or interrupting it (depending on if they live in the southern or northern hemisphere) completely disrupts the lives of many children, their parents, and teachers. A lot can be done to at least reduce the impact through remote learning strategies. Richer countries are better prepared to move to online learning strategies, although with a lot of effort and challenges for teachers and parents. In middle-income and poorer countries, the situation is very mixed and if we do not act appropriately, the vast inequality of opportunities that exists – egregious and unacceptable to start with – will be amplified. Many children do not have a desk, books, internet connectivity, a laptop at home, or supportive parents. Others do. What we need to avoid – or minimize as much as possible – is for those differences in opportunities to expand and cause the crisis to have an even larger negative effect on poor children’s learning.  

Fortunately, we are seeing a lot of creativity in many countries. Rightly so, many ministries of education are worried that relying exclusively on online strategies will imply reaching only children from better-off families. The appropriate strategy in most countries is to use all possible delivery modes with the infrastructure that exists today. Use online tools to assure that lesson plans, videos, tutorials, and other resources are available for some students and probably, most teachers. But also, podcasts and other resources that require less data usage. Working with telecommunication companies to apply zero-rate policies can also facilitate learning material to be downloaded on a smartphone, which more students are likely to have. 

Radio and TV are also very powerful tools. The advantage we have today, is that through social networks, WhatsApp or SMS, ministries of education can communicate effectively with parents and teachers and provide guidelines, instructions and structure to the learning process, using content delivered by radio or TV. Remote learning is not only about online learning, but about mixed media learning, with the objective of reaching as many students as possible, today.

Staying engaged. Maintaining the engagement of children, particularly young secondary school students is critical. Dropout rates are still very high in many countries, and a long period of disengagement can result in a further increase. Going to school is not only about learning math and science, but also about social relationships and peer-to-peer interactions. It is about learning to be a citizen and developing social skills. That is why it is important to stay connected with the school by any means necessary. For all students, this is also a time to develop socio-emotional skills and learn more about how to contribute to society as a citizen. The role of parents and family, which has always been extremely important, is critical in that task. So, a lot of the help that ministries of education provide, working through mass media, should also go to parents. Radio, TV, SMS messages can all be used to provide tips and advice to them on how to better support their children.

Meals.  In many parts of the world, school feeding programs provide children with their most nutritious meal of the day. They are essential for the cognitive development and well-being. These programs are complex logistical and administrative endeavors. It is not easy, but countries should find the way to provide those meals using the school buildings in an organized fashion, community buildings or networks, or, if needed, distribute directly to the families. If delivering meals or food is not feasible logistically, cash transfer programs should be expanded or implemented to compensate the parents. Planning is needed, but one has to be ready to flexibly adjust plans, as the information we have about the likely paths of the pandemic change day by day, influenced by the uncertainty around which mitigation measures countries are taking. The process of reopening of schools might be gradual, as authorities will want to reduce agglomeration or the possibility of a second wave of the pandemic, which can affect some countries. In that uncertain context, it might be better to make decisions assuming a longer, rather than a shorter scenario. The good news is that many of the improvements, initiatives, and investments that school systems will have to make might have a positive long-lasting effect.

Some countries will be able to increase their teachers’ digital skills. Radio and TV stations will recognize their key role in supporting national education goals – and hopefully, improve the quality of their programming understanding their immense social responsibility. Parents will be more involved in their children’s education process, and ministries of education will have a much clearer understanding of the gaps and challenges (in connectivity, hardware, integration of digital tools in the curriculum, teacher’s readiness) that exist in using technology effectively and act upon that. All of this can strengthen the future education system in a country.

The mission of all education systems is the same. It is to overcome the learning crisis we were already living and respond to the pandemic we are all facing. The challenge today is to reduce as much as possible the negative impact this pandemic will have on learning and schooling and build on this experience to get back on a path of faster improvement in learning. As education systems cope with this crisis, they must also be thinking of how they can recover stronger, with a renewed sense of responsibility of all actors and with a better understanding and sense of urgency of the need to close the gap in opportunities and assuring that all children have the same chances for a quality education.

  • The World Region
  • COVID-19 (coronavirus)

Jaime Saavedra

Human Development Director for Latin America and the Caribbean at the World Bank

Join the Conversation

  • Share on mail
  • comments added

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 27 September 2021

Why lockdown and distance learning during the COVID-19 pandemic are likely to increase the social class achievement gap

  • Sébastien Goudeau   ORCID: orcid.org/0000-0001-7293-0977 1 ,
  • Camille Sanrey   ORCID: orcid.org/0000-0003-3158-1306 1 ,
  • Arnaud Stanczak   ORCID: orcid.org/0000-0002-2596-1516 2 ,
  • Antony Manstead   ORCID: orcid.org/0000-0001-7540-2096 3 &
  • Céline Darnon   ORCID: orcid.org/0000-0003-2613-689X 2  

Nature Human Behaviour volume  5 ,  pages 1273–1281 ( 2021 ) Cite this article

115k Accesses

148 Citations

129 Altmetric

Metrics details

The COVID-19 pandemic has forced teachers and parents to quickly adapt to a new educational context: distance learning. Teachers developed online academic material while parents taught the exercises and lessons provided by teachers to their children at home. Considering that the use of digital tools in education has dramatically increased during this crisis, and it is set to continue, there is a pressing need to understand the impact of distance learning. Taking a multidisciplinary view, we argue that by making the learning process rely more than ever on families, rather than on teachers, and by getting students to work predominantly via digital resources, school closures exacerbate social class academic disparities. To address this burning issue, we propose an agenda for future research and outline recommendations to help parents, teachers and policymakers to limit the impact of the lockdown on social-class-based academic inequality.

Similar content being viewed by others

essay education during pandemic

Large socio-economic, geographic and demographic disparities exist in exposure to school closures

essay education during pandemic

Elementary school teachers’ perspectives about learning during the COVID-19 pandemic

essay education during pandemic

Uncovering Covid-19, distance learning, and educational inequality in rural areas of Pakistan and China: a situational analysis method

The widespread effects of the COVID-19 pandemic that emerged in 2019–2020 have drastically increased health, social and economic inequalities 1 , 2 . For more than 900 million learners around the world, the pandemic led to the closure of schools and universities 3 . This exceptional situation forced teachers, parents and students to quickly adapt to a new educational context: distance learning. Teachers had to develop online academic materials that could be used at home to ensure educational continuity while ensuring the necessary physical distancing. Primary and secondary school students suddenly had to work with various kinds of support, which were usually provided online by their teachers. For college students, lockdown often entailed returning to their hometowns while staying connected with their teachers and classmates via video conferences, email and other digital tools. Despite the best efforts of educational institutions, parents and teachers to keep all children and students engaged in learning activities, ensuring educational continuity during school closure—something that is difficult for everyone—may pose unique material and psychological challenges for working-class families and students.

Not only did the pandemic lead to the closure of schools in many countries, often for several weeks, it also accelerated the digitalization of education and amplified the role of parental involvement in supporting the schoolwork of their children. Thus, beyond the specific circumstances of the COVID-19 lockdown, we believe that studying the effects of the pandemic on academic inequalities provides a way to more broadly examine the consequences of school closure and related effects (for example, digitalization of education) on social class inequalities. Indeed, bearing in mind that (1) the risk of further pandemics is higher than ever (that is, we are in a ‘pandemic era’ 4 , 5 ) and (2) beyond pandemics, the use of digital tools in education (and therefore the influence of parental involvement) has dramatically increased during this crisis, and is set to continue, there is a pressing need for an integrative and comprehensive model that examines the consequences of distance learning. Here, we propose such an integrative model that helps us to understand the extent to which the school closures associated with the pandemic amplify economic, digital and cultural divides that in turn affect the psychological functioning of parents, students and teachers in a way that amplifies academic inequalities. Bringing together research in social sciences, ranging from economics and sociology to social, cultural, cognitive and educational psychology, we argue that by getting students to work predominantly via digital resources rather than direct interactions with their teachers, and by making the learning process rely more than ever on families rather than teachers, school closures exacerbate social class academic disparities.

First, we review research showing that social class is associated with unequal access to digital tools, unequal familiarity with digital skills and unequal uses of such tools for learning purposes 6 , 7 . We then review research documenting how unequal familiarity with school culture, knowledge and skills can also contribute to the accentuation of academic inequalities 8 , 9 . Next, we present the results of surveys conducted during the 2020 lockdown showing that the quality and quantity of pedagogical support received from schools varied according to the social class of families (for examples, see refs. 10 , 11 , 12 ). We then argue that these digital, cultural and structural divides represent barriers to the ability of parents to provide appropriate support for children during distance learning (Fig. 1 ). These divides also alter the levels of self-efficacy of parents and children, thereby affecting their engagement in learning activities 13 , 14 . In the final section, we review preliminary evidence for the hypothesis that distance learning widens the social class achievement gap and we propose an agenda for future research. In addition, we outline recommendations that should help parents, teachers and policymakers to use social science research to limit the impact of school closure and distance learning on the social class achievement gap.

figure 1

Economic, structural, digital and cultural divides influence the psychological functioning of parents and students in a way that amplify inequalities.

The digital divide

Unequal access to digital resources.

Although the use of digital technologies is almost ubiquitous in developed nations, there is a digital divide such that some people are more likely than others to be numerically excluded 15 (Fig. 1 ). Social class is a strong predictor of digital disparities, including the quality of hardware, software and Internet access 16 , 17 , 18 . For example, in 2019, in France, around 1 in 5 working-class families did not have personal access to the Internet compared with less than 1 in 20 of the most privileged families 19 . Similarly, in 2020, in the United Kingdom, 20% of children who were eligible for free school meals did not have access to a computer at home compared with 7% of other children 20 . In 2021, in the United States, 41% of working-class families do not own a laptop or desktop computer and 43% do not have broadband compared with 8% and 7%, respectively, of upper/middle-class Americans 21 . A similar digital gap is also evident between lower-income and higher-income countries 22 .

Second, simply having access to a computer and an Internet connection does not ensure effective distance learning. For example, many of the educational resources sent by teachers need to be printed, thereby requiring access to printers. Moreover, distance learning is more difficult in households with only one shared computer compared with those where each family member has their own 23 . Furthermore, upper/middle-class families are more likely to be able to guarantee a suitable workspace for each child than their working-class counterparts 24 .

In the context of school closures, such disparities are likely to have important consequences for educational continuity. In line with this idea, a survey of approximately 4,000 parents in the United Kingdom confirmed that during lockdown, more than half of primary school children from the poorest families did not have access to their own study space and were less well equipped for distance learning than higher-income families 10 . Similarly, a survey of around 1,300 parents in the Netherlands found that during lockdown, children from working-class families had fewer computers at home and less room to study than upper/middle-class children 11 .

Data from non-Western countries highlight a more general digital divide, showing that developing countries have poorer access to digital equipment. For example, in India in 2018, only 10.7% of households possessed a digital device 25 , while in Pakistan in 2020, 31% of higher-education teachers did not have Internet access and 68.4% did not have a laptop 26 . In general, developing countries lack access to digital technologies 27 , 28 , and these difficulties of access are even greater in rural areas (for example, see ref. 29 ). Consequently, school closures have huge repercussions for the continuity of learning in these countries. For example, in India in 2018, only 11% of the rural and 40% of the urban population above 14 years old could use a computer and access the Internet 25 . Time spent on education during school closure decreased by 80% in Bangladesh 30 . A similar trend was observed in other countries 31 , with only 22% of children engaging in remote learning in Kenya 32 and 50% in Burkina Faso 33 . In Ghana, 26–32% of children spent no time at all on learning during the pandemic 34 . Beyond the overall digital divide, social class disparities are also evident in developing countries, with lower access to digital resources among households in which parental educational levels were low (versus households in which parental educational levels were high; for example, see ref. 35 for Nigeria and ref. 31 for Ecuador).

Unequal digital skills

In addition to unequal access to digital tools, there are also systematic variations in digital skills 36 , 37 (Fig. 1 ). Upper/middle-class families are more familiar with digital tools and resources and are therefore more likely to have the digital skills needed for distance learning 38 , 39 , 40 . These digital skills are particularly useful during school closures, both for students and for parents, for organizing, retrieving and correctly using the resources provided by the teachers (for example, sending or receiving documents by email, printing documents or using word processors).

Social class disparities in digital skills can be explained in part by the fact that children from upper/middle-class families have the opportunity to develop digital skills earlier than working-class families 41 . In member countries of the OECD (Organisation for Economic Co-operation and Development), only 23% of working-class children had started using a computer at the age of 6 years or earlier compared with 43% of upper/middle-class children 42 . Moreover, because working-class people tend to persist less than upper/middle-class people when confronted with digital difficulties 23 , the use of digital tools and resources for distance learning may interfere with the ability of parents to help children with their schoolwork.

Unequal use of digital tools

A third level of digital divide concerns variations in digital tool use 18 , 43 (Fig. 1 ). Upper/middle-class families are more likely to use digital resources for work and education 6 , 41 , 44 , whereas working-class families are more likely to use these resources for entertainment, such as electronic games or social media 6 , 45 . This divide is also observed among students, whereby working-class students tend to use digital technologies for leisure activities, whereas their upper/middle-class peers are more likely to use them for academic activities 46 and to consider that computers and the Internet provide an opportunity for education and training 23 . Furthermore, working-class families appear to regulate the digital practices of their children less 47 and are more likely to allow screens in the bedrooms of children and teenagers without setting limits on times or practices 48 .

In sum, inequalities in terms of digital resources, skills and use have strong implications for distance learning. This is because they make working-class students and parents particularly vulnerable when learning relies on extensive use of digital devices rather than on face-to-face interaction with teachers.

The cultural divide

Even if all three levels of digital divide were closed, upper/middle-class families would still be better prepared than working-class families to ensure educational continuity for their children. Upper/middle-class families are more familiar with the academic knowledge and skills that are expected and valued in educational settings, as well as with the independent, autonomous way of learning that is valued in the school culture and becomes even more important during school closure (Fig. 1 ).

Unequal familiarity with academic knowledge and skills

According to classical social reproduction theory 8 , 49 , school is not a neutral place in which all forms of language and knowledge are equally valued. Academic contexts expect and value culture-specific and taken-for-granted forms of knowledge, skills and ways of being, thinking and speaking that are more in tune with those developed through upper/middle-class socialization (that is, ‘cultural capital’ 8 , 50 , 51 , 52 , 53 ). For instance, academic contexts value interest in the arts, museums and literature 54 , 55 , a type of interest that is more likely to develop through socialization in upper/middle-class families than in working-class socialization 54 , 56 . Indeed, upper/middle-class parents are more likely than working-class parents to engage in activities that develop this cultural capital. For example, they possess more books and cultural objects at home, read more stories to their children and visit museums and libraries more often (for examples, see refs. 51 , 54 , 55 ). Upper/middle-class children are also more involved in extra-curricular activities (for example, playing a musical instrument) than working-class children 55 , 56 , 57 .

Beyond this implicit familiarization with the school curriculum, upper/middle-class parents more often organize educational activities that are explicitly designed to develop academic skills of their children 57 , 58 , 59 . For example, they are more likely to monitor and re-explain lessons or use games and textbooks to develop and reinforce academic skills (for example, labelling numbers, letters or colours 57 , 60 ). Upper/middle-class parents also provide higher levels of support and spend more time helping children with homework than working-class parents (for examples, see refs. 61 , 62 ). Thus, even if all parents are committed to the academic success of their children, working-class parents have fewer chances to provide the help that children need to complete homework 63 , and homework is more beneficial for children from upper-middle class families than for children from working-class families 64 , 65 .

School closures amplify the impact of cultural inequalities

The trends described above have been observed in ‘normal’ times when schools are open. School closures, by making learning rely more strongly on practices implemented at home (rather than at school), are likely to amplify the impact of these disparities. Consistent with this idea, research has shown that the social class achievement gap usually greatly widens during school breaks—a phenomenon described as ‘summer learning loss’ or ‘summer setback’ 66 , 67 , 68 . During holidays, the learning by children tends to decline, and this is particularly pronounced in children from working-class families. Consequently, the social class achievement gap grows more rapidly during the summer months than it does in the rest of the year. This phenomenon is partly explained by the fact that during the break from school, social class disparities in investment in activities that are beneficial for academic achievement (for example, reading, travelling to a foreign country or museum visits) are more pronounced.

Therefore, when they are out of school, children from upper/middle-class backgrounds may continue to develop academic skills unlike their working-class counterparts, who may stagnate or even regress. Research also indicates that learning loss during school breaks tends to be cumulative 66 . Thus, repeated episodes of school closure are likely to have profound consequences for the social class achievement gap. Consistent with the idea that school closures could lead to similar processes as those identified during summer breaks, a recent survey indicated that during the COVID-19 lockdown in the United Kingdom, children from upper/middle-class families spent more time on educational activities (5.8 h per day) than those from working-class families (4.5 h per day) 7 , 69 .

Unequal dispositions for autonomy and self-regulation

School closures have encouraged autonomous work among students. This ‘independent’ way of studying is compatible with the family socialization of upper/middle-class students, but does not match the interdependent norms more commonly associated with working-class contexts 9 . Upper/middle-class contexts tend to promote cultural norms of independence whereby individuals perceive themselves as autonomous actors, independent of other individuals and of the social context, able to pursue their own goals 70 . For example, upper/middle-class parents tend to invite children to express their interests, preferences and opinions during the various activities of everyday life 54 , 55 . Conversely, in working-class contexts characterized by low economic resources and where life is more uncertain, individuals tend to perceive themselves as interdependent, connected to others and members of social groups 53 , 70 , 71 . This interdependent self-construal fits less well with the independent culture of academic contexts. This cultural mismatch between interdependent self-construal common in working-class students and the independent norms of the educational institution has negative consequences for academic performance 9 .

Once again, the impact of these differences is likely to be amplified during school closures, when being able to work alone and autonomously is especially useful. The requirement to work alone is more likely to match the independent self-construal of upper/middle-class students than the interdependent self-construal of working-class students. In the case of working-class students, this mismatch is likely to increase their difficulties in working alone at home. Supporting our argument, recent research has shown that working-class students tend to underachieve in contexts where students work individually compared with contexts where students work with others 72 . Similarly, during school closures, high self-regulation skills (for example, setting goals, selecting appropriate learning strategies and maintaining motivation 73 ) are required to maintain study activities and are likely to be especially useful for using digital resources efficiently. Research has shown that students from working-class backgrounds typically develop their self-regulation skills to a lesser extent than those from upper/middle-class backgrounds 74 , 75 , 76 .

Interestingly, some authors have suggested that independent (versus interdependent) self-construal may also affect communication with teachers 77 . Indeed, in the context of distance learning, working-class families are less likely to respond to the communication of teachers because their ‘interdependent’ self leads them to respect hierarchies, and thus perceive teachers as an expert who ‘can be trusted to make the right decisions for learning’. Upper/middle class families, relying on ‘independent’ self-construal, are more inclined to seek individualized feedback, and therefore tend to participate to a greater extent in exchanges with teachers. Such cultural differences are important because they can also contribute to the difficulties encountered by working-class families.

The structural divide: unequal support from schools

The issues reviewed thus far all increase the vulnerability of children and students from underprivileged backgrounds when schools are closed. To offset these disadvantages, it might be expected that the school should increase its support by providing additional resources for working-class students. However, recent data suggest that differences in the material and human resources invested in providing educational support for children during periods of school closure were—paradoxically—in favour of upper/middle-class students (Fig. 1 ). In England, for example, upper/middle-class parents reported benefiting from online classes and video-conferencing with teachers more often than working-class parents 10 . Furthermore, active help from school (for example, online teaching, private tutoring or chats with teachers) occurred more frequently in the richest households (64% of the richest households declared having received help from school) than in the poorest households (47%). Another survey found that in the United Kingdom, upper/middle-class children were more likely to take online lessons every day (30%) than working-class students (16%) 12 . This substantial difference might be due, at least in part, to the fact that private schools are better equipped in terms of online platforms (60% of schools have at least one online platform) than state schools (37%, and 23% in the most deprived schools) and were more likely to organize daily online lessons. Similarly, in the United Kingdom, in schools with a high proportion of students eligible for free school meals, teachers were less inclined to broadcast an online lesson for their pupils 78 . Interestingly, 58% of teachers in the wealthiest areas reported having messaged their students or their students’ parents during lockdown compared with 47% in the most deprived schools. In addition, the probability of children receiving technical support from the school (for example, by providing pupils with laptops or other devices) is, surprisingly, higher in the most advantaged schools than in the most deprived 78 .

In addition to social class disparities, there has been less support from schools for African-American and Latinx students. During school closures in the United States, 40% of African-American students and 30% of Latinx students received no online teaching compared with 10% of white students 79 . Another source of inequality is that the probability of school closure was correlated with social class and race. In the United States, for example, school closures from September to December 2020 were more common in schools with a high proportion of racial/ethnic minority students, who experience homelessness and are eligible for free/discounted school meals 80 .

Similarly, access to educational resources and support was lower in poorer (compared with richer) countries 81 . In sub-Saharan Africa, during lockdown, 45% of children had no exposure at all to any type of remote learning. Of those who did, the medium was mostly radio, television or paper rather than digital. In African countries, at most 10% of children received some material through the Internet. In Latin America, 90% of children received some remote learning, but less than half of that was through the internet—the remainder being via radio and television 81 . In Ecuador, high-school students from the lowest wealth quartile had fewer remote-learning opportunities, such as Google class/Zoom, than students from the highest wealth quartile 31 .

Thus, the achievement gap and its accentuation during lockdown are due not only to the cultural and digital disadvantages of working-class families but also to unequal support from schools. This inequality in school support is not due to teachers being indifferent to or even supportive of social stratification. Rather, we believe that these effects are fundamentally structural. In many countries, schools located in upper/middle-class neighbourhoods have more money than those in the poorest neighbourhoods. Moreover, upper/middle-class parents invest more in the schools of their children than working-class parents (for example, see ref. 82 ), and schools have an interest in catering more for upper/middle-class families than for working-class families 83 . Additionally, the expectation of teachers may be lower for working-class children 84 . For example, they tend to estimate that working-class students invest less effort in learning than their upper/middle-class counterparts 85 . These differences in perception may have influenced the behaviour of teachers during school closure, such that teachers in privileged neighbourhoods provided more information to students because they expected more from them in term of effort and achievement. The fact that upper/middle-class parents are better able than working-class parents to comply with the expectations of teachers (for examples, see refs. 55 , 86 ) may have reinforced this phenomenon. These discrepancies echo data showing that working-class students tend to request less help in their schoolwork than upper/middle-class ones 87 , and they may even avoid asking for help because they believe that such requests could lead to reprimands 88 . During school closures, these students (and their families) may in consequence have been less likely to ask for help and resources. Jointly, these phenomena have resulted in upper/middle-class families receiving more support from schools during lockdown than their working-class counterparts.

Psychological effects of digital, cultural and structural divides

Despite being strongly influenced by social class, differences in academic achievement are often interpreted by parents, teachers and students as reflecting differences in ability 89 . As a result, upper/middle-class students are usually perceived—and perceive themselves—as smarter than working-class students, who are perceived—and perceive themselves—as less intelligent 90 , 91 , 92 or less able to succeed 93 . Working-class students also worry more about the fact that they might perform more poorly than upper/middle-class students 94 , 95 . These fears influence academic learning in important ways. In particular, they can consume cognitive resources when children and students work on academic tasks 96 , 97 . Self-efficacy also plays a key role in engaging in learning and perseverance in the face of difficulties 13 , 98 . In addition, working-class students are those for whom the fear of being outperformed by others is the most negatively related to academic performance 99 .

The fact that working-class children and students are less familiar with the tasks set by teachers, and less well equipped and supported, makes them more likely to experience feelings of incompetence (Fig. 1 ). Working-class parents are also more likely than their upper/middle-class counterparts to feel unable to help their children with schoolwork. Consistent with this, research has shown that both working-class students and parents have lower feelings of academic self-efficacy than their upper/middle-class counterparts 100 , 101 . These differences have been documented under ‘normal’ conditions but are likely to be exacerbated during distance learning. Recent surveys conducted during the school closures have confirmed that upper/middle-class families felt better able to support their children in distance learning than did working-class families 10 and that upper/middle-class parents helped their children more and felt more capable to do so 11 , 12 .

Pandemic disparity, future directions and recommendations

The research reviewed thus far suggests that children and their families are highly unequal with respect to digital access, skills and use. It also shows that upper/middle-class students are more likely to be supported in their homework (by their parents and teachers) than working-class students, and that upper/middle-class students and parents will probably feel better able than working-class ones to adapt to the context of distance learning. For all these reasons, we anticipate that as a result of school closures, the COVID-19 pandemic will substantially increase the social class achievement gap. Because school closures are a recent occurrence, it is too early to measure with precision their effects on the widening of the achievement gap. However, some recent data are consistent with this idea.

Evidence for a widening gap during the pandemic

Comparing academic achievement in 2020 with previous years provides an early indication of the effects of school closures during the pandemic. In France, for example, first and second graders take national evaluations at the beginning of the school year. Initial comparisons of the results for 2020 with those from previous years revealed that the gap between schools classified as ‘priority schools’ (those in low-income urban areas) and schools in higher-income neighbourhoods—a gap observed every year—was particularly pronounced in 2020 in both French and mathematics 102 .

Similarly, in the Netherlands, national assessments take place twice a year. In 2020, they took place both before and after school closures. A recent analysis compared progress during this period in 2020 in mathematics/arithmetic, spelling and reading comprehension for 7–11-year-old students within the same period in the three previous years 103 . Results indicated a general learning loss in 2020. More importantly, for the 8% of working-class children, the losses were 40% greater than they were for upper/middle-class children.

Similar results were observed in Belgium among students attending the final year of primary school. Compared with students from previous cohorts, students affected by school closures experienced a substantial decrease in their mathematics and language scores, with children from more disadvantaged backgrounds experiencing greater learning losses 104 . Likewise, oral reading assessments in more than 100 school districts in the United States showed that the development of this skill among children in second and third grade significantly slowed between Spring and Autumn 2020, but this slowdown was more pronounced in schools from lower-achieving districts 105 .

It is likely that school closures have also amplified racial disparities in learning and achievement. For example, in the United States, after the first lockdown, students of colour lost the equivalent of 3–5 months of learning, whereas white students were about 1–3 months behind. Moreover, in the Autumn, when some students started to return to classrooms, African-American and Latinx students were more likely to continue distance learning, despite being less likely to have access to the digital tools, Internet access and live contact with teachers 106 .

In some African countries (for example, Ethiopia, Kenya, Liberia, Tanzania and Uganda), the COVID-19 crisis has resulted in learning loss ranging from 6 months to more 1 year 107 , and this learning loss appears to be greater for working-class children (that is, those attending no-fee schools) than for upper/middle-class children 108 .

These findings show that school closures have exacerbated achievement gaps linked to social class and ethnicity. However, more research is needed to address the question of whether school closures differentially affect the learning of students from working- and upper/middle-class families.

Future directions

First, to assess the specific and unique impact of school closures on student learning, longitudinal research should compare student achievement at different times of the year, before, during and after school closures, as has been done to document the summer learning loss 66 , 109 . In the coming months, alternating periods of school closure and opening may occur, thereby presenting opportunities to do such research. This would also make it possible to examine whether the gap diminishes a few weeks after children return to in-school learning or whether, conversely, it increases with time because the foundations have not been sufficiently acquired to facilitate further learning 110 .

Second, the mechanisms underlying the increase in social class disparities during school closures should be examined. As discussed above, school closures result in situations for which students are unevenly prepared and supported. It would be appropriate to seek to quantify the contribution of each of the factors that might be responsible for accentuating the social class achievement gap. In particular, distinguishing between factors that are relatively ‘controllable’ (for example, resources made available to pupils) and those that are more difficult to control (for example, the self-efficacy of parents in supporting the schoolwork of their children) is essential to inform public policy and teaching practices.

Third, existing studies are based on general comparisons and very few provide insights into the actual practices that took place in families during school closure and how these practices affected the achievement gap. For example, research has documented that parents from working-class backgrounds are likely to find it more difficult to help their children to complete homework and to provide constructive feedback 63 , 111 , something that could in turn have a negative impact on the continuity of learning of their children. In addition, it seems reasonable to assume that during lockdown, parents from upper/middle-class backgrounds encouraged their children to engage in practices that, even if not explicitly requested by teachers, would be beneficial to learning (for example, creative activities or reading). Identifying the practices that best predict the maintenance or decline of educational achievement during school closures would help identify levers for intervention.

Finally, it would be interesting to investigate teaching practices during school closures. The lockdown in the spring of 2020 was sudden and unexpected. Within a few days, teachers had to find a way to compensate for the school closure, which led to highly variable practices. Some teachers posted schoolwork on platforms, others sent it by email, some set work on a weekly basis while others set it day by day. Some teachers also set up live sessions in large or small groups, providing remote meetings for questions and support. There have also been variations in the type of feedback given to students, notably through the monitoring and correcting of work. Future studies should examine in more detail what practices schools and teachers used to compensate for the school closures and their effects on widening, maintaining or even reducing the gap, as has been done for certain specific literacy programmes 112 as well as specific instruction topics (for example, ecology and evolution 113 ).

Practical recommendations

We are aware of the debate about whether social science research on COVID-19 is suitable for making policy decisions 114 , and we draw attention to the fact that some of our recommendations (Table 1 ) are based on evidence from experiments or interventions carried out pre-COVID while others are more speculative. In any case, we emphasize that these suggestions should be viewed with caution and be tested in future research. Some of our recommendations could be implemented in the event of new school closures, others only when schools re-open. We also acknowledge that while these recommendations are intended for parents and teachers, their implementation largely depends on the adoption of structural policies. Importantly, given all the issues discussed above, we emphasize the importance of prioritizing, wherever possible, in-person learning over remote learning 115 and where this is not possible, of implementing strong policies to support distance learning, especially for disadvantaged families.

Where face-to face teaching is not possible and teachers are responsible for implementing distance learning, it will be important to make them aware of the factors that can exacerbate inequalities during lockdown and to provide them with guidance about practices that would reduce these inequalities. Thus, there is an urgent need for interventions aimed at making teachers aware of the impact of the social class of children and families on the following factors: (1) access to, familiarity with and use of digital devices; (2) familiarity with academic knowledge and skills; and (3) preparedness to work autonomously. Increasing awareness of the material, cultural and psychological barriers that working-class children and families face during lockdown should increase the quality and quantity of the support provided by teachers and thereby positively affect the achievements of working-class students.

In addition to increasing the awareness of teachers of these barriers, teachers should be encouraged to adjust the way they communicate with working-class families due to differences in self-construal compared with upper/middle-class families 77 . For example, questions about family (rather than personal) well-being would be congruent with interdependent self-construals. This should contribute to better communication and help keep a better track of the progress of students during distance learning.

It is also necessary to help teachers to engage in practices that have a chance of reducing inequalities 53 , 116 . Particularly important is that teachers and schools ensure that homework can be done by all children, for example, by setting up organizations that would help children whose parents are not in a position to monitor or assist with the homework of their children. Options include homework help groups and tutoring by teachers after class. When schools are open, the growing tendency to set homework through digital media should be resisted as far as possible given the evidence we have reviewed above. Moreover, previous research has underscored the importance of homework feedback provided by teachers, which is positively related to the amount of homework completed and predictive of academic performance 117 . Where homework is web-based, it has also been shown that feedback on web-based homework enhances the learning of students 118 . It therefore seems reasonable to predict that the social class achievement gap will increase more slowly (or even remain constant or be reversed) in schools that establish individualized monitoring of students, by means of regular calls and feedback on homework, compared with schools where the support provided to pupils is more generic.

Given that learning during lockdown has increasingly taken place in family settings, we believe that interventions involving the family are also likely to be effective 119 , 120 , 121 . Simply providing families with suitable material equipment may be insufficient. Families should be given training in the efficient use of digital technology and pedagogical support. This would increase the self-efficacy of parents and students, with positive consequences for achievement. Ideally, such training would be delivered in person to avoid problems arising from the digital divide. Where this is not possible, individualized online tutoring should be provided. For example, studies conducted during the lockdown in Botswana and Italy have shown that individual online tutoring directly targeting either parents or students in middle school has a positive impact on the achievement of students, particularly for working-class students 122 , 123 .

Interventions targeting families should also address the psychological barriers faced by working-class families and children. Some interventions have already been designed and been shown to be effective in reducing the social class achievement gap, particularly in mathematics and language 124 , 125 , 126 . For example, research showed that an intervention designed to train low-income parents in how to support the mathematical development of their pre-kindergarten children (including classes and access to a library of kits to use at home) increased the quality of support provided by the parents, with a corresponding impact on the development of mathematical knowledge of their children. Such interventions should be particularly beneficial in the context of school closure.

Beyond its impact on academic performance and inequalities, the COVID-19 crisis has shaken the economies of countries around the world, casting millions of families around the world into poverty 127 , 128 , 129 . As noted earlier, there has been a marked increase in economic inequalities, bringing with it all the psychological and social problems that such inequalities create 130 , 131 , especially for people who live in scarcity 132 . The increase in educational inequalities is just one facet of the many difficulties that working-class families will encounter in the coming years, but it is one that could seriously limit the chances of their children escaping from poverty by reducing their opportunities for upward mobility. In this context, it should be a priority to concentrate resources on the most deprived students. A large proportion of the poorest households do not own a computer and do not have personal access to the Internet, which has important consequences for distance learning. During school closures, it is therefore imperative to provide such families with adequate equipment and Internet service, as was done in some countries in spring 2020. Even if the provision of such equipment is not in itself sufficient, it is a necessary condition for ensuring pedagogical continuity during lockdown.

Finally, after prolonged periods of school closure, many students may not have acquired the skills needed to pursue their education. A possible consequence would be an increase in the number of students for whom teachers recommend class repetitions. Class repetitions are contentious. On the one hand, class repetition more frequently affects working-class children and is not efficient in terms of learning improvement 133 . On the other hand, accepting lower standards of academic achievement or even suspending the practice of repeating a class could lead to pupils pursuing their education without mastering the key abilities needed at higher grades. This could create difficulties in subsequent years and, in this sense, be counterproductive. We therefore believe that the most appropriate way to limit the damage of the pandemic would be to help children catch up rather than allowing them to continue without mastering the necessary skills. As is being done in some countries, systematic remedial courses (for example, summer learning programmes) should be organized and financially supported following periods of school closure, with priority given to pupils from working-class families. Such interventions have genuine potential in that research has shown that participation in remedial summer programmes is effective in reducing learning loss during the summer break 134 , 135 , 136 . For example, in one study 137 , 438 students from high-poverty schools were offered a multiyear summer school programme that included various pedagogical and enrichment activities (for example, science investigation and music) and were compared with a ‘no-treatment’ control group. Students who participated in the summer programme progressed more than students in the control group. A meta-analysis 138 of 41 summer learning programmes (that is, classroom- and home-based summer interventions) involving children from kindergarten to grade 8 showed that these programmes had significantly larger benefits for children from working-class families. Although such measures are costly, the cost is small compared to the price of failing to fulfil the academic potential of many students simply because they were not born into upper/middle-class families.

The unprecedented nature of the current pandemic means that we lack strong data on what the school closure period is likely to produce in terms of learning deficits and the reproduction of social inequalities. However, the research discussed in this article suggests that there are good reasons to predict that this period of school closures will accelerate the reproduction of social inequalities in educational achievement.

By making school learning less dependent on teachers and more dependent on families and digital tools and resources, school closures are likely to greatly amplify social class inequalities. At a time when many countries are experiencing second, third or fourth waves of the pandemic, resulting in fresh periods of local or general lockdowns, systematic efforts to test these predictions are urgently needed along with steps to reduce the impact of school closures on the social class achievement gap.

Bambra, C., Riordan, R., Ford, J. & Matthews, F. The COVID-19 pandemic and health inequalities. J. Epidemiol. Commun. Health 74 , 964–968 (2020).

Google Scholar  

Johnson, P, Joyce, R & Platt, L. The IFS Deaton Review of Inequalities: A New Year’s Message (Institute for Fiscal Studies, 2021).

Education: from disruption to recovery. https://en.unesco.org/covid19/educationresponse (UNESCO, 2020).

Daszak, P. We are entering an era of pandemics—it will end only when we protect the rainforest. The Guardian (28 July 2020); https://www.theguardian.com/commentisfree/2020/jul/28/pandemic-era-rainforest-deforestation-exploitation-wildlife-disease

Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369 , 379–381 (2020).

Article   CAS   PubMed   Google Scholar  

Harris, C., Straker, L. & Pollock, C. A socioeconomic related ‘digital divide’ exists in how, not if, young people use computers. PLoS ONE 12 , e0175011 (2017).

Article   PubMed   PubMed Central   Google Scholar  

Zhang, M. Internet use that reproduces educational inequalities: evidence from big data. Comput. Educ. 86 , 212–223 (2015).

Article   Google Scholar  

Bourdieu, P. & Passeron, J. C. Reproduction in Education, Society and Culture (Sage, 1990).

Stephens, N. M., Fryberg, S. A., Markus, H. R., Johnson, C. S. & Covarrubias, R. Unseen disadvantage: how American universities’ focus on independence undermines the academic performance of first-generation college students. J. Pers. Soc. Psychol. 102 , 1178–1197 (2012).

Article   PubMed   Google Scholar  

Andrew, A. et al. Inequalities in children’s experiences of home learning during the COVID-19 lockdown in England. Fisc. Stud. 41 , 653–683 (2020).

Bol, T. Inequality in homeschooling during the Corona crisis in the Netherlands. First results from the LISS Panel. Preprint at SocArXiv https://doi.org/10.31235/osf.io/hf32q (2020).

Cullinane, C. & Montacute, R. COVID-19 and Social Mobility. Impact Brief #1: School Shutdown (The Sutton Trust, 2020).

Bandura, A. Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84 , 191–215 (1977).

Prior, D. D., Mazanov, J., Meacheam, D., Heaslip, G. & Hanson, J. Attitude, digital literacy and self efficacy: low-on effects for online learning behavior. Internet High. Educ. 29 , 91–97 (2016).

Robinson, L. et al. Digital inequalities 2.0: legacy inequalities in the information age. First Monday https://doi.org/10.5210/fm.v25i7.10842 (2020).

Cruz-Jesus, F., Vicente, M. R., Bacao, F. & Oliveira, T. The education-related digital divide: an analysis for the EU-28. Comput. Hum. Behav. 56 , 72–82 (2016).

Rice, R. E. & Haythornthwaite, C. In The Handbook of New Media (eds Lievrouw, L. A. & Livingstone S. M.), 92–113 (Sage, 2006).

Yates, S., Kirby, J. & Lockley, E. Digital media use: differences and inequalities in relation to class and age. Sociol. Res. Online 20 , 71–91 (2015).

Legleye, S. & Rolland, A. Une personne sur six n’utilise pas Internet, plus d’un usager sur trois manques de compétences numériques de base [One in six people do not use the Internet, more than one in three users lack basic digital skills] (INSEE Première, 2019).

Green, F. Schoolwork in lockdown: new evidence on the epidemic of educational poverty (LLAKES Centre, 2020); https://www.llakes.ac.uk/wp-content/uploads/2021/03/RP-67-Francis-Green-Research-Paper-combined-file.pdf

Vogels, E. Digital divide persists even as americans with lower incomes make gains in tech adoption (Pew Research Center, 2021); https://www.pewresearch.org/fact-tank/2021/06/22/digital-divide-persists-even-as-americans-with-lower-incomes-make-gains-in-tech-adoption/

McBurnie, C., Adam, T. & Kaye, T. Is there learning continuity during the COVID-19 pandemic? A synthesis of the emerging evidence. J. Learn. Develop. http://dspace.col.org/handle/11599/3720 (2020).

Baillet, J., Croutte, P. & Prieur, V. Baromètre du numérique 2019 [Digital barometer 2019] (Sourcing Crédoc, 2019).

Giraud, F., Bertrand, J., Court, M. & Nicaise, S. In Enfances de Classes. De l’inégalité Parmi les Enfants (ed. Lahire, B.) 933–952 (Seuil, 2019).

Ahamed, S. & Siddiqui, Z. Disparity in access to quality education and the digital divide (Ideas for India, 2020); https://www.ideasforindia.in/topics/macroeconomics/disparity-in-access-to-quality-education-and-the-digital-divide.html

Soomro, K. A., Kale, U., Curtis, R., Akcaoglu, M. & Bernstein, M. Digital divide among higher education faculty. Int. J. Educ. Tech. High. Ed. 17 , 21 (2020).

Meng, Q. & Li, M. New economy and ICT development in China. Inf. Econ. Policy 14 , 275–295 (2002).

Chinn, M. D. & Fairlie, R. W. The determinants of the global digital divide: a cross-country analysis of computer and internet penetration. Oxf. Econ. Pap. 59 , 16–44 (2006).

Lembani, R., Gunter, A., Breines, M. & Dalu, M. T. B. The same course, different access: the digital divide between urban and rural distance education students in South Africa. J. Geogr. High. Educ. 44 , 70–84 (2020).

Asadullah, N., Bhattacharjee, A., Tasnim, M. & Mumtahena, F. COVID-19, schooling, and learning (BRAC Institute of Governance & Development, 2020); https://bigd.bracu.ac.bd/wp-content/uploads/2020/06/COVID-19-Schooling-and-Learning_June-25-2020.pdf

Asanov, I., Flores, F., McKenzie, D., Mensmann, M. & Schulte, M. Remote-learning, time-use, and mental health of Ecuadorian high-school students during the COVID-19 quarantine. World Dev. 138 , 105225 (2021).

Kihui, N. Kenya: 80% of students missing virtual learning amid school closures—study. AllAfrica (18 May 2020); https://allafrica.com/stories/202005180774.html

Debenedetti, L., Hirji, S., Chabi, M. O. & Swigart, T. Prioritizing evidence-based responses in Burkina Faso to mitigate the economic effects of COVID-19: lessons from RECOVR (Innovations for Poverty Action, 2020); https://www.poverty-action.org/blog/prioritizing-evidence-based-responses-burkina-faso-mitigate-economic-effects-covid-19-lessons

Bosumtwi-Sam, C. & Kabay, S. Using data and evidence to inform school reopening in Ghana (Innovations for Poverty Action, 2020); https://www.poverty-action.org/blog/using-data-and-evidence-inform-school-reopening-ghana

Azubuike, O. B., Adegboye, O. & Quadri, H. Who gets to learn in a pandemic? Exploring the digital divide in remote learning during the COVID-19 pandemic in Nigeria. Int. J. Educ. Res. Open 2 , 100022 (2021).

Attewell, P. Comment: the first and second digital divides. Sociol. Educ. 74 , 252–259 (2001).

DiMaggio, P., Hargittai, E., Neuman, W. R. & Robinson, J. P. Social implications of the Internet. Annu. Rev. Sociol. 27 , 307–336 (2001).

Hargittai, E. Digital na(t)ives? Variation in Internet skills and uses among members of the ‘Net Generation’. Sociol. Inq. 80 , 92–113 (2010).

Iivari, N., Sharma, S. & Ventä-Olkkonen, L. Digital transformation of everyday life—how COVID-19 pandemic transformed the basic education of the young generation and why information management research should care? Int. J. Inform. Manag. 55 , 102183 (2020).

Wei, L. & Hindman, D. B. Does the digital divide matter more? Comparing the effects of new media and old media use on the education-based knowledge gap. Mass Commun. Soc. 14 , 216–235 (2011).

Octobre, S. & Berthomier, N. L’enfance des loisirs [The childhood of leisure]. Cult. Études 6 , 1–12 (2011).

Education at a glance 2015: OECD indicators (OECD, 2015); https://doi.org/10.1787/eag-2015-en

North, S., Snyder, I. & Bulfin, S. Digital tastes: social class and young people’s technology use. Inform. Commun. Soc. 11 , 895–911 (2008).

Robinson, L. & Schulz, J. Net time negotiations within the family. Inform. Commun. Soc. 16 , 542–560 (2013).

Bonfadelli, H. The Internet and knowledge gaps: a theoretical and empirical investigation. Eur. J. Commun. 17 , 65–84 (2002).

Drabowicz, T. Social theory of Internet use: corroboration or rejection among the digital natives? Correspondence analysis of adolescents in two societies. Comput. Educ. 105 , 57–67 (2017).

Nikken, P. & Jansz, J. Developing scales to measure parental mediation of young children’s Internet use. Learn. Media Technol. 39 , 250–266 (2014).

Danic, I., Fontar, B., Grimault-Leprince, A., Le Mentec, M. & David, O. Les espaces de construction des inégalités éducatives [The areas of construction of educational inequalities] (Presses Univ. de Rennes, 2019).

Goudeau, S. Comment l'école reproduit-elle les inégalités? [How does school reproduce inequalities?] (Univ. Grenoble Alpes Editions/Presses Univ. de Grenoble, 2020).

Bernstein, B. Class, Codes, and Control (Routledge, 1975).

Gaddis, S. M. The influence of habitus in the relationship between cultural capital and academic achievement. Soc. Sci. Res. 42 , 1–13 (2013).

Lamont, M. & Lareau, A. Cultural capital: allusions, gaps and glissandos in recent theoretical developments. Sociol. Theory 6 , 153–168 (1988).

Stephens, N. M., Markus, H. R. & Phillips, L. T. Social class culture cycles: how three gateway contexts shape selves and fuel inequality. Annu. Rev. Psychol. 65 , 611–634 (2014).

Lahire, B. Enfances de classe. De l’inégalité parmi les enfants [Social class childhood. Inequality among children] (Le Seuil, 2019).

Lareau, A. Unequal Childhoods: Class, Race, and Family Life (Univ. of California Press, 2003).

Bourdieu, P. La distinction. Critique sociale du jugement [Distinction: a social critique of the judgement of taste] (Éditions de Minuit, 1979).

Bradley, R. H., Corwyn, R. F., McAdoo, H. P. & Garcia Coll, C. The home environments of children in the United States part I: variations by age, ethnicity, and poverty status. Child Dev. 72 , 1844–1867 (2001).

Blevins‐Knabe, B. & Musun‐Miller, L. Number use at home by children and their parents and its relationship to early mathematical performance. Early Dev. Parent. 5 , 35–45 (1996).

LeFevre, J. A. et al. Pathays to mathematics: longitudinal predictors of performance. Child Dev. 81 , 1753–1767 (2010).

Lareau, A. Home Advantage. Social Class and Parental Intervention in Elementary Education (Falmer Press, 1989).

Guryan, J., Hurst, E. & Kearney, M. Parental education and parental time with children. J. Econ. Perspect. 22 , 23–46 (2008).

Hill, C. R. & Stafford, F. P. Allocation of time to preschool children and educational opportunity. J. Hum. Resour. 9 , 323–341 (1974).

Calarco, J. M. A Field Guide to Grad School: Uncovering the Hidden Curriculum (Princeton Univ. Press, 2020).

Daw, J. Parental income and the fruits of labor: variability in homework efficacy in secondary school. Res. Soc. Strat. Mobil. 30 , 246–264 (2012).

Rønning, M. Who benefits from homework assignments? Econ. Educ. Rev. 30 , 55–64 (2011).

Alexander, K. L., Entwisle, D. R. & Olson, L. S. Lasting consequences of the summer learning gap. Am. Sociol. Rev. 72 , 167–180 (2007).

Cooper, H., Nye, B., Charlton, K., Lindsay, J. & Greathouse, S. The effects of summer vacation on achievement test scores: a narrative and meta-analytic review. Rev. Educ. Res. 66 , 227–268 (1996).

Stewart, H., Watson, N. & Campbell, M. The cost of school holidays for children from low income families. Childhood 25 , 516–529 (2018).

Pensiero, N., Kelly, A. & Bokhove, C. Learning inequalities during the Covid-19 pandemic: how families cope with home-schooling (University of Southampton, 2020); https://doi.org/10.5258/SOTON/P0025

Stephens, N. M., Markus, H. R. & Townsend, S. S. Choice as an act of meaning: the case of social class. J. Pers. Soc. Psychol. 93 , 814–830 (2007).

Kraus, M. W., Piff, P. K. & Keltner, D. Social class, sense of control, and social explanation. J. Pers. Soc. Psychol. 97 , 992–1004 (2009).

Dittmann, A. G., Stephens, N. M. & Townsend, S. S. Achievement is not class-neutral: working together benefits pople from working-class contexts. J. Pers. Soc. Psychol. 119 , 517–539 (2020).

Zimmerman, B. J. Investigating self-regulation and motivation: historical background, methodological developments, and future prospects. Am. Educ. Res. J. 45 , 166–183 (2008).

Backer-Grøndahl, A., Nærde, A., Ulleberg, P. & Janson, H. Measuring effortful control using the children’s behavior questionnaire–very short form: modeling matters. J. Pers. Assess. 98 , 100–109 (2016).

Johnson, S. E., Richeson, J. A. & Finkel, E. J. Middle class and marginal? Socioeconomic status, stigma, and self-regulation at an elite university. J. Pers. Soc. Psychol. 100 , 838–852 (2011).

Størksen, I., Ellingsen, I. T., Wanless, S. B. & McClelland, M. M. The influence of parental socioeconomic background and gender on self-regulation among 5-year-old children in Norway. Early Educ. Dev. 26 , 663–684 (2015).

Brady, L. et al. 7 ways for teachers to truly connect with parents. Education Week (31 December 2020); https://www.edweek.org/leadership/opinion-7-ways-for-teachers-to-truly-connect-with-parents/2020/12

Montacute, R. Social mobility and Covid-19: implications of the Covid-19 crisis for educational inequality (Sutton Trust, 2020); https://dera.ioe.ac.uk/35323/2/COVID-19-and-Social-Mobility-1.pdf

Dorn, E., Hancock, B., Sarakatsannis, J. & Viruleg, E. COVID-19 and student learning in the United States: the hurt could last a lifetime (McKinsey & Company, 2020); https://www.mckinsey.com/industries/public-and-social-sector/our-insights/covid-19-and-student-learning-in-the-united-states-the-hurt-could-last-a-lifetime

Parolin, Z. & Lee, E. K. Large socio-economic, geographic and demographic disparities exist in exposure to school closures. Nat. Hum. Behav. 5 , 522–528 (2021).

Saavedra, J. A silent and unequal education crisis. And the seeds for its solution (World Bank, 2021); https://blogs.worldbank.org/education/silent-and-unequal-education-crisis-and-seeds-its-solution

Murray, B., Domina, T., Renzulli, L. & Boylan, R. Civil society goes to school: parent–teacher associations and the equality of educational opportunity. Russell Sage Found. J. Soc. Sci. 5 , 41–63 (2019).

Calarco, J. M. Avoiding us versus them: how schools’ dependence on privileged ‘helicopter’ parents influences enforcement of rules. Am. Sociol. Rev. 85 , 223–246 (2020).

Rist, R. Student social class and teacher expectations: the self-fulfilling prophecy in ghetto education. Harv. Educ. Rev. 40 , 411–451 (1970).

Tobisch, A. & Dresel, M. Negatively or positively biased? Dependencies of teachers’ judgments and expectations based on students’ ethnic and social backgrounds. Soc. Psychol. Educ. 20 , 731–752 (2017).

Brantlinger, E. Dividing Classes: How the Middle-class Negotiates and Rationalizes School Advantage (Routledge, 2003).

Calarco, J. M. ‘I need help!’ Social class and children’s help-seeking in elementary school. Am. Sociol. Rev. 76 , 862–882 (2011).

Calarco, J. M. The inconsistent curriculum: cultural tool kits and student interpretations of ambiguous expectations. Soc. Psychol. Quart. 77 , 185–209 (2014).

Goudeau, S. & Cimpian, A. How do young children explain differences in the classroom? Implications for achievement, motivation, and educational equity. Perspect. Psychol. Sci. 16 , 533–552 (2021).

Croizet, J. C., Goudeau, S., Marot, M. & Millet, M. How do educational contexts contribute to the social class achievement gap: documenting symbolic violence from a social psychological point of view. Curr. Opin. Psychol. 18 , 105–110 (2017).

Goudeau, S. & Croizet, J.-C. Hidden advantages and disadvantages of social class: how classroom settings reproduce social inequality by staging unfair comparison. Psychol. Sci. 28 , 162–170 (2017).

Kudrna, L., Furnham, A. & Swami, V. The influence of social class salience on self-assessed intelligence. Soc. Behav. Personal. 38 , 859–864 (2010).

Wiederkehr, V., Darnon, C., Chazal, S., Guimond, S. & Martinot, D. From social class to self-efficacy: internalization of low social status pupils’ school performance. Soc. Psychol. Educ. 18 , 769–784 (2015).

Jury, M., Smeding, A., Court, M. & Darnon, C. When first-generation students succeed at university: on the link between social class, academic performance, and performance-avoidance goals. Contemp. Educ. Psychol. 41 , 25–36 (2015).

Jury, M., Quiamzade, A., Darnon, C. & Mugny, G. Higher and lower status individuals’ performance goals: the role of hierarchy stability. Motiv. Sci. 5 , 52–65 (2019).

Autin, F. & Croizet, J.-C. Improving working memory efficiency by reframing metacognitive interpretation of task difficulty. J. Exp. Psychol. Gen. 141 , 610–618 (2012).

Schmader, T., Johns, M. & Forbes, C. An integrated process model of stereotype threat effects on performance. Psychol. Rev. 115 , 336–356 (2008).

Usher, E. L. & Pajares, F. Self-efficacy for self-regulated learning: a validation study. Educ. Psychol. Meas. 68 , 443–463 (2008).

Bruno, A., Jury, M., Toczek-Capelle, M.-C. & Darnon, C. Are performance-avoidance goals always deleterious for academic achievement in college? The moderating role of social class. Soc. Psychol. Educ. 22 , 539–555 (2019).

Holloway, S. D. et al. Parenting self-efficacy and parental involvement: mediators or moderators between socioeconomic status and children’s academic competence in Japan and Korea? Res. Hum. Dev. 13 , 258–272 (2016).

Tazouti, Y. & Jarlégan, A. The mediating effects of parental self-efficacy and parental involvement on the link between family socioeconomic status and children’s academic achievement. J. Fam. Stud. 25 , 250–266 (2019).

Andreu, S. et al. Évaluations 2020, repères CP, CE1: premiers résultats [2020 assessments, first and second grades benchmarks: first results] (Ministère de l’Éducation nationale, de la Jeunesse et des Sports, 2020); https://www.education.gouv.fr/evaluations-2020-reperes-cp-ce1-premiers-resultats-307122

Engzell, P., Frey, A. & Verhagen, M. D. Learning loss due to school closures during the COVID-19 pandemic. Proc. Natl Acad. Sci. USA 118 , e2022376118 (2021).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Maldonado, J. E. & De Witte, K. The effect of school closures on standardized student test outcomes (KU Leuven—Faculty of Economics and Business, 2020); https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS3189074&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US

Domingue, B., Hough, H. J., Lang, D. & Yeatman, J. Changing patterns of growth in oral reading fluency during the COVID-19 pandemic (PACE, 2021); https://edpolicyinca.org/publications/changing-patterns-growth-oral-reading-fluency-during-covid-19-pandemic

Dorn, E., Hancock, B., Sarakatsannis, J. & Viruleg, E. COVID-19 and learning loss—disparities grow and students need help (McKinsey & Company, 2020); https://www.mckinsey.com/industries/public-and-social-sector/our-insights/covid-19-and-learning-loss-disparities-grow-and-students-need-help

Angrist, N. et al. Building back better to avert a learning catastrophe: estimating learning loss from COVID-19 school shutdowns in Africa and facilitating short-term and long-term learning recovery. Int. J. Educ. Dev. 84 , 102397 (2021).

Reddy, V., Soudien, C. & Winnaar, L. Disrupted learning during COVID-19: the impact of school closures on education outcomes in South Africa (The Conversation, 2020); https://theconversation.com/impact-of-school-closures-on-education-outcomes-in-south-africa-136889

Entwisle, D. R. & Alexander, K. L. Summer setback: race, poverty, school composition, and mathematics achievement in the first two years of school. Am. Sociol. Rev. 57 , 72–84 (1992).

Kieffer, M. J. Catching up or falling behind? Initial English proficiency, concentrated poverty, and the reading growth of language minority learners in the United States. J. Educ. Psychol. 100 , 851–868 (2008).

Calarco, J. M., Horn, I. & Chen, G. A. ‘You need to be more responsible’: how math homework operates as a status-reinforcing process in school. Preprint at SocArXiv https://doi.org/10.31235/osf.io/xf96q (2020).

Kaiper-Marquez, A. et al. On the fly: adapting quickly to emergency remote instruction in a family literacy program. Int. Rev. Educ. 66 , 1–23 (2020).

Barton, D. C. Impacts of the COVID‐19 pandemic on field instruction and remote teaching alternatives: results from a survey of instructors. Ecol. Evol. 10 , 12499–12507 (2020).

Article   PubMed Central   Google Scholar  

IJzerman, H. et al. Use caution when applying behavioural science to policy. Nat. Hum. Behav. 4 , 1092–1094 (2020).

Taylor, J. & Mallery, J. In person and online learning go together (Stanford Institute for Economic Policy Research, 2020); https://siepr.stanford.edu/research/publications/person-and-online-learning-go-together

Dietrichson, J., Bøg, M., Filges, T. & Klint Jørgensen, A. M. Academic interventions for elementary and middle school students with low socioeconomic status: a systematic review and meta-analysis. Rev. Educ. Res. 87 , 243–282 (2017).

Núñez, J. C. et al. Teachers’ feedback on homework, homework-related behaviors, and academic achievement. J. Educ. Res. 108 , 204–216 (2015).

Singh, R. et al. In Artificial Intelligence in Education (eds Biswas, G.et al.) 328–336 (Springer Berlin Heidelberg, 2011).

Harackiewicz, J. M., Rozek, C. S., Hulleman, C. S. & Hyde, J. S. Helping parents to motivate adolescents in mathematics and science: an experimental test of a utility-value intervention. Psychol. Sci. 23 , 899–906 (2012).

Jeynes, W. A meta-analysis of the efficacy of different types of parental involvement programs for urban students. Urban Educ. 47 , 706–742 (2012).

Mol, S. E., Bus, A. G., De Jong, M. T. & Smeets, D. J. Added value of dialogic parent–child book readings: a meta-analysis. Early Educ. Dev. 19 , 7–26 (2008).

Angrist, N., Bergman, P. & Matsheng, M. School’s out: experimental evidence on limiting learning loss using “low-tech” in a pandemic (National Bureau of Economic Research, 2021); https://www.nber.org/papers/w28205

Carlana, M. & La Ferrara, E. Apart but connected: online tutoring and student outcomes during the COVID-19 pandemic (Institute of Labor Economics, 2021); http://hdl.handle.net/10419/232846

Pagan, S. & Sénéchal, M. Involving parents in a summer book reading program to promote reading comprehension, fluency, and vocabulary in grade 3 and grade 5 children. Can. J. Educ. 37 , 1–31 (2014).

Sénéchal, M. & LeFevre, J. A. Parental involvement in the development of children’s reading skill: a five‐year longitudinal study. Child Dev. 73 , 445–460 (2002).

Starkey, P. & Klein, A. Fostering parental support for children’s mathematical development: an intervention with Head Start families. Early Educ. Dev. 11 , 659–680 (2000).

Buheji, M. et al. The extent of Covid-19 pandemic socio-economic impact on global poverty: a global integrative multidisciplinary review. Am. J. Econ. 10 , 213–224 (2020).

The world economy on a tightrope (OECD, 2020); http://www.oecd.org/economic-outlook/june-2020/

Martin, A., Markhvida, M., Hallegatte, S. & Walsh, B. Socio-economic impacts of COVID-19 on household consumption and poverty. Econ. Disasters Clim. Change 4 , 453–479 (2020).

Jetten, J., Mols, F. & Selvanathan, H. P. How economic inequality fuels the rise and persistence of the Yellow Vest movement. Int. Rev. Soc. Psychol. 33 , 2 (2020).

Wilkinson, R. G. & Pickett, K. E. Income inequality and social dysfunction. Annu. Rev. Sociol. 35 , 493–511 (2009).

Sommet, N., Morselli, D. & Spini, D. Income inequality affects the psychological health of only the people facing scarcity. Psychol. Sci. 29 , 1911–1921 (2018).

Hattie, J. Visible Learning: A Synthesis of over 800 Meta-analyses Relating to Achievement (Routledge, 2008).

Cooper, H., Charlton, K., Valentine, J. C., Muhlenbruck, L. & Borman, G. D. Making the most of summer school: a meta-analytic and narrative review. Monogr. Soc. Res. Child 65 , 1–127 (2000).

Heyns, B. Schooling and cognitive development: is there a season for learning? Child Dev. 58 , 1151–1160 (1987).

McCombs, J. S., Augustine, C. H. & Schwartz, H. L. Making Summer Count: How Summer Programs can Boost Children’s Learning (Rand Education, 2011).

Borman, G. D. & Dowling, N. M. Longitudinal achievement effects of multiyear summer school: evidence from the teach Baltimore randomized field trial. Educ. Eval. Policy 28 , 25–48 (2006).

Kim, J. S. & Quinn, D. M. The effects of summer reading on low-income children’s literacy achievement from kindergarten to grade 8: a meta-analysis of classroom and home interventions. Rev. Educ. Res. 83 , 386–431 (2013).

Download references

Acknowledgements

We thank G. Reis for editing the figure. The writing of this manuscript was supported by grant ANR-19-CE28-0007–PRESCHOOL from the French National Research Agency (S.G.).

Author information

Authors and affiliations.

Université de Poitiers, CNRS, CeRCA, Centre de Recherches sur la Cognition et l’Apprentissage, Poitiers, France

Sébastien Goudeau & Camille Sanrey

Université Clermont Auvergne, CNRS, LAPSCO, Laboratoire de Psychologie Sociale et Cognitive, Clermont-Ferrand, France

Arnaud Stanczak & Céline Darnon

School of Psychology, Cardiff University, Cardiff, UK

Antony Manstead

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sébastien Goudeau .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Daniele Checchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Goudeau, S., Sanrey, C., Stanczak, A. et al. Why lockdown and distance learning during the COVID-19 pandemic are likely to increase the social class achievement gap. Nat Hum Behav 5 , 1273–1281 (2021). https://doi.org/10.1038/s41562-021-01212-7

Download citation

Received : 15 March 2021

Accepted : 06 September 2021

Published : 27 September 2021

Issue Date : October 2021

DOI : https://doi.org/10.1038/s41562-021-01212-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Socioeconomic inequalities in psychosocial well-being among adolescents under the covid-19 pandemic: a cross-regional comparative analysis in hong kong, mainland china, and the netherlands.

  • Gary Ka-Ki Chung
  • Xiaoting Liu
  • Roger Yat-Nork Chung

Social Psychiatry and Psychiatric Epidemiology (2024)

Digital gender gaps in Students’ knowledge, attitudes and skills: an integrative data analysis across 32 Countries

  • Diego G. Campos
  • Ronny Scherer

Education and Information Technologies (2024)

Microlearning as a Concept to Optimize Integrated Services for Racially/Ethnically Diverse Families of Autistic Children

  • Zhiwen Xiao
  • Sandra Vanegas

Journal of Developmental and Physical Disabilities (2024)

The ethicality of the COVID-19 response in children and adolescents

  • Fiona McNicholas

Irish Journal of Medical Science (1971 -) (2024)

Health-related quality of life of young refugees in Germany during the COVID-19 pandemic: comparisons to non-refugees and pre-pandemic times

  • Johanna Braig
  • Pia Schmees
  • Heike Eschenbeck

Current Psychology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

essay education during pandemic

The COVID-19 pandemic has changed education forever. This is how 

Anais, a student at the International Bilingual School (EIB), attends her online lessons in her bedroom in Paris as a lockdown is imposed to slow the rate of the coronavirus disease (COVID-19) spread in France, March 20, 2020. Picture taken on March 20, 2020. REUTERS/Gonzalo Fuentes - RC2SPF9G7MJ9

With schools shut across the world, millions of children have had to adapt to new types of learning. Image:  REUTERS/Gonzalo Fuentes

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Cathy Li

Farah lalani.

essay education during pandemic

.chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} Explore and monitor how .chakra .wef-15eoq1r{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;color:#F7DB5E;}@media screen and (min-width:56.5rem){.chakra .wef-15eoq1r{font-size:1.125rem;}} Education, Gender and Work is affecting economies, industries and global issues

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved with our crowdsourced digital platform to deliver impact at scale

Stay up to date:, education, gender and work.

  • The COVID-19 has resulted in schools shut all across the world. Globally, over 1.2 billion children are out of the classroom.
  • As a result, education has changed dramatically, with the distinctive rise of e-learning, whereby teaching is undertaken remotely and on digital platforms.
  • Research suggests that online learning has been shown to increase retention of information, and take less time, meaning the changes coronavirus have caused might be here to stay.

While countries are at different points in their COVID-19 infection rates, worldwide there are currently more than 1.2 billion children in 186 countries affected by school closures due to the pandemic. In Denmark, children up to the age of 11 are returning to nurseries and schools after initially closing on 12 March , but in South Korea students are responding to roll calls from their teachers online .

With this sudden shift away from the classroom in many parts of the globe, some are wondering whether the adoption of online learning will continue to persist post-pandemic, and how such a shift would impact the worldwide education market.

essay education during pandemic

Even before COVID-19, there was already high growth and adoption in education technology, with global edtech investments reaching US$18.66 billion in 2019 and the overall market for online education projected to reach $350 Billion by 2025 . Whether it is language apps , virtual tutoring , video conferencing tools, or online learning software , there has been a significant surge in usage since COVID-19.

How is the education sector responding to COVID-19?

In response to significant demand, many online learning platforms are offering free access to their services, including platforms like BYJU’S , a Bangalore-based educational technology and online tutoring firm founded in 2011, which is now the world’s most highly valued edtech company . Since announcing free live classes on its Think and Learn app, BYJU’s has seen a 200% increase in the number of new students using its product, according to Mrinal Mohit, the company's Chief Operating Officer.

Tencent classroom, meanwhile, has been used extensively since mid-February after the Chinese government instructed a quarter of a billion full-time students to resume their studies through online platforms. This resulted in the largest “online movement” in the history of education with approximately 730,000 , or 81% of K-12 students, attending classes via the Tencent K-12 Online School in Wuhan.

Have you read?

The future of jobs report 2023, how to follow the growth summit 2023.

Other companies are bolstering capabilities to provide a one-stop shop for teachers and students. For example, Lark, a Singapore-based collaboration suite initially developed by ByteDance as an internal tool to meet its own exponential growth, began offering teachers and students unlimited video conferencing time, auto-translation capabilities, real-time co-editing of project work, and smart calendar scheduling, amongst other features. To do so quickly and in a time of crisis, Lark ramped up its global server infrastructure and engineering capabilities to ensure reliable connectivity.

Alibaba’s distance learning solution, DingTalk, had to prepare for a similar influx: “To support large-scale remote work, the platform tapped Alibaba Cloud to deploy more than 100,000 new cloud servers in just two hours last month – setting a new record for rapid capacity expansion,” according to DingTalk CEO, Chen Hang.

Some school districts are forming unique partnerships, like the one between The Los Angeles Unified School District and PBS SoCal/KCET to offer local educational broadcasts, with separate channels focused on different ages, and a range of digital options. Media organizations such as the BBC are also powering virtual learning; Bitesize Daily , launched on 20 April, is offering 14 weeks of curriculum-based learning for kids across the UK with celebrities like Manchester City footballer Sergio Aguero teaching some of the content.

covid impact on education

What does this mean for the future of learning?

While some believe that the unplanned and rapid move to online learning – with no training, insufficient bandwidth, and little preparation – will result in a poor user experience that is unconducive to sustained growth, others believe that a new hybrid model of education will emerge, with significant benefits. “I believe that the integration of information technology in education will be further accelerated and that online education will eventually become an integral component of school education,“ says Wang Tao, Vice President of Tencent Cloud and Vice President of Tencent Education.

There have already been successful transitions amongst many universities. For example, Zhejiang University managed to get more than 5,000 courses online just two weeks into the transition using “DingTalk ZJU”. The Imperial College London started offering a course on the science of coronavirus, which is now the most enrolled class launched in 2020 on Coursera .

Many are already touting the benefits: Dr Amjad, a Professor at The University of Jordan who has been using Lark to teach his students says, “It has changed the way of teaching. It enables me to reach out to my students more efficiently and effectively through chat groups, video meetings, voting and also document sharing, especially during this pandemic. My students also find it is easier to communicate on Lark. I will stick to Lark even after coronavirus, I believe traditional offline learning and e-learning can go hand by hand."

These 3 charts show the global growth in online learning

The challenges of online learning.

There are, however, challenges to overcome. Some students without reliable internet access and/or technology struggle to participate in digital learning; this gap is seen across countries and between income brackets within countries. For example, whilst 95% of students in Switzerland, Norway, and Austria have a computer to use for their schoolwork, only 34% in Indonesia do, according to OECD data .

In the US, there is a significant gap between those from privileged and disadvantaged backgrounds: whilst virtually all 15-year-olds from a privileged background said they had a computer to work on, nearly 25% of those from disadvantaged backgrounds did not. While some schools and governments have been providing digital equipment to students in need, such as in New South Wales , Australia, many are still concerned that the pandemic will widenthe digital divide .

Is learning online as effective?

For those who do have access to the right technology, there is evidence that learning online can be more effective in a number of ways. Some research shows that on average, students retain 25-60% more material when learning online compared to only 8-10% in a classroom. This is mostly due to the students being able to learn faster online; e-learning requires 40-60% less time to learn than in a traditional classroom setting because students can learn at their own pace, going back and re-reading, skipping, or accelerating through concepts as they choose.

Nevertheless, the effectiveness of online learning varies amongst age groups. The general consensus on children, especially younger ones, is that a structured environment is required , because kids are more easily distracted. To get the full benefit of online learning, there needs to be a concerted effort to provide this structure and go beyond replicating a physical class/lecture through video capabilities, instead, using a range of collaboration tools and engagement methods that promote “inclusion, personalization and intelligence”, according to Dowson Tong, Senior Executive Vice President of Tencent and President of its Cloud and Smart Industries Group.

Since studies have shown that children extensively use their senses to learn, making learning fun and effective through use of technology is crucial, according to BYJU's Mrinal Mohit. “Over a period, we have observed that clever integration of games has demonstrated higher engagement and increased motivation towards learning especially among younger students, making them truly fall in love with learning”, he says.

A changing education imperative

It is clear that this pandemic has utterly disrupted an education system that many assert was already losing its relevance . In his book, 21 Lessons for the 21st Century , scholar Yuval Noah Harari outlines how schools continue to focus on traditional academic skills and rote learning , rather than on skills such as critical thinking and adaptability, which will be more important for success in the future. Could the move to online learning be the catalyst to create a new, more effective method of educating students? While some worry that the hasty nature of the transition online may have hindered this goal, others plan to make e-learning part of their ‘new normal’ after experiencing the benefits first-hand.

The importance of disseminating knowledge is highlighted through COVID-19

Major world events are often an inflection point for rapid innovation – a clear example is the rise of e-commerce post-SARS . While we have yet to see whether this will apply to e-learning post-COVID-19, it is one of the few sectors where investment has not dried up . What has been made clear through this pandemic is the importance of disseminating knowledge across borders, companies, and all parts of society. If online learning technology can play a role here, it is incumbent upon all of us to explore its full potential.

Our education system is losing relevance. Here's how to unleash its potential

3 ways the coronavirus pandemic could reshape education, celebrities are helping the uk's schoolchildren learn during lockdown, don't miss any update on this topic.

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:

The agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} weekly.

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Health and Healthcare Systems .chakra .wef-17xejub{-webkit-flex:1;-ms-flex:1;flex:1;justify-self:stretch;-webkit-align-self:stretch;-ms-flex-item-align:stretch;align-self:stretch;} .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

essay education during pandemic

Antimicrobial resistance is a leading cause of global deaths. Now is the time to act

Dame Sally Davies, Hemant Ahlawat and Shyam Bishen

May 16, 2024

essay education during pandemic

Inequality is driving antimicrobial resistance. Here's how to curb it

Michael Anderson, Gunnar Ljungqvist and Victoria Saint

May 15, 2024

essay education during pandemic

From our brains to our bowels – 5 ways the climate crisis is affecting our health

Charlotte Edmond

May 14, 2024

essay education during pandemic

Health funders unite to support climate and disease research, plus other top health stories

Shyam Bishen

May 13, 2024

essay education during pandemic

How midwife mentors are making it safer for women to give birth in remote, fragile areas

Anna Cecilia Frellsen

May 9, 2024

essay education during pandemic

From Athens to Dhaka: how chief heat officers are battling the heat

Angeli Mehta

May 8, 2024

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Wiley - PMC COVID-19 Collection

Logo of pheblackwell

Students’ experience of online learning during the COVID‐19 pandemic: A province‐wide survey study

Lixiang yan.

1 Centre for Learning Analytics at Monash, Faculty of Information Technology, Monash University, Clayton VIC, Australia

Alexander Whitelock‐Wainwright

2 Portfolio of the Deputy Vice‐Chancellor (Education), Monash University, Melbourne VIC, Australia

Quanlong Guan

3 Department of Computer Science, Jinan University, Guangzhou China

Gangxin Wen

4 College of Cyber Security, Jinan University, Guangzhou China

Dragan Gašević

Guanliang chen, associated data.

The data is not openly available as it is restricted by the Chinese government.

Online learning is currently adopted by educational institutions worldwide to provide students with ongoing education during the COVID‐19 pandemic. Even though online learning research has been advancing in uncovering student experiences in various settings (i.e., tertiary, adult, and professional education), very little progress has been achieved in understanding the experience of the K‐12 student population, especially when narrowed down to different school‐year segments (i.e., primary and secondary school students). This study explores how students at different stages of their K‐12 education reacted to the mandatory full‐time online learning during the COVID‐19 pandemic. For this purpose, we conducted a province‐wide survey study in which the online learning experience of 1,170,769 Chinese students was collected from the Guangdong Province of China. We performed cross‐tabulation and Chi‐square analysis to compare students’ online learning conditions, experiences, and expectations. Results from this survey study provide evidence that students’ online learning experiences are significantly different across school years. Foremost, policy implications were made to advise government authorises and schools on improving the delivery of online learning, and potential directions were identified for future research into K‐12 online learning.

Practitioner notes

What is already known about this topic

  • Online learning has been widely adopted during the COVID‐19 pandemic to ensure the continuation of K‐12 education.
  • Student success in K‐12 online education is substantially lower than in conventional schools.
  • Students experienced various difficulties related to the delivery of online learning.

What this paper adds

  • Provide empirical evidence for the online learning experience of students in different school years.
  • Identify the different needs of students in primary, middle, and high school.
  • Identify the challenges of delivering online learning to students of different age.

Implications for practice and/or policy

  • Authority and schools need to provide sufficient technical support to students in online learning.
  • The delivery of online learning needs to be customised for students in different school years.

INTRODUCTION

The ongoing COVID‐19 pandemic poses significant challenges to the global education system. By July 2020, the UN Educational, Scientific and Cultural Organization (2020) reported nationwide school closure in 111 countries, affecting over 1.07 billion students, which is around 61% of the global student population. Traditional brick‐and‐mortar schools are forced to transform into full‐time virtual schools to provide students with ongoing education (Van Lancker & Parolin,  2020 ). Consequently, students must adapt to the transition from face‐to‐face learning to fully remote online learning, where synchronous video conferences, social media, and asynchronous discussion forums become their primary venues for knowledge construction and peer communication.

For K‐12 students, this sudden transition is problematic as they often lack prior online learning experience (Barbour & Reeves,  2009 ). Barbour and LaBonte ( 2017 ) estimated that even in countries where online learning is growing rapidly, such as USA and Canada, less than 10% of the K‐12 student population had prior experience with this format. Maladaptation to online learning could expose inexperienced students to various vulnerabilities, including decrements in academic performance (Molnar et al.,  2019 ), feeling of isolation (Song et al.,  2004 ), and lack of learning motivation (Muilenburg & Berge,  2005 ). Unfortunately, with confirmed cases continuing to rise each day, and new outbreaks occur on a global scale, full‐time online learning for most students could last longer than anticipated (World Health Organization,  2020 ). Even after the pandemic, the current mass adoption of online learning could have lasting impacts on the global education system, and potentially accelerate and expand the rapid growth of virtual schools on a global scale (Molnar et al.,  2019 ). Thus, understanding students' learning conditions and their experiences of online learning during the COVID pandemic becomes imperative.

Emerging evidence on students’ online learning experience during the COVID‐19 pandemic has identified several major concerns, including issues with internet connection (Agung et al.,  2020 ; Basuony et al.,  2020 ), problems with IT equipment (Bączek et al.,  2021 ; Niemi & Kousa,  2020 ), limited collaborative learning opportunities (Bączek et al.,  2021 ; Yates et al.,  2020 ), reduced learning motivation (Basuony et al.,  2020 ; Niemi & Kousa,  2020 ; Yates et al.,  2020 ), and increased learning burdens (Niemi & Kousa,  2020 ). Although these findings provided valuable insights about the issues students experienced during online learning, information about their learning conditions and future expectations were less mentioned. Such information could assist educational authorises and institutions to better comprehend students’ difficulties and potentially improve their online learning experience. Additionally, most of these recent studies were limited to higher education, except for Yates et al. ( 2020 ) and Niemi and Kousa’s ( 2020 ) studies on senior high school students. Empirical research targeting the full spectrum of K‐12students remain scarce. Therefore, to address these gaps, the current paper reports the findings of a large‐scale study that sought to explore K‐12 students’ online learning experience during the COVID‐19 pandemic in a provincial sample of over one million Chinese students. The findings of this study provide policy recommendations to educational institutions and authorities regarding the delivery of K‐12 online education.

LITERATURE REVIEW

Learning conditions and technologies.

Having stable access to the internet is critical to students’ learning experience during online learning. Berge ( 2005 ) expressed the concern of the divide in digital‐readiness, and the pedagogical approach between different countries could influence students’ online learning experience. Digital‐readiness is the availability and adoption of information technologies and infrastructures in a country. Western countries like America (3rd) scored significantly higher in digital‐readiness compared to Asian countries like China (54th; Cisco,  2019 ). Students from low digital‐readiness countries could experience additional technology‐related problems. Supporting evidence is emerging in recent studies conducted during the COVID‐19 pandemic. In Egypt's capital city, Basuony et al. ( 2020 ) found that only around 13.9%of the students experienced issues with their internet connection. Whereas more than two‐thirds of the students in rural Indonesia reported issues of unstable internet, insufficient internet data, and incompatible learning device (Agung et al.,  2020 ).

Another influential factor for K‐12 students to adequately adapt to online learning is the accessibility of appropriate technological devices, especially having access to a desktop or a laptop (Barbour et al., 2018 ). However, it is unlikely for most of the students to satisfy this requirement. Even in higher education, around 76% of students reported having incompatible devices for online learning and only 15% of students used laptop for online learning, whereas around 85% of them used smartphone (Agung et al.,  2020 ). It is very likely that K‐12 students also suffer from this availability issue as they depend on their parents to provide access to relevant learning devices.

Technical issues surrounding technological devices could also influence students’ experience in online learning. (Barbour & Reeves,  2009 ) argues that students need to have a high level of digital literacy to find and use relevant information and communicate with others through technological devices. Students lacking this ability could experience difficulties in online learning. Bączek et al. ( 2021 ) found that around 54% of the medical students experienced technical problems with IT equipment and this issue was more prevalent in students with lower years of tertiary education. Likewise, Niemi and Kousa ( 2020 ) also find that students in a Finish high school experienced increased amounts of technical problems during the examination period, which involved additional technical applications. These findings are concerning as young children and adolescent in primary and lower secondary school could be more vulnerable to these technical problems as they are less experienced with the technologies in online learning (Barbour & LaBonte,  2017 ). Therefore, it is essential to investigate the learning conditions and the related difficulties experienced by students in K‐12 education as the extend of effects on them remain underexplored.

Learning experience and interactions

Apart from the aforementioned issues, the extent of interaction and collaborative learning opportunities available in online learning could also influence students’ experience. The literature on online learning has long emphasised the role of effective interaction for the success of student learning. According to Muirhead and Juwah ( 2004 ), interaction is an event that can take the shape of any type of communication between two or subjects and objects. Specifically, the literature acknowledges the three typical forms of interactions (Moore,  1989 ): (i) student‐content, (ii) student‐student, and (iii) student‐teacher. Anderson ( 2003 ) posits, in the well‐known interaction equivalency theorem, learning experiences will not deteriorate if only one of the three interaction is of high quality, and the other two can be reduced or even eliminated. Quality interaction can be accomplished by across two dimensions: (i) structure—pedagogical means that guide student interaction with contents or other students and (ii) dialogue—communication that happens between students and teachers and among students. To be able to scale online learning and prevent the growth of teaching costs, the emphasise is typically on structure (i.e., pedagogy) that can promote effective student‐content and student‐student interaction. The role of technology and media is typically recognised as a way to amplify the effect of pedagogy (Lou et al.,  2006 ). Novel technological innovations—for example learning analytics‐based personalised feedback at scale (Pardo et al.,  2019 ) —can also empower teachers to promote their interaction with students.

Online education can lead to a sense of isolation, which can be detrimental to student success (McInnerney & Roberts,  2004 ). Therefore, integration of social interaction into pedagogy for online learning is essential, especially at the times when students do not actually know each other or have communication and collaboration skills underdeveloped (Garrison et al.,  2010 ; Gašević et al.,  2015 ). Unfortunately, existing evidence suggested that online learning delivery during the COVID‐19 pandemic often lacks interactivity and collaborative experiences (Bączek et al.,  2021 ; Yates et al.,  2020 ). Bączek et al., ( 2021 ) found that around half of the medical students reported reduced interaction with teachers, and only 4% of students think online learning classes are interactive. Likewise, Yates et al. ( 2020 )’s study in high school students also revealed that over half of the students preferred in‐class collaboration over online collaboration as they value the immediate support and the proximity to teachers and peers from in‐class interaction.

Learning expectations and age differentiation

Although these studies have provided valuable insights and stressed the need for more interactivity in online learning, K‐12 students in different school years could exhibit different expectations for the desired activities in online learning. Piaget's Cognitive Developmental Theory illustrated children's difficulties in understanding abstract and hypothetical concepts (Thomas,  2000 ). Primary school students will encounter many abstract concepts in their STEM education (Uttal & Cohen,  2012 ). In face‐to‐face learning, teachers provide constant guidance on students’ learning progress and can help them to understand difficult concepts. Unfortunately, the level of guidance significantly drops in online learning, and, in most cases, children have to face learning obstacles by themselves (Barbour,  2013 ). Additionally, lower primary school students may lack the metacognitive skills to use various online learning functions, maintain engagement in synchronous online learning, develop and execute self‐regulated learning plans, and engage in meaningful peer interactions during online learning (Barbour,  2013 ; Broadbent & Poon,  2015 ; Huffaker & Calvert, 2003; Wang et al.,  2013 ). Thus, understanding these younger students’ expectations is imperative as delivering online learning to them in the same way as a virtual high school could hinder their learning experiences. For students with more matured metacognition, their expectations of online learning could be substantially different from younger students. Niemi et al.’s study ( 2020 ) with students in a Finish high school have found that students often reported heavy workload and fatigue during online learning. These issues could cause anxiety and reduce students’ learning motivation, which would have negative consequences on their emotional well‐being and academic performance (Niemi & Kousa,  2020 ; Yates et al.,  2020 ), especially for senior students who are under the pressure of examinations. Consequently, their expectations of online learning could be orientated toward having additional learning support functions and materials. Likewise, they could also prefer having more opportunities for peer interactions as these interactions are beneficial to their emotional well‐being and learning performance (Gašević et al., 2013 ; Montague & Rinaldi, 2001 ). Therefore, it is imperative to investigate the differences between online learning expectations in students of different school years to suit their needs better.

Research questions

By building upon the aforementioned relevant works, this study aimed to contribute to the online learning literature with a comprehensive understanding of the online learning experience that K‐12 students had during the COVID‐19 pandemic period in China. Additionally, this study also aimed to provide a thorough discussion of what potential actions can be undertaken to improve online learning delivery. Formally, this study was guided by three research questions (RQs):

RQ1 . What learning conditions were experienced by students across 12 years of education during their online learning process in the pandemic period? RQ2 . What benefits and obstacles were perceived by students across 12 years of education when performing online learning? RQ3 . What expectations do students, across 12 years of education, have for future online learning practices ?

Participants

The total number of K‐12 students in the Guangdong Province of China is around 15 million. In China, students of Year 1–6, Year 7–9, and Year 10–12 are referred to as students of primary school, middle school, and high school, respectively. Typically, students in China start their study in primary school at the age of around six. At the end of their high‐school study, students have to take the National College Entrance Examination (NCEE; also known as Gaokao) to apply for tertiary education. The survey was administrated across the whole Guangdong Province, that is the survey was exposed to all of the 15 million K‐12 students, though it was not mandatory for those students to accomplish the survey. A total of 1,170,769 students completed the survey, which accounts for a response rate of 7.80%. After removing responses with missing values and responses submitted from the same IP address (duplicates), we had 1,048,575 valid responses, which accounts to about 7% of the total K‐12 students in the Guangdong Province. The number of students in different school years is shown in Figure  1 . Overall, students were evenly distributed across different school years, except for a smaller sample in students of Year 10–12.

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g004.jpg

The number of students in each school year

Survey design

The survey was designed collaboratively by multiple relevant parties. Firstly, three educational researchers working in colleges and universities and three educational practitioners working in the Department of Education in Guangdong Province were recruited to co‐design the survey. Then, the initial draft of the survey was sent to 30 teachers from different primary and secondary schools, whose feedback and suggestions were considered to improve the survey. The final survey consisted of a total of 20 questions, which, broadly, can be classified into four categories: demographic, behaviours, experiences, and expectations. Details are available in Appendix.

All K‐12 students in the Guangdong Province were made to have full‐time online learning from March 1, 2020 after the outbreak of COVID‐19 in January in China. A province‐level online learning platform was provided to all schools by the government. In addition to the learning platform, these schools can also use additional third‐party platforms to facilitate the teaching activities, for example WeChat and Dingding, which provide services similar to WhatsApp and Zoom. The main change for most teachers was that they had to shift the classroom‐based lectures to online lectures with the aid of web‐conferencing tools. Similarly, these teachers also needed to perform homework marking and have consultation sessions in an online manner.

The Department of Education in the Guangdong Province of China distributed the survey to all K‐12 schools in the province on March 21, 2020 and collected responses on March 26, 2020. Students could access and answer the survey anonymously by either scan the Quick Response code along with the survey or click the survey address link on their mobile device. The survey was administrated in a completely voluntary manner and no incentives were given to the participants. Ethical approval was granted by the Department of Education in the Guangdong Province. Parental approval was not required since the survey was entirely anonymous and facilitated by the regulating authority, which satisfies China's ethical process.

The original survey was in Chinese, which was later translated by two bilingual researchers and verified by an external translator who is certified by the Australian National Accreditation Authority of Translators and Interpreters. The original and translated survey questionnaires are available in Supporting Information. Given the limited space we have here and the fact that not every survey item is relevant to the RQs, the following items were chosen to answer the RQs: item Q3 (learning media) and Q11 (learning approaches) for RQ1, item Q13 (perceived obstacle) and Q19 (perceived benefits) for RQ2, and item Q19 (expected learning activities) for RQ3. Cross‐tabulation based approaches were used to analyse the collected data. To scrutinise whether the differences displayed by students of different school years were statistically significant, we performed Chi‐square tests and calculated the Cramer's V to assess the strengths of the association after chi‐square had determined significance.

For the analyses, students were segmented into four categories based on their school years, that is Year 1–3, Year 4–6, Year 7–9, and Year 10–12, to provide a clear understanding of the different experiences and needs that different students had for online learning. This segmentation was based on the educational structure of Chinese schools: elementary school (Year 1–6), middle school (Year 7–9), and high school (Year 10–12). Children in elementary school can further be segmented into junior (Year 1–3) or senior (Year 4–6) students because senior elementary students in China are facing more workloads compared to junior students due to the provincial Middle School Entry Examination at the end of Year 6.

Learning conditions—RQ1

Learning media.

The Chi‐square test showed significant association between school years and students’ reported usage of learning media, χ 2 (55, N  = 1,853,952) = 46,675.38, p  < 0.001. The Cramer's V is 0.07 ( df ∗ = 5), which indicates a small‐to‐medium effect according to Cohen’s ( 1988 ) guidelines. Based on Figure  2 , we observed that an average of up to 87.39% students used smartphones to perform online learning, while only 25.43% students used computer, which suggests that smartphones, with widespread availability in China (2020), have been adopted by students for online learning. As for the prevalence of the two media, we noticed that both smartphones ( χ 2 (3, N  = 1,048,575) = 9,395.05, p < 0.001, Cramer's V  = 0.10 ( df ∗ = 1)) and computers ( χ 2 (3, N  = 1,048,575) = 11,025.58, p <.001, Cramer's V  = 0.10 ( df ∗ = 1)) were more adopted by high‐school‐year (Year 7–12) than early‐school‐year students (Year 1–6), both with a small effect size. Besides, apparent discrepancies can be observed between the usages of TV and paper‐based materials across different school years, that is early‐school‐year students reported more TV usage ( χ 2 (3, N  = 1,048,575) = 19,505.08, p <.001), with a small‐to‐medium effect size, Cramer's V  = 0.14( df ∗ = 1). High‐school‐year students (especially Year 10–12) reported more usage of paper‐based materials ( χ 2 (3, N  = 1,048,575) = 23,401.64, p < 0.001), with a small‐to‐medium effect size, Cramer's V  = 0.15( df ∗ = 1).

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g002.jpg

Learning media used by students in online learning

Learning approaches

School years is also significantly associated with the different learning approaches students used to tackle difficult concepts during online learning, χ 2 (55, N  = 2,383,751) = 58,030.74, p < 0.001. The strength of this association is weak to moderate as shown by the Cramer's V (0.07, df ∗ = 5; Cohen,  1988 ). When encountering problems related to difficult concepts, students typically chose to “solve independently by searching online” or “rewatch recorded lectures” instead of consulting to their teachers or peers (Figure  3 ). This is probably because, compared to classroom‐based education, it is relatively less convenient and more challenging for students to seek help from others when performing online learning. Besides, compared to high‐school‐year students, early‐school‐year students (Year 1–6), reported much less use of “solve independently by searching online” ( χ 2 (3, N  = 1,048,575) = 48,100.15, p <.001), with a small‐to‐medium effect size, Cramer's V  = 0.21 ( df ∗ = 1). Also, among those approaches of seeking help from others, significantly more high‐school‐year students preferred “communicating with other students” than early‐school‐year students ( χ 2 (3, N  = 1,048,575) = 81,723.37, p < 0.001), with a medium effect size, Cramer's V  = 0.28 ( df ∗ = 1).

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g003.jpg

Learning approaches used by students in online learning

Perceived benefits and obstacles—RQ2

Perceived benefits.

The association between school years and perceived benefits in online learning is statistically significant, χ 2 (66, N  = 2,716,127) = 29,534.23, p  < 0.001, and the Cramer's V (0.04, df ∗ = 6) indicates a small effect (Cohen,  1988 ). Unsurprisingly, benefits brought by the convenience of online learning are widely recognised by students across all school years (Figure  4 ), that is up to 75% of students reported that it is “more convenient to review course content” and 54% said that they “can learn anytime and anywhere” . Besides, we noticed that about 50% of early‐school‐year students appreciated the “access to courses delivered by famous teachers” and 40%–47% of high‐school‐year students indicated that online learning is “helpful to develop self‐regulation and autonomy” .

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g005.jpg

Perceived benefits of online learning reported by students

Perceived obstacles

The Chi‐square test shows a significant association between school years and students’ perceived obstacles in online learning, χ 2 (77, N  = 2,699,003) = 31,987.56, p < 0.001. This association is relatively weak as shown by the Cramer's V (0.04, df ∗ = 7; Cohen,  1988 ). As shown in Figure  5 , the biggest obstacles encountered by up to 73% of students were the “eyestrain caused by long staring at screens” . Disengagement caused by nearby disturbance was reported by around 40% of students, especially those of Year 1–3 and 10–12. Technological‐wise, about 50% of students experienced poor Internet connection during their learning process, and around 20% of students reported the “confusion in setting up the platforms” across of school years.

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g001.jpg

Perceived obstacles of online learning reported by students

Expectations for future practices of online learning – RQ3

Online learning activities.

The association between school years and students’ expected online learning activities is significant, χ 2 (66, N  = 2,416,093) = 38,784.81, p < 0.001. The Cramer's V is 0.05 ( df ∗ = 6) which suggests a small effect (Cohen,  1988 ). As shown in Figure  6 , the most expected activity for future online learning is “real‐time interaction with teachers” (55%), followed by “online group discussion and collaboration” (38%). We also observed that more early‐school‐year students expect reflective activities, such as “regular online practice examinations” ( χ 2 (3, N  = 1,048,575) = 11,644.98, p < 0.001), with a small effect size, Cramer's V  = 0.11 ( df ∗ = 1). In contrast, more high‐school‐year students expect “intelligent recommendation system …” ( χ 2 (3, N  = 1,048,575) = 15,327.00, p < 0.001), with a small effect size, Cramer's V  = 0.12 ( df ∗ = 1).

An external file that holds a picture, illustration, etc.
Object name is BJET-52-2038-g006.jpg

Students’ expected online learning activities

Regarding students’ learning conditions, substantial differences were observed in learning media, family dependency, and learning approaches adopted in online learning between students in different school years. The finding of more computer and smartphone usage in high‐school‐year than early‐school‐year students can probably be explained by that, with the growing abilities in utilising these media as well as the educational systems and tools which run on these media, high‐school‐year students tend to make better use of these media for online learning practices. Whereas, the differences in paper‐based materials may imply that high‐school‐year students in China have to accomplish a substantial amount of exercise, assignments, and exam papers to prepare for the National College Entrance Examination (NCEE), whose delivery was not entirely digitised due to the sudden transition to online learning. Meanwhile, high‐school‐year students may also have preferred using paper‐based materials for exam practice, as eventually, they would take their NCEE in the paper format. Therefore, these substantial differences in students’ usage of learning media should be addressed by customising the delivery method of online learning for different school years.

Other than these between‐age differences in learning media, the prevalence of smartphone in online learning resonates with Agung et al.’s ( 2020 ) finding on the issues surrounding the availability of compatible learning device. The prevalence of smartphone in K‐12 students is potentially problematic as the majority of the online learning platform and content is designed for computer‐based learning (Berge,  2005 ; Molnar et al.,  2019 ). Whereas learning with smartphones has its own unique challenges. For example, Gikas and Grant ( 2013 ) discovered that students who learn with smartphone experienced frustration with the small screen‐size, especially when trying to type with the tiny keypad. Another challenge relates to the distraction of various social media applications. Although similar distractions exist in computer and web‐based social media, the level of popularity, especially in the young generation, are much higher in mobile‐based social media (Montag et al.,  2018 ). In particular, the message notification function in smartphones could disengage students from learning activities and allure them to social media applications (Gikas & Grant,  2013 ). Given these challenges of learning with smartphones, more research efforts should be devoted to analysing students’ online learning behaviour in the setting of mobile learning to accommodate their needs better.

The differences in learning approaches, once again, illustrated that early‐school‐year students have different needs compared to high‐school‐year students. In particular, the low usage of the independent learning methods in early‐school‐year students may reflect their inability to engage in independent learning. Besides, the differences in help seeking behaviours demonstrated the distinctive needs for communication and interaction between different students, that is early‐school‐year students have a strong reliance on teachers and high‐school‐year students, who are equipped with stronger communication ability, are more inclined to interact with their peers. This finding implies that the design of online learning platforms should take students’ different needs into account. Thus, customisation is urgently needed for the delivery of online learning to different school years.

In terms of the perceived benefits and challenges of online learning, our results resonate with several previous findings. In particular, the benefits of convenience are in line with the flexibility advantages of online learning, which were mentioned in prior works (Appana,  2008 ; Bączek et al.,  2021 ; Barbour,  2013 ; Basuony et al.,  2020 ; Harvey et al.,  2014 ). Early‐school‐year students’ higher appreciation in having “access to courses delivered by famous teachers” and lower appreciation in the independent learning skills developed through online learning are also in line with previous literature (Barbour,  2013 ; Harvey et al.,  2014 ; Oliver et al.,  2009 ). Again, these similar findings may indicate the strong reliance that early‐school‐year students place on teachers, while high‐school‐year students are more capable of adapting to online learning by developing independent learning skills.

Technology‐wise, students’ experience of poor internet connection and confusion in setting up online learning platforms are particularly concerning. The problem of poor internet connection corroborated the findings reported in prior studies (Agung et al.,  2020 ; Barbour,  2013 ; Basuony et al.,  2020 ; Berge,  2005 ; Rice,  2006 ), that is the access issue surrounded the digital divide as one of the main challenges of online learning. In the era of 4G and 5G networks, educational authorities and institutions that deliver online education could fall into the misconception of most students have a stable internet connection at home. The internet issue we observed is particularly vital to students’ online learning experience as most students prefer real‐time communications (Figure  6 ), which rely heavily on stable internet connection. Likewise, the finding of students’ confusion in technology is also consistent with prior studies (Bączek et al.,  2021 ; Muilenburg & Berge,  2005 ; Niemi & Kousa,  2020 ; Song et al.,  2004 ). Students who were unsuccessfully in setting up the online learning platforms could potentially experience declines in confidence and enthusiasm for online learning, which would cause a subsequent unpleasant learning experience. Therefore, both the readiness of internet infrastructure and student technical skills remain as the significant challenges for the mass‐adoption of online learning.

On the other hand, students’ experience of eyestrain from extended screen time provided empirical evidence to support Spitzer’s ( 2001 ) speculation about the potential ergonomic impact of online learning. This negative effect is potentially related to the prevalence of smartphone device and the limited screen size of these devices. This finding not only demonstrates the potential ergonomic issues that would be caused by smartphone‐based online learning but also resonates with the aforementioned necessity of different platforms and content designs for different students.

A less‐mentioned problem in previous studies on online learning experiences is the disengagement caused by nearby disturbance, especially in Year 1–3 and 10–12. It is likely that early‐school‐year students suffered from this problem because of their underdeveloped metacognitive skills to concentrate on online learning without teachers’ guidance. As for high‐school‐year students, the reasons behind their disengagement require further investigation in the future. Especially it would be worthwhile to scrutinise whether this type of disengagement is caused by the substantial amount of coursework they have to undertake and the subsequent a higher level of pressure and a lower level of concentration while learning.

Across age‐level differences are also apparent in terms of students’ expectations of online learning. Although, our results demonstrated students’ needs of gaining social interaction with others during online learning, findings (Bączek et al.,  2021 ; Harvey et al.,  2014 ; Kuo et al.,  2014 ; Liu & Cavanaugh,  2012 ; Yates et al.,  2020 ). This need manifested differently across school years, with early‐school‐year students preferring more teacher interactions and learning regulation support. Once again, this finding may imply that early‐school‐year students are inadequate in engaging with online learning without proper guidance from their teachers. Whereas, high‐school‐year students prefer more peer interactions and recommendation to learning resources. This expectation can probably be explained by the large amount of coursework exposed to them. Thus, high‐school‐year students need further guidance to help them better direct their learning efforts. These differences in students’ expectations for future practices could guide the customisation of online learning delivery.

Implications

As shown in our results, improving the delivery of online learning not only requires the efforts of policymakers but also depend on the actions of teachers and parents. The following sub‐sections will provide recommendations for relevant stakeholders and discuss their essential roles in supporting online education.

Technical support

The majority of the students has experienced technical problems during online learning, including the internet lagging and confusion in setting up the learning platforms. These problems with technology could impair students’ learning experience (Kauffman,  2015 ; Muilenburg & Berge,  2005 ). Educational authorities and schools should always provide a thorough guide and assistance for students who are experiencing technical problems with online learning platforms or other related tools. Early screening and detection could also assist schools and teachers to direct their efforts more effectively in helping students with low technology skills (Wilkinson et al.,  2010 ). A potential identification method involves distributing age‐specific surveys that assess students’ Information and Communication Technology (ICT) skills at the beginning of online learning. For example, there are empirical validated ICT surveys available for both primary (Aesaert et al.,  2014 ) and high school (Claro et al.,  2012 ) students.

For students who had problems with internet lagging, the delivery of online learning should provide options that require fewer data and bandwidth. Lecture recording is the existing option but fails to address students’ need for real‐time interaction (Clark et al.,  2015 ; Malik & Fatima,  2017 ). A potential alternative involves providing students with the option to learn with digital or physical textbooks and audio‐conferencing, instead of screen sharing and video‐conferencing. This approach significantly reduces the amount of data usage and lowers the requirement of bandwidth for students to engage in smooth online interactions (Cisco,  2018 ). It also requires little additional efforts from teachers as official textbooks are often available for each school year, and thus, they only need to guide students through the materials during audio‐conferencing. Educational authority can further support this approach by making digital textbooks available for teachers and students, especially those in financial hardship. However, the lack of visual and instructor presence could potentially reduce students’ attention, recall of information, and satisfaction in online learning (Wang & Antonenko,  2017 ). Therefore, further research is required to understand whether the combination of digital or physical textbooks and audio‐conferencing is appropriate for students with internet problems. Alternatively, suppose the local technological infrastructure is well developed. In that case, governments and schools can also collaborate with internet providers to issue data and bandwidth vouchers for students who are experiencing internet problems due to financial hardship.

For future adoption of online learning, policymakers should consider the readiness of the local internet infrastructure. This recommendation is particularly important for developing countries, like Bangladesh, where the majority of the students reported the lack of internet infrastructure (Ramij & Sultana,  2020 ). In such environments, online education may become infeasible, and alternative delivery method could be more appropriate, for example, the Telesecundaria program provides TV education for rural areas of Mexico (Calderoni,  1998 ).

Other than technical problems, choosing a suitable online learning platform is also vital for providing students with a better learning experience. Governments and schools should choose an online learning platform that is customised for smartphone‐based learning, as the majority of students could be using smartphones for online learning. This recommendation is highly relevant for situations where students are forced or involuntarily engaged in online learning, like during the COVID‐19 pandemic, as they might not have access to a personal computer (Molnar et al.,  2019 ).

Customisation of delivery methods

Customising the delivery of online learning for students in different school years is the theme that appeared consistently across our findings. This customisation process is vital for making online learning an opportunity for students to develop independent learning skills, which could help prepare them for tertiary education and lifelong learning. However, the pedagogical design of K‐12 online learning programs should be differentiated from adult‐orientated programs as these programs are designed for independent learners, which is rarely the case for students in K‐12 education (Barbour & Reeves,  2009 ).

For early‐school‐year students, especially Year 1–3 students, providing them with sufficient guidance from both teachers and parents should be the priority as these students often lack the ability to monitor and reflect on learning progress. In particular, these students would prefer more real‐time interaction with teachers, tutoring from parents, and regular online practice examinations. These forms of guidance could help early‐school‐year students to cope with involuntary online learning, and potentially enhance their experience in future online learning. It should be noted that, early‐school‐year students demonstrated interest in intelligent monitoring and feedback systems for learning. Additional research is required to understand whether these young children are capable of understanding and using learning analytics that relay information on their learning progress. Similarly, future research should also investigate whether young children can communicate effectively through digital tools as potential inability could hinder student learning in online group activities. Therefore, the design of online learning for early‐school‐year students should focus less on independent learning but ensuring that students are learning effective under the guidance of teachers and parents.

In contrast, group learning and peer interaction are essential for older children and adolescents. The delivery of online learning for these students should focus on providing them with more opportunities to communicate with each other and engage in collaborative learning. Potential methods to achieve this goal involve assigning or encouraging students to form study groups (Lee et al.,  2011 ), directing students to use social media for peer communication (Dabbagh & Kitsantas,  2012 ), and providing students with online group assignments (Bickle & Rucker,  2018 ).

Special attention should be paid to students enrolled in high schools. For high‐school‐year students, in particular, students in Year 10–12, we also recommend to provide them with sufficient access to paper‐based learning materials, such as revision booklet and practice exam papers, so they remain familiar with paper‐based examinations. This recommendation applies to any students who engage in online learning but has to take their final examination in paper format. It is also imperative to assist high‐school‐year students who are facing examinations to direct their learning efforts better. Teachers can fulfil this need by sharing useful learning resources on the learning management system, if it is available, or through social media groups. Alternatively, students are interested in intelligent recommendation systems for learning resources, which are emerging in the literature (Corbi & Solans,  2014 ; Shishehchi et al.,  2010 ). These systems could provide personalised recommendations based on a series of evaluation on learners’ knowledge. Although it is infeasible for situations where the transformation to online learning happened rapidly (i.e., during the COVID‐19 pandemic), policymakers can consider embedding such systems in future online education.

Limitations

The current findings are limited to primary and secondary Chinese students who were involuntarily engaged in online learning during the COVID‐19 pandemic. Despite the large sample size, the population may not be representative as participants are all from a single province. Also, information about the quality of online learning platforms, teaching contents, and pedagogy approaches were missing because of the large scale of our study. It is likely that the infrastructures of online learning in China, such as learning platforms, instructional designs, and teachers’ knowledge about online pedagogy, were underprepared for the sudden transition. Thus, our findings may not represent the experience of students who voluntarily participated in well‐prepared online learning programs, in particular, the virtual school programs in America and Canada (Barbour & LaBonte,  2017 ; Molnar et al.,  2019 ). Lastly, the survey was only evaluated and validated by teachers but not students. Therefore, students with the lowest reading comprehension levels might have a different understanding of the items’ meaning, especially terminologies that involve abstract contracts like self‐regulation and autonomy in item Q17.

In conclusion, we identified across‐year differences between primary and secondary school students’ online learning experience during the COVID‐19 pandemic. Several recommendations were made for the future practice and research of online learning in the K‐12 student population. First, educational authorities and schools should provide sufficient technical support to help students to overcome potential internet and technical problems, as well as choosing online learning platforms that have been customised for smartphones. Second, customising the online pedagogy design for students in different school years, in particular, focusing on providing sufficient guidance for young children, more online collaborative opportunity for older children and adolescent, and additional learning resource for senior students who are facing final examinations.

CONFLICT OF INTEREST

There is no potential conflict of interest in this study.

ETHICS STATEMENT

The data are collected by the Department of Education of the Guangdong Province who also has the authority to approve research studies in K12 education in the province.

Supporting information

Supplementary Material

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China (62077028, 61877029), the Science and Technology Planning Project of Guangdong (2020B0909030005, 2020B1212030003, 2020ZDZX3013, 2019B1515120010, 2018KTSCX016, 2019A050510024), the Science and Technology Planning Project of Guangzhou (201902010041), and the Fundamental Research Funds for the Central Universities (21617408, 21619404).

SURVEY ITEMS

Yan, L , Whitelock‐Wainwright, A , Guan, Q , Wen, G , Gašević, D , & Chen, G . Students’ experience of online learning during the COVID‐19 pandemic: A province‐wide survey study . Br J Educ Technol . 2021; 52 :2038–2057. 10.1111/bjet.13102 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

DATA AVAILABILITY STATEMENT

  • Aesaert, K. , Van Nijlen, D. , Vanderlinde, R. , & van Braak, J. (2014). Direct measures of digital information processing and communication skills in primary education: Using item response theory for the development and validation of an ICT competence scale . Computers & Education , 76 , 168–181. 10.1016/j.compedu.2014.03.013 [ CrossRef ] [ Google Scholar ]
  • Agung, A. S. N. , Surtikanti, M. W. , & Quinones, C. A. (2020). Students’ perception of online learning during COVID‐19 pandemic: A case study on the English students of STKIP Pamane Talino . SOSHUM: Jurnal Sosial Dan Humaniora , 10 ( 2 ), 225–235. 10.31940/soshum.v10i2.1316 [ CrossRef ] [ Google Scholar ]
  • Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction . The International Review of Research in Open and Distributed Learning , 4 ( 2 ). 10.19173/irrodl.v4i2.149 [ CrossRef ] [ Google Scholar ]
  • Appana, S. (2008). A review of benefits and limitations of online learning in the context of the student, the instructor and the tenured faculty . International Journal on E‐learning , 7 ( 1 ), 5–22. [ Google Scholar ]
  • Bączek, M. , Zagańczyk‐Bączek, M. , Szpringer, M. , Jaroszyński, A. , & Wożakowska‐Kapłon, B. (2021). Students’ perception of online learning during the COVID‐19 pandemic: A survey study of Polish medical students . Medicine , 100 ( 7 ), e24821. 10.1097/MD.0000000000024821 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barbour, M. K. (2013). The landscape of k‐12 online learning: Examining what is known . Handbook of Distance Education , 3 , 574–593. [ Google Scholar ]
  • Barbour, M. , Huerta, L. , & Miron, G. (2018). Virtual schools in the US: Case studies of policy, performance and research evidence. In Society for information technology & teacher education international conference (pp. 672–677). Association for the Advancement of Computing in Education (AACE). [ Google Scholar ]
  • Barbour, M. K. , & LaBonte, R. (2017). State of the nation: K‐12 e‐learning in Canada, 2017 edition . http://k12sotn.ca/wp‐content/uploads/2018/02/StateNation17.pdf [ Google Scholar ]
  • Barbour, M. K. , & Reeves, T. C. (2009). The reality of virtual schools: A review of the literature . Computers & Education , 52 ( 2 ), 402–416. [ Google Scholar ]
  • Basuony, M. A. K. , EmadEldeen, R. , Farghaly, M. , El‐Bassiouny, N. , & Mohamed, E. K. A. (2020). The factors affecting student satisfaction with online education during the COVID‐19 pandemic: An empirical study of an emerging Muslim country . Journal of Islamic Marketing . 10.1108/JIMA-09-2020-0301 [ CrossRef ] [ Google Scholar ]
  • Berge, Z. L. (2005). Virtual schools: Planning for success . Teachers College Press, Columbia University. [ Google Scholar ]
  • Bickle, M. C. , & Rucker, R. (2018). Student‐to‐student interaction: Humanizing the online classroom using technology and group assignments . Quarterly Review of Distance Education , 19 ( 1 ), 1–56. [ Google Scholar ]
  • Broadbent, J. , & Poon, W. L. (2015). Self‐regulated learning strategies & academic achievement in online higher education learning environments: A systematic review . The Internet and Higher Education , 27 , 1–13. [ Google Scholar ]
  • Calderoni, J. (1998). Telesecundaria: Using TV to bring education to rural Mexico (Tech. Rep.). The World Bank. [ Google Scholar ]
  • Cisco . (2018). Bandwidth requirements for meetings with cisco Webex and collaboration meeting rooms white paper . http://dwz.date/dpbc [ Google Scholar ]
  • Cisco . (2019). Cisco digital readiness 2019 . https://www.cisco.com/c/m/en_us/about/corporate‐social‐responsibility/research‐resources/digital‐readiness‐index.html#/ (Library Catalog: www.cisco.com). [ Google Scholar ]
  • Clark, C. , Strudler, N. , & Grove, K. (2015). Comparing asynchronous and synchronous video vs. text based discussions in an online teacher education course . Online Learning , 19 ( 3 ), 48–69. [ Google Scholar ]
  • Claro, M. , Preiss, D. D. , San Martín, E. , Jara, I. , Hinostroza, J. E. , Valenzuela, S. , Cortes, F. , & Nussbaum, M. (2012). Assessment of 21st century ICT skills in Chile: Test design and results from high school level students . Computers & Education , 59 ( 3 ), 1042–1053. 10.1016/j.compedu.2012.04.004 [ CrossRef ] [ Google Scholar ]
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences . Routledge Academic. [ Google Scholar ]
  • Corbi, A. , & Solans, D. B. (2014). Review of current student‐monitoring techniques used in elearning‐focused recommender systems and learning analytics: The experience API & LIME model case study . IJIMAI , 2 ( 7 ), 44–52. [ Google Scholar ]
  • Dabbagh, N. , & Kitsantas, A. (2012). Personal learning environments, social media, and self‐regulated learning: A natural formula for connecting formal and informal learning . The Internet and Higher Education , 15 ( 1 ), 3–8. 10.1016/j.iheduc.2011.06.002 [ CrossRef ] [ Google Scholar ]
  • Garrison, D. R. , Cleveland‐Innes, M. , & Fung, T. S. (2010). Exploring causal relationships among teaching, cognitive and social presence: Student perceptions of the community of inquiry framework . The Internet and Higher Education , 13 ( 1–2 ), 31–36. 10.1016/j.iheduc.2009.10.002 [ CrossRef ] [ Google Scholar ]
  • Gašević, D. , Adesope, O. , Joksimović, S. , & Kovanović, V. (2015). Externally‐facilitated regulation scaffolding and role assignment to develop cognitive presence in asynchronous online discussions . The Internet and Higher Education , 24 , 53–65. 10.1016/j.iheduc.2014.09.006 [ CrossRef ] [ Google Scholar ]
  • Gašević, D. , Zouaq, A. , & Janzen, R. (2013). “Choose your classmates, your GPA is at stake!” The association of cross‐class social ties and academic performance . American Behavioral Scientist , 57 ( 10 ), 1460–1479. [ Google Scholar ]
  • Gikas, J. , & Grant, M. M. (2013). Mobile computing devices in higher education: Student perspectives on learning with cellphones, smartphones & social media . The Internet and Higher Education , 19 , 18–26. [ Google Scholar ]
  • Harvey, D. , Greer, D. , Basham, J. , & Hu, B. (2014). From the student perspective: Experiences of middle and high school students in online learning . American Journal of Distance Education , 28 ( 1 ), 14–26. 10.1080/08923647.2014.868739 [ CrossRef ] [ Google Scholar ]
  • Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning . Research in Learning Technology , 23 . 10.3402/rlt.v23.26507 [ CrossRef ] [ Google Scholar ]
  • Kuo, Y.‐C. , Walker, A. E. , Belland, B. R. , Schroder, K. E. , & Kuo, Y.‐T. (2014). A case study of integrating interwise: Interaction, internet self‐efficacy, and satisfaction in synchronous online learning environments . International Review of Research in Open and Distributed Learning , 15 ( 1 ), 161–181. 10.19173/irrodl.v15i1.1664 [ CrossRef ] [ Google Scholar ]
  • Lee, S. J. , Srinivasan, S. , Trail, T. , Lewis, D. , & Lopez, S. (2011). Examining the relationship among student perception of support, course satisfaction, and learning outcomes in online learning . The Internet and Higher Education , 14 ( 3 ), 158–163. 10.1016/j.iheduc.2011.04.001 [ CrossRef ] [ Google Scholar ]
  • Liu, F. , & Cavanaugh, C. (2012). Factors influencing student academic performance in online high school algebra . Open Learning: The Journal of Open, Distance and e‐Learning , 27 ( 2 ), 149–167. 10.1080/02680513.2012.678613 [ CrossRef ] [ Google Scholar ]
  • Lou, Y. , Bernard, R. M. , & Abrami, P. C. (2006). Media and pedagogy in undergraduate distance education: A theory‐based meta‐analysis of empirical literature . Educational Technology Research and Development , 54 ( 2 ), 141–176. 10.1007/s11423-006-8252-x [ CrossRef ] [ Google Scholar ]
  • Malik, M. , & Fatima, G. (2017). E‐learning: Students’ perspectives about asynchronous and synchronous resources at higher education level . Bulletin of Education and Research , 39 ( 2 ), 183–195. [ Google Scholar ]
  • McInnerney, J. M. , & Roberts, T. S. (2004). Online learning: Social interaction and the creation of a sense of community . Journal of Educational Technology & Society , 7 ( 3 ), 73–81. [ Google Scholar ]
  • Molnar, A. , Miron, G. , Elgeberi, N. , Barbour, M. K. , Huerta, L. , Shafer, S. R. , & Rice, J. K. (2019). Virtual schools in the US 2019 . National Education Policy Center. [ Google Scholar ]
  • Montague, M. , & Rinaldi, C. (2001). Classroom dynamics and children at risk: A followup . Learning Disability Quarterly , 24 ( 2 ), 75–83. [ Google Scholar ]
  • Montag, C. , Becker, B. , & Gan, C. (2018). The multipurpose application Wechat: A review on recent research . Frontiers in Psychology , 9 , 2247. 10.3389/fpsyg.2018.02247 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Moore, M. G. (1989). Editorial: Three types of interaction . American Journal of Distance Education , 3 ( 2 ), 1–7. 10.1080/08923648909526659 [ CrossRef ] [ Google Scholar ]
  • Muilenburg, L. Y. , & Berge, Z. L. (2005). Student barriers to online learning: A factor analytic study . Distance Education , 26 ( 1 ), 29–48. 10.1080/01587910500081269 [ CrossRef ] [ Google Scholar ]
  • Muirhead, B. , & Juwah, C. (2004). Interactivity in computer‐mediated college and university education: A recent review of the literature . Journal of Educational Technology & Society , 7 ( 1 ), 12–20. [ Google Scholar ]
  • Niemi, H. M. , & Kousa, P. (2020). A case study of students’ and teachers’ perceptions in a finnish high school during the COVID pandemic . International Journal of Technology in Education and Science , 4 ( 4 ), 352–369. 10.46328/ijtes.v4i4.167 [ CrossRef ] [ Google Scholar ]
  • Oliver, K. , Osborne, J. , & Brady, K. (2009). What are secondary students’ expectations for teachers in virtual school environments? Distance Education , 30 ( 1 ), 23–45. 10.1080/01587910902845923 [ CrossRef ] [ Google Scholar ]
  • Pardo, A. , Jovanovic, J. , Dawson, S. , Gašević, D. , & Mirriahi, N. (2019). Using learning analytics to scale the provision of personalised feedback . British Journal of Educational Technology , 50 ( 1 ), 128–138. 10.1111/bjet.12592 [ CrossRef ] [ Google Scholar ]
  • Ramij, M. , & Sultana, A. (2020). Preparedness of online classes in developing countries amid covid‐19 outbreak: A perspective from Bangladesh. Afrin, Preparedness of Online Classes in Developing Countries amid COVID‐19 Outbreak: A Perspective from Bangladesh (June 29, 2020) .
  • Rice, K. L. (2006). A comprehensive look at distance education in the k–12 context . Journal of Research on Technology in Education , 38 ( 4 ), 425–448. 10.1080/15391523.2006.10782468 [ CrossRef ] [ Google Scholar ]
  • Shishehchi, S. , Banihashem, S. Y. , & Zin, N. A. M. (2010). A proposed semantic recommendation system for elearning: A rule and ontology based e‐learning recommendation system. In 2010 international symposium on information technology (Vol. 1, pp. 1–5).
  • Song, L. , Singleton, E. S. , Hill, J. R. , & Koh, M. H. (2004). Improving online learning: Student perceptions of useful and challenging characteristics . The Internet and Higher Education , 7 ( 1 ), 59–70. 10.1016/j.iheduc.2003.11.003 [ CrossRef ] [ Google Scholar ]
  • Spitzer, D. R. (2001). Don’t forget the high‐touch with the high‐tech in distance learning . Educational Technology , 41 ( 2 ), 51–55. [ Google Scholar ]
  • Thomas, R. M. (2000). Comparing theories of child development. Wadsworth/Thomson Learning. United Nations Educational, Scientific and Cultural Organization. (2020, March). Education: From disruption to recovery . https://en.unesco.org/covid19/educationresponse (Library Catalog: en.unesco.org)
  • Uttal, D. H. , & Cohen, C. A. (2012). Spatial thinking and stem education: When, why, and how? In Psychology of learning and motivation (Vol. 57 , pp. 147–181). Elsevier. [ Google Scholar ]
  • Van Lancker, W. , & Parolin, Z. (2020). Covid‐19, school closures, and child poverty: A social crisis in the making . The Lancet Public Health , 5 ( 5 ), e243–e244. 10.1016/S2468-2667(20)30084-0 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wang, C.‐H. , Shannon, D. M. , & Ross, M. E. (2013). Students’ characteristics, self‐regulated learning, technology self‐efficacy, and course outcomes in online learning . Distance Education , 34 ( 3 ), 302–323. 10.1080/01587919.2013.835779 [ CrossRef ] [ Google Scholar ]
  • Wang, J. , & Antonenko, P. D. (2017). Instructor presence in instructional video: Effects on visual attention, recall, and perceived learning . Computers in Human Behavior , 71 , 79–89. 10.1016/j.chb.2017.01.049 [ CrossRef ] [ Google Scholar ]
  • Wilkinson, A. , Roberts, J. , & While, A. E. (2010). Construction of an instrument to measure student information and communication technology skills, experience and attitudes to e‐learning . Computers in Human Behavior , 26 ( 6 ), 1369–1376. 10.1016/j.chb.2010.04.010 [ CrossRef ] [ Google Scholar ]
  • World Health Organization . (2020, July). Coronavirus disease 2019 (COVID‐19): Situation Report‐164 (Situation Report No. 164). https://www.who.int/docs/default‐source/coronaviruse/situation‐reports/20200702‐covid‐19‐sitrep‐164.pdf?sfvrsn$=$ac074f58$_$2
  • Yates, A. , Starkey, L. , Egerton, B. , & Flueggen, F. (2020). High school students’ experience of online learning during Covid‐19: The influence of technology and pedagogy . Technology, Pedagogy and Education , 9 , 1–15. 10.1080/1475939X.2020.1854337 [ CrossRef ] [ Google Scholar ]

University of Utah Logo

  • Media Contacts
  • News Releases
  • Article Submissions
  • All Categories
  • Arts & Humanities
  • Campus Life
  • Equity & Diversity
  • Health & Medicine
  • Humans of the U
  • Law & Politics
  • Science & Technology
  • Sustainability
  • University Statements
  • Announcements
  • Submit an event
  • U Rising Podcast
  • About the U

Powered By Google Search

Education during a pandemic

This piece originally appeared in Education Week here .

COVID-19 has made it more obvious that the public school system cannot fulfill its mission without families. This pandemic—along with the many overlapping pandemics our nation now faces, including racial, economic, political and environmental injustices—has also heightened existing barriers between families and schools.

For the past few years, we at the Family-School Collaboration Design Research Project—the community research partnership facilitated by the University of Utah, of which all the authors of this essay are a part—have been working with teachers, administrators and culturally diverse families in Salt Lake City to design new ways of increasing family voice in schools. When we recognized the increased disconnection between families and educators during COVID-19, we asked them to share experiences, hopes, frustrations and needs in recorded Zoom videos . In those videos, families and educators taught us how COVID-19 is straining their relationships. This reality challenged us to think creatively about school and family engagement.

The coronavirus pandemic has magnified deep-rooted racial and social injustices and perpetuated educational inequities. With the shift to online teaching, the  digital divide has become a chasm , separating those who have access to school learning and those who don’t. Families in our project, like so many other Americans, described struggling to figure out new technology in a new language with only one computer for multiple children and unreliable or nonexistent internet access. Meanwhile, the pandemic has left many families with multiple crises—food and home insecurities, loss of work, illness— which compete for time and resources with school. These crises are disproportionately harming historically marginalized groups, including families of Black, Indigenous, immigrant and refugee backgrounds like those in our project.

We know from decades of research that genuine, reciprocal, trusting relationships are the foundation on which educators and families can overcome educational obstacles.

And it is clear that educators and families want to be more connected. As Evelia, a parent, said in her Zoom video message to schools: “Include me in my child’s education. [We need] parents, students, and teachers working together to establish routines, communication and discipline.” Victoria, a teacher explained, “I am looking to my school and my district to come out with a consistent plan that helps support students, families, and educators and allows us to build those meaningful relationships that are going to create good learning opportunities that will support our students through this school year.”

Historically, family involvement has been defined narrowly, judged mainly by the physical presence of families in schools—which is impossible during a shutdown. The education profession has rarely asked families how they define “engagement” (or “family”) and consistently devalues many less visible ways that families support education at home and in the community, such as passing along cultural norms and building educational passion through real-world experiences. Overall, engagement has been marred by broken trust, racial bias, and educators’ cultural assumptions about what a “good” family does.

Re-envisioning this dynamic requires centering the families traditionally left out by those cultural assumptions. COVID-19 can be a catalyst for us to jettison old, school-centered ways of doing things that haven’t worked well. Below are some recommendations based on what we learned through our project and through decades of working with families and schools.

We are mindful that COVID-19 has brought many uncertainties, including budget cuts that have resulted in the loss of nearly  500,000 public education jobs  in April of this year alone. However, we encourage districts to prioritize genuine relationships with all families whenever possible. Here’s what that looks like:

Support paid time to connect with families. While budget cuts may make paying overtime infeasible, districts should work to carve out paid time for teachers to call, text, Zoom and (when necessary) meet with families to check-in. The most important goal is to keep communication with families open and for educators to understand the realities families are facing.

Have staff dedicated to leading schoolwide family engagement.  Family engagement is everyone’s responsibility, not just an expectation of individual teachers. When possible, hire and support people who can connect across racial, cultural, and linguistic divides, such as bilingual individuals with roots in local communities.

Construct family leadership and decision-making roles.  We are not going to figure out COVID-19-era education without the knowledge and expertise of the families most impacted. Learn about the assets your families have and welcome their contributions to this joint effort.

Look for new spaces to engage families.  With schools closed, this is a perfect time to get away from the school building and into community spaces for parent-teacher meetings or even “classroom” instruction, while still addressing the reality of the pandemic. As Rebecca, a teacher, put it, “A classroom can be a play area in an apartment complex, it can be in a parking lot of a library.”

Invest in family members as coeducators.  Many families do not feel ready to take on the added teaching responsibilities they have been given. Umu, a parent, explained, “I think to home school a kid, you have to equip the parents first before coming to the child.” Offer materials, workshops, or one-on-one support to families so they can build confidence in this new role.

Work with community partners. Rebecca explained that “I, alone, as a teacher do not have the skills and the strengths to go ahead and diminish all of these barriers” that students face. Addressing the racial and social inequities heightened by the pandemic requires working closely with local community organizations, agencies, businesses, and community leaders—some of whom will be family members in the school.

Offer professional development. Teachers, staff and administrators need more training on anti-racism and how to build authentic, equitable relationships with multilingual families of all backgrounds.

These commitments will create the foundation we need for families and educators to confront the new challenges of distance learning in a time of pandemic. It is imperative that we as a nation make education a priority and support the educational success of our children by investing in these essential commitments. When this particular crisis has passed, we cannot return to normal. The inequities magnified by COVID-19 will persist and must be addressed.

RELATED ARTICLES

Can coal mines be tapped for rare earth elements, a bright future for the john and marcia price college of engineering, provide input for svp of health sciences and ceo of u of u health search, humans of the u: vivek anandh, sunnyside apartments open to u staff, congratulations to 2024 prestigious scholarship winners, @theu may 6, 2024, new engagement and belonging task force, humans of the u: ariel richer.

essay education during pandemic

Students fell behind during the pandemic. How 1 educator is closing the learning gap

This article is sponsored by the Chan Zuckerberg Initiative as part of TODAY’s effort to highlight reporting on teachers, students and education in the United States.

In 2020, as classrooms across the country shifted to remote and hybrid learning, millions of students nationwide fell behind academically. By the fall of 2021, almost all students were back in school full-time, according to the National Center for Education Statistics . Still, closing the COVID gap is taking time.

According to NWEA , by the end of the 2023 school year, the average student needed 4.1 more months to catch up in reading and 4.5 more months in math. Students in high-poverty school districts lost more ground than others, reports the Harvard Graduate School of Education .

Alberto Carvalho  is looking to change that for the more than 420,000 students in the Los Angeles Unified School District (LAUSD), where he came on board as superintendent in 2022.

According to reporting from the New York Times , Los Angeles, the second-biggest public school district in the US, had less learning loss than many other big city districts and has had a better recovery rate than other districts in California.

Here are some of the strategies Carvalho and his team have put in place that are making a difference.

1. Getting kids into the classroom

The challenge: Kids can’t learn if they aren’t in class. Nationwide, chronic absenteeism — kids missing at least 10% of a school year — was 75% higher in 2023 than before the pandemic, according to the American Enterprise Institute .

It’s not just a problem for the kids who miss school — when kids aren’t in school consistently, it disrupts the classroom flow for everyone.

The strategy: Tech-based solutions weren’t getting solid results. “We have platforms that can conduct virtual outreach to parents and students, but that was falling a bit short of the mark,” Carvalho tells TODAY. Instead, the district is using an old-fashioned method — knocking on doors.

A team that can include a counselor, social worker and principal or assistant principal meets with an absent child’s caretakers. The team has data about the student, so they can connect with the caretaker. “We are meeting students and parents where they are, and we’re bringing solutions after really understanding the root cause behind the chronic absenteeism,” Carvalho says.

The outcome: The district is back to its pre-pandemic average daily attendance levels of 92 to 93%.

Still, there’s room for improvement. “With every knock on the door, we learn new circumstances or reasons [for absenteeism],” Carvalho says. For example, parents worry about immigration consequences, or older kids stay home with babies and toddlers while their parents work two or three jobs.

For those issues, the district needs help. “Solving for that requires a new adaptation to a host of social services and supports that transcend the school system,” he says. “It requires the city, the county and community-based organizations to step in and step up.”

2. Looking beyond the limits of the school calendar

The challenge: Schools need to create opportunities for learning outside of the 7.5-hour, 180-day traditional classroom schedule.

The strategy: The district helps kids close their gaps by offering outside-the-school-day options like:

  • Before- and after-school programming
  • Saturday, spring break and winter break academies
  • A summer of learning

Speaking more broadly about these types of changes, Carvalho says, “This is in part the response to the crisis that started with the pandemic, but honestly, this is a response to the failures of many systems for many decades prior to the pandemic. Returning our students back to pre-pandemic status is insufficient. We have a golden opportunity to really transform educational systems as we know them.”

Carvalho recognizes that you can’t simply saturate kids with core subject instruction, though: “If all you do is provide them with more reading and more math, you’re probably going to reach a level of fatigue that will disengage them.”

Along with core subjects, his district is bringing in a portfolio of enrichment activities in the arts, including field trips to plays and concerts. They’re inviting artists to schools. “It’s how you package it,” he says.

The outcome: More than 30% of the student body has participated in summer programs, and other programs are showing solid participation as well. Carvalho says that so far, data is showing significant improvements in state assessments. And the district is posting its highest graduation rates in its history.

3. Closing the gaps for underserved students

The challenge: The students in the 100 lowest-performing schools in the LAUSD are disproportionately Black and brown. These schools have huge numbers of students who have disabilities, are English language learners, are experiencing homelessness or are in the foster care system.

The strategy: The district is using data to build equitable support and accountability. “Data is our superpower in Los Angeles Unified,” Carvalho says. They adjust funding based on each school’s demographics. They are also building strategies that improve the performance of subgroups of students. For example, they’ve allocated $120 million toward the Black Student Achievement Plan (BSAP).

The outcome: The BSAP is still ongoing, and it’s showing solid gains in improving attendance, math and literacy, and students enrolled in advanced placement or honors classes.

4. Connecting parents with their power

The challenge: Parents and communities have often historically sent their kids to school and expected them to behave. After that, they viewed education as the job of the schools and the teachers. Carvalho wants to change that.

“I want to show parents how they can become powerful voices of disruption in their own schools by empowering them with information,” he says. That way, they know the important questions to ask teachers, principals, superintendents and board members.

The strategy: The district launched Family Academy , a virtual platform for parents, two years ago. It gives parents a better understanding of their children’s education and performance and shows them how to be change agents in the classroom and the school.

The outcome: Thousands of parents have gone through training programs. They understand budgets and proficiency levels. “Once parents understand that, they can become more active voices,” Carvalho says. 

5. Recognizing that closing gaps will always be a focus

The challenge: “I don’t think we will ever close the gaps,” Carvalho says. “The reason for that is that our school systems have wide-open doors. As much as we can improve the conditions for learning and performance of the students we have today, each and every day, we bring in new students.”

Babies are born already falling into gaps. Some immigrant students are dealing with language barriers, trauma from warfare or from a treacherous journey to the U.S.

“One of the things that frustrates me as an educator of many years in this country is that all of a sudden, the nation woke up to the fact that there were gaps, and a lot of people assigned the gaps 100% to the pandemic,” Carvalho said. “Gaps have existed. The systems of education as we know them have perpetuated gaps.”

The solution: Parents got a front-row seat to their kids’ educational environment during the pandemic, and they aren’t going back to the old way of doing things. Transparency helps. The district publicly shares data on everything from kindergarten literacy benchmarks to trends in graduation rates through its open data portal .

The outcome: Carvalho references a famous quote from Maya Angelo: “‘When you know better, do better.’ That’s where we are right now.”

This article was originally published on TODAY.com

Students fell behind during the pandemic. How 1 educator is closing the learning gap

Logo

The pandemic taught me the benefits of flipped homework

In this extract from “Online Education During Covid-19 and Beyond“ by Silvia Puiu and Samuel O. Idowu, Olga Amarie shares what she learned about flipped homework while teaching pandemic-era French lessons

Olga Amarie's avatar

Olga Amarie

  • More on this topic

A masked teacher leads a class

You may also like

The flipped classroom at university

Popular resources

.css-1txxx8u{overflow:hidden;max-height:81px;text-indent:0px;} Rather than restrict the use of AI, embrace the challenge

Emotions and learning: what role do emotions play in how and why students learn, leveraging llms to assess soft skills in lifelong learning, how hard can it be testing ai detection tools, a diy guide to starting your own journal.

The pandemic has given rise to an opportunity and a challenge: the need to explore new teaching and learning methods. A unique strategy for enquiry, application and assessment that my students and I refined to navigate these extraordinary times more effectively was teaching and learning from flipped homework. I flipped one portion of my FREN 2001 Intermediate French I course to improve student engagement and motivation. 

FREN 2001 Intermediate French I is a course conducted entirely in French, with strolls planned to help students learn the language and explore the cultures of the French-speaking regions. 

  • An evidence-based approach to flipped learning
  • How a flipped classroom model improves learning in online STEM courses
  • How to induct students into the flipped-classroom model

Speakers at the Intermediate level can successfully handle various communicative tasks in straightforward social situations. However, their conversation generally remains confined to predictable and concrete exchanges necessary for survival in the target culture. The question arises: How can students progress more rapidly? The flipped classroom concept empowers students to expedite their progress to the advanced level. They can handle topics by combining and recombining known elements before each class. They can practise with native speakers prior to oral exams. They can study grammar modules at home to dedicate their time in class to oral practice. 

Students often need help in world language classes owing to vocabulary, grammar and pronunciation limitations. A flipped learning approach allows students to review the new material at their own pace by engaging in online activities. This transforms previously unfamiliar content into something familiar and more easily absorbed. As a result, by the end of the semester, students in a flipped classroom are capable of self-directed learning. They produce paragraph-level language instead of sentence-level language. Their proficiency extends to employing various time frames in oral and written discourse. Moreover, they become adept at comprehending authentic texts such as articles, short stories or native speaker utterances.

The flipped classroom is an innovative educational framework that moves the lecture outside the classroom via technology and moves homework and practice with concepts inside the classroom via learning activities. Students take on a more proactive role in their learning process, developing independent learning skills through presentations, videos, PowerPoint presentations and tutorials done at home. In class, the instructor uses the time to facilitate their discussions and help them apply their knowledge through concrete tasks. 

The flipped homework experiment

During the pandemic, my central objective was to tailor homework to students’ unique learning styles, prompting me to investigate the impact of flipped learning. This was when I realised it was necessary to compare the learning environment between a flipped classroom and a traditional conversation-homework classroom. 

I wanted to uncover how homework influenced the learning environment, students’ diverse learning styles and students’ engagement. How does the learning environment of a flipped classroom compare with the learning environment of a conversation-homework classroom? Is learning from homework useful, efficient or just busy work? 

To address these enquiries, I chose two sections of FREN 2001 Intermediate French I classes during the pandemic to conduct my investigation and help students learn. In one section, I was teaching, as usual, a traditional conversation class followed by assigned activities as homework. In the second section, I opted to flip just the homework and use it predominantly for in-class activities and assessments. My students had to adjust personal learning strategies they had relied on for years to fit this new classroom structure. The outcome was highly encouraging, demonstrating that this adaptation was swift and effective. 

In the traditional conversation-homework classroom, students often arrived unprepared for class activities, grappling with producing new vocabulary and grammatical structures. They spent much time completing their homework but they never had the chance to use that material in class because we had more material to cover the next day, which was new and overwhelming. Consequently, students spent significant time on their homework, yet this effort rarely translated into substantial classroom engagement.   

After reading about the flipped classroom and attending training sessions and workshops at Georgia Southern University, my teaching methods and strategies changed. I use a highly learner-focused delivery model, fostering personalised engagement with each student. I give clear guidelines for class interaction and, most importantly, I empower learners to take responsibility for their own learning. The focus is on students’ autonomy and accountability for their own learning. 

This is how I flipped the homework portion of our course. From the beginning of the semester, I now assign all the activities on the book’s Supersite, with due dates on a course calendar. The dates for the homework are due before the material is covered in class. I encourage students to cultivate a daily practice routine, ingraining the habits necessary for effective learning. I underscore the relevance of these activities to perform in class, whether through quizzes, speaking with their peers or answering open-ended questions. The short quizzes in class are precisely like the activities they practise at home on the Supersite, maintaining consistency. 

Make your students feel positive about homework

From a pool of about 20 exercises, I randomly select one for in-class assessment. Class sessions include a five- to 10-minute homework assignment every time. Considering my flipped classroom, two areas are affected: homework and in-class dynamics. Both shape how my students interact with the material, the professor and classroom peers. Interestingly, it appears as though students do not prefer a structured or traditional homework environment; they are pleased by how homework is ultimately handled in the flipped classroom, as evidenced by the Student Ratings of Instruction. Suddenly, students have more time to learn. This freedom positively impacted the students’ attitude towards homework learning activities, affecting how comfortable they were with class participation. 

A discernible dichotomy emerges in the dynamics of homework in these two class formats. In the traditional classroom, students frequently complain about completing assigned homework. In the flipped classroom, homework intertwines with active learning, occurring when students are most engaged in the learning process. They match, write, translate, apply, compare, arrange, combine, compose, create, organise, research, choose, record, listen, watch a video and comment on all these good verbs from Bloom’s Taxonomy for Learning Objectives. Students practise repeatedly because the computer allows for unlimited submissions. It is practice; it is learning, not just graded homework for completion. Students see that the homework is accessible in the flipped classroom because the pressure and the stress switch from completing it for a grade to learning from it and using it in class to shine.

In the flipped classroom, students are not penalised for incomplete homework. Some students practise more while others practise less at home, depending on their learning style. From the instructor’s point of view, flipped homework is more manageable and more accurate in measuring student progress and learning. For the flipped classroom, the top priority is not completing homework but a relaxed atmosphere where more learning is happening at the pace that the student needs.

Olga Amarie is professor of French at Georgia Southern University.

This is an adapted extract from Online Education During Covid-19 and Beyond , edited by Silvia Puiu and Samuel O. Idowu, published with permission from Springer.

If you would like advice and insight from academics and university staff delivered direct to your inbox each week,  sign up for the Campus newsletter .

Rather than restrict the use of AI, embrace the challenge

Let’s think about assessments and ai in a different way, how students’ genai skills affect assignment instructions, how not to land a job in academia, contextual learning: linking learning to the real world, three steps to unearth the hidden curriculum of networking.

Register for free

and unlock a host of features on the THE site

  • Open access
  • Published: 17 May 2024

Self-regulated learning of anatomy during the COVID-19 lockdown period in a low-income setting

  • Tapiwa Chapupu 1 , 3 ,
  • Anesuishe B Gatsi 3 ,
  • Fidelis Chibhabha 4 &
  • Prince L. M. Zilundu 1 , 2  

BMC Medical Education volume  24 , Article number:  548 ( 2024 ) Cite this article

122 Accesses

Metrics details

In March 2020, universities in Zimbabwe temporarily closed and switched to remote learning to contain the spread of SARS Cov2 infections. The sudden change to distance learning gave autonomy to students to direct their own learning. To understand how the students at the University of Zimbabwe and Midlands State University adapted to emergency remote learning, focus group discussions and a self-administered questionnaire survey based on the self-regulated learning inventory were conducted to capture cognitive, motivational, and emotional aspects of anatomy learning during the COVID-19 pandemic. Thematic analysis was used to identify patterns among these students’ lived experiences. Two coders analyzed the data independently and discussed the codes to reach a consensus. The results showed that students at the two medical schools cognitively and meta-cognitively planned, executed and evaluated self-regulated strategies in different ways that suited their environments during the COVID-19 lockdown. Several factors, such as demographic location, home setting/situation, socioeconomic background and expertise in using online platforms, affected the students’ self-directed learning. Students generally adapted well to the constraints brought about by the lockdown on their anatomy learning in order to learn effectively. This study was able to highlight important self-regulated learning strategies that were implemented during COVID-19 by anatomy learners, especially those in low-income settings, and these strategies equip teachers and learners alike in preparation for similar future situations that may result in forced remote learning of anatomy.

Peer Review reports

Introduction

In March 2020, universities in Zimbabwe temporarily closed and switched to emergency remote teaching following a government lockdown directive meant to curtail the spread of SARS-CoV-2 infections. The lifting of the COVID-19-induced lockdowns proved premature, resulting in a three-time opening and closure of universities between March 2020 and September 2021 as the country battled three waves of infections [ 1 ]. This situation, which was also reported in other parts of the world, forced university teachers and students alike to adapt to a new mode of teaching and learning that had never been tested before [ 2 ]. The closure of medical schools meant that cadaver dissection was foregone, potentially depriving students of teamwork, a visuospatial picture of the organization of the human body, experience of the texture of human tissues, understanding of pathological as well as anatomical variations, and inculcation of humanistic values [ 3 ]. Remote anatomy teaching was conducted virtually [ 4 ], thereby placing the burden of mastering content-heavy anatomy courses on preclinical medical students who were at home.

Compared to traditional face-to-face learning, emergency remote teaching offers flexible scheduling, ease of distributing information, opportunities to individualize learning processes, and the potential to enhance self-regulated learning skills [ 5 ]. However, preclinical medical students still face challenges associated with transitioning from high school to higher education, such as managing study time effectively and becoming self-regulated learners who can cope with the exponential growth of knowledge in medical education [ 6 ]. The sudden transition to remote online learning pushed students to direct their own learning, but the greater flexibility afforded by emergency remote teaching places high demands on them to quickly adapt and self-regulate their learning. The COVID-19 pandemic-induced distance education is different from regular online anatomy education in that it was abrupt, unplanned and often a case of learning on the job for teachers and new to students for a hands-on subject such as cadaver dissection-based anatomy [ 7 ]. In a study from Botswana by Mogodi and colleagues [ 8 ] noted that while there was high smart phone penetration, internet access and affordability was a challenge for both teachers and learners. Therefore, it is important to understand how medical students adapted to this emergency remote learning [ 9 ]. This understanding could inform future instructional modalities, such as blended, hybrid, or remedial medical education/learning.

Due to recent pushes toward student-centered learning in higher education [ 10 ], pre-pandemic university students already enjoyed a considerable amount of autonomy in covering course content and ensuring skills acquisition. As a result, they are expected to plan, monitor, and control their own learning process during self-study and thus engage in self-regulated learning [ 11 ]. Under self-regulated learning, students use cognitive, metacognitive, and resource-management strategies to meet curriculum goals [ 12 ]. Cognitive and metacognitive strategies encompass skills used to process information and monitor and control one’s mastery of subject content [ 13 ]. Resource-management strategies include regulating effort, attention, motivation, and time use [ 14 ]. Because remote learning is typically less structured, it places the burden of learning on students to autonomously regulate and organize their learning processes [ 15 ].

Self-regulated learning (SRL) is a cyclical process wherein students plan for a task, monitor their performance, and then reflect on the outcome [ 11 ]. SRL includes cognitive skills, which are the ability to critically plan and execute strategies of studying; metacognitive skills, which are the ability to know how to implement formulated strategies; behavioral skills; motivational skills, which are self-efficacy; and emotional/affective aspects of learning [ 12 ]. The theory is an extraordinary umbrella under which a considerable number of variables that influence active learning (volition, cognitive strategies and self-efficacy) are studied within a much more comprehensive and holistic approach [ 14 ]. For that reason, SRL has become one of the most important areas of research within educational psychology [ 12 ]. Self-regulated learning strategies are actions directed at acquiring information or skills that involve agency, purpose (goals), and instrumentality of self-perceptions by a learner [ 16 ]. Zimmerman [ 17 ] pioneered this theory and suggested that the self-regulated learning process has three stages:

Forethought, learners prepare work before the performance of their studies.

Volitional control, which is also called “performance control”, occurs in the learning process. It involves the learner’s attention and willpower.

Self-reflection occurs in the final stage when learners review their performance toward final goals. At the same time, focusing on their learning strategies during the process is also efficient for their final outcomes.

Under the SRL theory, students are active participants who proactively use forethought, performance and self-reflection on their learning tasks, thus generating important experiences [ 12 ]. They included goal-setting, environmental structuring, self-consequences (self-rewarding and self-punishment), and self-evaluating. Several other categories were included on the basis of closely allied theoretical formulations, namely, the strategies of organizing and transforming [ 18 ] seeking and selecting information [ 19 ], and rehearsal and mnemonic strategies [ 20 ]. Also included were the strategies of seeking social assistance and reviewing previously compiled records such as class notes and notes on text material, which showed that self-regulated strategies are not anti-social mechanisms of study [ 19 ]. The issue of interactive learning between tutors and students and peer-to-peer discussions is one of the factors of the theory of seeking social assistance.

The ability of an individual to use the self-regulation skills is more crucial in distance learning than in traditional classroom settings due to reduced or absent supervision and guidance [ 21 ]. Understanding how students generally use the SRL strategies is important as previous studies have investigated how performance is associated with several aspects of it in medical leaning [ 22 ]. The importance of SRL in Anatomy education is justified because due to several studies it has shown that academic success is mostly influenced by the students’ ability to control their learning independent of the instructor`s support [ 23 ]. The aspects include self-efficacy, motivation, metacognitive monitoring and strategy use [ 24 ].

A research on first year medical students studying gross anatomy showed that their use of cognitive, resource management and metacognitive strategies was positively associated with higher marks [ 25 ]. A study underscored the need for the student to regularly monitor their study as it was shown that successful students undertaking online courses generally use SRL strategies [ 26 ]. Prior research has explored self-directed learning in anatomy among students in various environments pre-pandemic finding it important. A study in Zimbabwean medical schools found prevalent self-regulated learning traits [ 27 ]. Anatomy study, requiring intensive memorization, often involves rehearsal techniques. In self-regulated learning’s performance phase, students need effective memorization strategies [ 28 ]. Many students at the University of Cape Town research reported a heavy reliance on mnemonics and sticky notes for anatomy learning, with mnemonics and sticky notes being perceived as key to effective study [ 29 , 30 ]. However, mnemonics’ limited generalizability and English-centric nature disadvantage non-English speakers [ 31 ]. Some nursing educators critiqued mnemonics as a ‘lazy’ method, and their use in patient care is viewed as potentially undermining a humanistic approach by oversimplifying symptoms [ 32 , 33 ].

During the COVID-19 lockdown, anatomy at the University of Zimbabwe and Midlands State University was taught in three parts, gross anatomy, histology and embryology, for a year (allied health students) or two years (medical and dental students). The topics covered in gross anatomy regional format were upper limb, lower limb, thorax, abdomen, pelvis, perineum, neuroanatomy, head and neck. The histology and embryology would correspond to those regions in gross anatomy. In gross anatomy, the students were required to know the structure, relations, vascular supply, innervation and clinical correlates. After each region, an exam was written that contributed to the course’s continuous assessment mark. The courses were described previously by Zilundu [ 27 ]. The current study participants are post high school university entrants. This is a major transition whereby “college students need to be more independent and self-organized in their learning behavior than in high school”. Research among low income setting students, like the present sample, noted a significant moderating effect of social adjustment on academic adjustment and transition experiences [ 34 ]. Therefore, self-regulated learning (SRL) skills became even more essential when switching to distance learning during the COVID-19 pandemic to allow students to direct their own learning [ 35 ].

Preclinical medical students are post-high school students in Zimbabwe [ 27 ]. As younger adults, they need guidance and motivation to find their footing in self-regulated learning and subsequent lifelong learning. Motivation and the use of self-regulated learning strategies have been positively correlated with superior academic performance [ 36 ]. However, stress and maladaptive behaviors such as low self-control, low self-discipline, and disorganization, which are possible in remote learning settings, are usually associated with poor outcomes [ 37 ]. Therefore, self-regulated learning (SRL) skills became essential when switching to distance learning during the COVID-19 pandemic [ 38 ].

The transition to remote learning during the COVID-19 pandemic created a critical research gap in how it affects self-regulated learning among preclinical medical students, especially in under-resourced settings like Zimbabwe. This shift was particularly impactful in anatomy education, which moved from hands-on dissection to virtual learning, potentially impairing essential skill and knowledge development. These challenges could be compounded by the difficulty of transitioning from high school to university education, that necessitates advanced SRL skills. This study seeks to address the urgent need to understand the effect of remote learning on SRL strategies crucial for the success of medical students. By exploring their challenges and adaptations, the research aims to guide the creation of educational interventions and models that enhance learning and support the academic and mental well-being of future healthcare professionals in similar environments. Therefore, this study was designed to use a phenomenological approach to highlight the lived experiences, self-regulation during anatomy study, and the potential impact of the COVID-19 outbreak on the education of preclinical medical students in a low income setting.

Materials and methods

Study design.

This study used an interpretative phenomenological analysis (IPA) approach to explore the lived experiences of medical students learning anatomy during lockdown. IPA is a qualitative research method that seeks to understand the meaning and significance of people’s experiences through in depth, reflective inquiry [ 39 ]. According to Sparkes and Smith [ 40 ], human lived experience can be understood by examining the meanings that people ascribe to it. Since medical students in this study shared a common experience of learning anatomy during lockdown, focus group discussions were used as a data collection method. Focus group discussion, a research method involving a small participant group, centers around a specific topic to gather data. This approach is characterized by the interactions between the moderator and participants, and among the group members themselves whose aim is to provide researchers with insights into the participants’ views on the discussed subject [ 41 ].

Flowers, [ 42 ] argued that focus groups can enhance personal accounts by capitalizing on peer-to-peer interactions and rapport. This is particularly relevant in a homogeneous sample such as that of the present medical students, who share experiences and are emotionally invested in the same topic of exploring learning anatomy during the lockdown. Focus group data can also promote experiential insight and reflection that may not be achieved in an interview, thereby enriching the topic under study. Additionally, the researchers have prior experience using this approach in the design, conduct, and analysis of medical education studies [ 27 ]. The interpretive nature of IPA was particularly well suited for this study, as it builds on the researchers’ experience with this approach and its intersection with the self-regulated learning approach to medical education.

Study setting

University of Zimbabwe and Midlands State University. The two Universities, at the time, were part of three medical schools in the country and enrolled students from all the residential areas in Zimbabwe as they cater for all 10 provinces in the country.

Study participants

A total of 86 students comprising first- and second-year medical students registered at the University of Zimbabwe (UZ) and Midlands State University (MSU) who attended a compulsory anatomy course during the multiple COVID-19 lockdowns between March 2020 and September 2021 voluntarily participated in this study.

Recruitment of participants

Messages introducing the study (participant information sheet), a consent form and an invitation to participate were sent to all first- and second-year medical students enrolled at UZ and MSU via their WhatsApp groups opened for purposes of online learning. In the message was a link to Google forms that directed them to a data-gathering tool as well as flexible scheduling of online focus group discussion slots. Students who were willing to participate were asked to self-identify, return signed informed consent sheets and fill in the Google Forms slots of the scheduled times that they would be available to take part in a focus group discussion of approximately 5 to 7 students each.

Data collection instruments

Focus group discussions were conducted following the guidelines contained in the Self-Regulated Learning Interview Schedule [ 43 ]. The Self-Regulated Learning Interview Schedule has 15 items covering self-evaluation, organization, transformation, goal-setting and planning, seeking information, keeping records and monitoring, environmental structuring, self-consequating, rehearsing and memorizing, seeking peer, teacher, or adult assistance, as well as reviewing tests, notes, and texts. Study participants described and reflected on how they used any of these during their anatomy learning when under lockdown.

Data collection

The focus group discussions comprising 5 to 7 participants were conducted by TC and PLMZ over the Zoom video conferencing platform. They were conducted serially until a point of saturation was reached, that is, after the 6th session. Saturation in focus group discussions refers to the point at which no new information or themes are observed in the data, indicating that enough data has been collected to understand the research topic [ 28 ]. They normally lasted one to one and a half hours each. The audios of the focus group discussions were recorded and stored securely. Data was collected from June to August 2021.

Data analysis

The audio recordings of the focus group discussions were transcribed verbatim by TC, FC and ABG. The transcripts were subjected to an interpretative phenomenological analysis (IPA) using the approach described by Pietkiewicz and Smith [ 44 ]. First, the authors immersed themselves in the data by reading and rereading the transcripts. During this process, they made notes on the transcripts, highlighting distinctive phrases and emotional responses, as described by [ 44 ]. Next, the notes and transcripts were reviewed to identify initial emergent themes. These emergent themes were then scrutinized to identify relationships between them, leading to the generation of analytical theme clusters. Finally, the theme clusters were compared back to the original transcripts to ensure that they were representative of the data. Disagreements were discussed and reanalyzed until the final analysis was agreed upon in this iterative process.

The qualitative data were systematically analyzed using the converging coding process. All qualitative data were coded using a priori coding using the 15 strategies outlined in by Zimmerman and Pons [ 43 ]. Responses captured from the participants using Zoom recorder were grouped into four main self-regulated learning themes: cognition, metacognitive self-regulation, effort regulation and resource management. The data were analyzed qualitatively with notes written down initially from the student responses to the 15 questions in the interview guide.

Each strategy was analyzed to determine how it was affected by the COVID-19-induced lockdown. Students in different geographical locations were assessed on how they were positively and negatively affected by the lockdown. The locations were classified from low-density suburbs to rural areas, and the distribution in each class was noted. Adaptation to the home-based learning of anatomy was investigated by examining how each student faced every challenge to achieve their self-set goals. Associations between responses and demographics were analyzed to observe the common use of specific strategies within groups.

Ethics approval and consent to participate

The University of Zimbabwe (UZ) and Midlands State University (MSU) departments of anatomy and the Joint Research Ethics Committee (JREC/329/2021) approved this study. Informed consent was obtained from all students participating in this study prior to their involvement in this research.

A total of 13 focus group discussions were conducted with 86 participants (male = 36, female = 50). The age of the students ranged from 19 to 22 (20 ± 1.2) years. The distribution of residency was 8 for rural areas, 37 for low density, 20 for medium density and 21 for high density. Table  1 below shows the distribution of study participants by sex, residence area, learning institution and academic year.

Cognitive regulation

Organizing and transforming.

Most students who participated in the focus group discussions reported self-initiated rearrangement of instructional materials to improve learning. These students said that they recapped the objectives of each class and then grouped related information for easy understanding during lockdown learning. For example, one student mentioned that: “I normally just prefer listing down related information as well as tabulating differences so that my studying is neater” (#20, M, 22). Another student agreed: “I can list down structures found at every significant vertebral level” (#5, F, 21).

The majority of the students also compressed information into short notes. However, a minority struggled to organize learned information due to their fears of capturing incorrect information in the process and inadequate time to do so. A student in this group that struggled to organize learned information noted: “I do not usually organize my study because at the end of the day I am supposed to know everything, and with the vast of information and little time we have it is difficult” (#79, M, 22).

The use of an atlas alongside reading anatomy textbooks was noted by some students, as they claimed that it fills the gap that the dissection room was supposed to fill. Atlases helped visualize the information as well as used to annotate lecture content. A female student quipped that: “My atlas textbook is almost like my dissection cadaver at home” (#11, F, 22). Another reported that she uses the atlas reduce lecture content by “annotating lecturer notes on the pictures in the atlas” (#30, F, 22). A greater fraction of students from both universities reported that organizing their anatomy study and content while studying the subject at home was rewarding.

Rehearsing and memorizing

In their study of anatomy during the COVID-19 lockdown while at their respective homes, the students gave statements indicating self-initiated efforts to memorize material by overt or covert practice indicating that they employed a great deal of memorization and rehearsing. Almost all the students reported using this strategy frequently and in several ways. The majority of the students used commonly known mnemonics, while others preferred homemade mnemonics derived from common words in their home environment, such as the names of pets (#12, M, 20), siblings (#41, F, 20) and friends (#16, F, 21) For example, a commonly used strategy was captured by one student who noted the following: “I find mnemonics being the fast and easy way to bring back information, especially in an exam setting, because large sets of information are generally compressed to common words or statements” (#7, F, 21).

A minority of the students were not using mnemonics as they claimed to be “extra work” but used other techniques instead, such as “reproducing concepts through discussions with classmates” (#62, M, 22), “homemade notes” (#50, F, 19) and “self-initiated rehearsal sessions” (#33, F,23). One such student captured this as follows: “I might end up having a mini textbook for mnemonics, so it is better that I understand the concept only” (#02, M, 20).

Instead of mnemonics and self-study, a larger fraction of students who participated in the focus group discussions resorted to doing “mock presentations of the anatomy content” (#09, M, 22) that they would have learned to each other via the WhatsApp platform despite the challenges of electricity and internet access. The remainder reported not doing so because of “internet access problems and prohibitive costs” (#76, F, 21), especially those who were residing in remote and high-density areas during the lockdown period. These students, however, utilized their family members by conducting mock lecturing sessions just to help them recall the anatomy they would have learned or been reading from textbooks. For instance, one student quipped: “I teach my mom or sister, even though they don’t understand it, but it helps me remember.” (#22, F, 20) .

The majority of the students also used paper as well as soft copy “flashcards” (#70, M, 21) that have “questions, short statements, and reminders that they would stick on several places in their homes”. The students reported that they found it challenging to memorize structures and relations without dissection, so they used atlases such as Gray’s Atlas of Anatomy and Netter’s Essential Histology for both gross anatomy and histology, respectively. In addition, they said it was easier to recall a photographic image than written statements. Some students preferred using their artistic abilities to draw anatomical structures as part of their memorizing.

Meta-cognitive regulation

Self-evaluation.

Self-evaluation during the lockdown was necessary for the anatomy students to keep themselves in check to effectively monitor their study habits. The whole sample of students who participated in the focus group discussions showed self-initiated evaluation of the quality and progress of their work in different ways. The majority revised anatomy using multiple choice questions (MCQs) obtained from several internet anatomy sites. They also set their own questions before and after the study to check their progress. Many students echoed the following sentiment of one student: “I find MCQs being the most useful tool to evaluate my study because they indicate areas of weakness to me” (#44, M, 23).

The students also “wrote notes from memory and compared them with the anatomy textbook” (#47, M, 21) to show them how much information they obtained from their study. Some students also utilized their peers using online platforms such as WhatsApp during the discussions to see how much they were lacking in comparison to other students. The following statement by one student received concurrence from the majority of the group members during discussions: “My discussion group helps me see where I am, relative to others, and then I know the amount of effort that I need to put in later on” (#45, F, 20). However, some students reported facing challenges in carrying out such as a “lack of a reliable internet connection” (#54, M, 22) as well as “failing to synchronize the lockdown-era learning schedule” (#38, F, 21) and peers’ free time with “household chores” (#65, F, 21). For instance, one said: “It is hard to constantly have discussions at a fixed (time) because anyone can get caught up with anything at any time” (#19, F, 20).

Some students reported resorting to “spaced repetition and retrieval” (#80, M, 21) in which they repeated anatomical information over spaced intervals to remember and judge how much they remember.

Goal setting and planning

The majority of the students reported that they were able to set goals and plans for sequencing, timing, and completing activities related to learning anatomy during the lockdown. However, a minority of students reported having “less time to fulfil the set goals” (#64, M, 20). They reported that the home environment, especially in high-density areas, did not have space for effective study undisturbed, while others, especially females, noted that “household chores” (#77, F, 21) assigned to them at home made it hard to set goals, plan and follow them. They were demotivated to continue with meticulous goal setting such that they ended up stopping carrying out study plans over time. Both male and female students reported similar patterns of goal setting and work planning.

Some students chose to balance their attention on all courses instead of just anatomy during the lockdown period. However, they largely admitted that anatomy is challenging, leading to the subject receiving more attention than others, as captured below:

“I plan to spend 60% of my week’s study time reading anatomy because it is tough and then divide the rest into other courses” (#37, M. 22).

“I draft timetables because they prevent the overlapping of Anatomy study into sessions for other courses” (#03, M, 20).

Female students highlighted experiencing more disruptions to their set goals due to disproportionate participation in household chore compared to their male counterparts. For example:

“It’s hard to plan and set goals knowing that there are high chances of not being able to achieve them with all disturbances at home” (#84, F, 19).

“It is hard to follow timetables when at home… being a woman at home you get to perform most of the duties such as cleaning, cooking, laundry and taking care of younger children, something male members of the family do not do, I guess it’s the culture” (#57, F, 21).

Overall, studying from home during the COVID-19-induced lockdown was generally viewed as challenging, with female students being affected more due to the patriarchal home environment as well as the skewed nature of the distribution of numerous “household duties falling on women” (#26, F, 20).

Keeping/reviewing records and monitoring anatomy learning during lockdown

Most of the students reported keeping records of the anatomy information they learned in many different forms for future use. However, a few focus group discussants did not keep records due to the challenges of revisiting citing the “heavy workload and limited time” (#14, M, 22) during the lockdown. The majority of such students were male.

The widely used record-keeping method was “note-taking during online lectures” (#13, M, 20) and when studying. Many students felt that this method helps them to boost their focus, as explained below: “I wrote some notes to keep myself motivated during studying, and I wrote down everything I got wrong in an exam to work on them as objectives.”

Other records were kept in form of “short notes” (#66, F, 20), “flashcards” (#18, F, 20), audio and even videos. Modifying the notes was done in successive study sessions as the students added more information. A small fraction of anatomy learners found it challenging to keep records, as they never had enough time to revisit them due to ever-increasing workloads and other competing needs in the home environment. One such student quipped: “It’s hard to write notes that you know you will never read them again in such pressure-filled times .” (#10, M, 21).

Reviewing handwritten notes, textbooks, and MCQs were widely used by the majority of the students. Many students reported that reviewing past MCQs was an effective tool in evaluating their level of learning and understanding as well as exam preparation and was mostly used by second-year anatomy students as shown below.

“I revise MCQs with my (handwritten) notes and also revisit the anatomy textbooks” (#07, F, 22).

“In the first year, I relied more on the textbook to prepare for anatomy examinations, but now I do MCQs then discuss with peers.” (#30, F, 22).

On the other hand, a minority reported that using MCQs just before exams increased panic and anxiety as exemplified by: “I cannot use MCQs just before an anatomy exam because I may panic by seeing several questions whose answers I do not know” (#41, F, 20).

Most students did not review textbooks before exams due to their large volumes of information in a short period, hence the use of notes, audio, YouTube videos and flashcards, but could do so in preparation for a discussion group with classmates.

Effort regulation

Environmental structuring.

Effort regulation refers to the student’s ability to continue performing a task even when faced with inherent difficulties [ 44 ]. The majority of students who participated in the focus group discussions portrayed how they managed their anatomy studies on their own in different environments during the lockdown. Some students residing in high-density suburbs and rural areas had “trouble finding a conducive study environment” (#71, M, 20), with most of them resorting to studying at night when most family members are asleep, as captured by some below:

“I need to check what my environment is like before I sit to study” (#61, F, 19).“It is hard to find a quiet place unless, during night time, that is why I study during the night” (#25, M, 22).

On the other hand, a few students who stayed in low-density suburbs that provided a quiet, clean and isolated environment during lockdown could not care much about the state of the surroundings for studying anatomy, as one noted below:

“I am not much affected by my environment at home” (#54, M, 22).

However, studying at new places was found to be “motivating” (#85, F, 21); hence, some students rotated around their homes trying to find suitable places to study anatomy during the lockdown. The use of music during the study was noted by some students as an effective tool to support effort regulation, while some students opted for “total silence for maximum concentration” (#23, F, 20).

Self-consequences

Statements indicating self-initiated imagination of rewards or punishment for success or failure to achieve self-set goals were noted in approximately half of the focus group discussions participants. Many students reported rewarding themselves more than punishment, as they felt that there was no need to punish themselves if the “workload was already heavy” (#73, M, 19). Those who rewarded themselves did so by temporarily stopping reading for a while to gain motivation, spending time with the family, watching television, surfing the internet and visiting social media. For example:

“I feel like my end goal is to pass exams so better I motivate myself by constant rewards than punishments” (#33, F, 23).

A few students punished themselves by depriving themselves of social media, friends, and family time until a specific task was completed. Other students never used any of the two strategies, as they said that passing is the reward and studying hard is the price for it.

“I am punished and rewarded by my result on the exam results noticeboard, so I don’t do it myself” (#49, F, 21).

Resource management

Seeking social assistance (elder, teacher and tutor, peers).

All students who participated in the focus group discussions reported seeking educational assistance from either an elder/mentor in medical school, a lecturer, a tutor, or peers. Most students mentioned being uncomfortable seeking assistance from their lecturers but could frequently approach their tutors (BSc intercalated anatomy students) instead:

“I find it hard to text my lecturer so I usually pass my question to the tutors” (#65, F, 21).

The use of mentors/elders, especially those who are streams ahead, was noted, as students preferred someone who once studied anatomy and understands for emotional support:

“Parents and friends were necessary for emotional support, as students needed constant mental support during the pandemic.” (#01, F, 22).

The majority of students showed that the assistance that comes from a peer was very helpful. This was noted as many students raised the issue of discussion groups being the best learning platform at all times, especially toward Anatomy exams”.

“… my discussion group is almost my everything from academic to emotional support because we are in the same boat and we face everything together.” (#40, M, 22).

Team work was a very useful tool in anatomy studies during the pandemic season, as the students stayed connected in their work and discussions through social media.

Seeking information

The ability to search for information from several online sources was important in studying anatomy during the lockdown, where the student had to hunt for the source of information to keep up with the subject content and everyone else. The majority of students looked for information mostly online through Google searches, retrieving uploaded videos, and classmates.

“I go online to check textbooks, notes and videos to try and understand more about what I know already” (#58, M, 21).

Some students preferred to search for other texts online just to remain motivated on the subject. Social media platforms such as WhatsApp were used more commonly to ask for books, notes, videos, recordings and extra sources of anatomical information from colleagues. A few students preferred sticking to the recommended anatomy textbooks to minimize confusion between texts as well as because of the limited time.

“I already have no time to finish up all the anatomy books. So, why do l have to fish for other books?” (#72, F, 20).

However, a considerable number of students reported facing “poor internet connectivity” in some areas of Zimbabwe, as almost all the accessible sources for anatomy during remote learning were available online. This was captured by representative students, one lived in a rural setting and another in a medium density suburb:

“in my rural environment, the network boosters are far apart and mobile internet connectivity was very poor and often offline whenever there was no ZESA ( electricity )” (#63, M, 20).

“I lived in the city but with frequent power outages and expensive broadband internet activity, sometimes the only time I could access mobile internet to study would very late in the night” (#29, F, 22).

The study aimed at exploring how anatomy learners in a low-income country employed self-regulated learning skills during the Covid-19 lockdown induced distance learning. The ten focus group discussions that were conducted involving 86 students showed that anatomy learners at UZ and MSU demonstrated use of self-directed learning skills during the COVID-19 remote learning period. They showed mostly relatively similar use of cognitive, meta-cognitive and effort regulation despite their differences in gender, socioeconomic background or academic year.

The present study revealed that learning anatomy during lockdown was very challenging due to the absence of physical interactive learning, poor internet connectivity, disturbances at home and the absence of cadaver dissection and histology practicals. As a result, the students resorted to directing their learning as an adaptative strategy to pandemic-induced online remote learning. The study has shown that the majority of students were able to reorganize and transform as well as employ rehearsal and memorizing techniques despite the several challenges faced during home learning. The majority of the students actively utilized different cognitive and metacognitive skills in self-regulating learning anatomy during the lockdown. However, a minority reported some challenges partially due to COVID-19-induced home learning warranting a look back so that similar problems could be approached by anatomy teachers in the future.

The present study’s findings are concordant with previous studies that have shown that students can also initiate task transformation for effective learning [ 25 ]. During the home-based learning of anatomy, students from both universities (UZ and MSU) found ways to tackle the vast anatomical information by rearranging, transforming and selecting the required information. This was done by the use of homemade mnemonics, drawings, tables and paraphrased notes. However, experts in cognitive and educational psychology have questioned the utility of some of these learning techniques, such as the use of mnemonics, for the majority of students [ 30 ]. Therefore, while current students reported using and drawing some benefit from the said techniques, further research is needed to identify which techniques have generalizable effects.

In the present study, most students relied on memorizing and rehearsing to effectively understand anatomy content during the lockdown. Due to the absence of physical peer-to-peer interaction, students tended to mock-teach close family members to try and memorize anatomy content. They also asked family members to test them on specific anatomy concepts and content. The students also utilized atlases, mnemonics, sticky notes and repeated reading. This way of learning portrays the skills of self-regulated learning [ 14 ].

Some students who participated in the present study reported using mnemonics created in native Zimbabwean languages which proved to be useful in their understanding of anatomy basing on their testimonies. Mnemonics are useful only for memorization and are not tools for higher-order learning skills such as analysis, understanding or application [ 45 ]. They only encourage shallow learning rather than developing an in-depth understanding of concepts in learning [ 32 ]. It is important for teachers to be aware of the mnemonics their students are using, as these can be valuable tools for learning. However, it is also important to check these mnemonics for mistakes, as students may not be creating them accurately. Teachers can help students create accurate mnemonics by providing them with examples of mnemonics that work well and by teaching them how to create their own mnemonics. They can also help students check their mnemonics for mistakes by asking them to explain how the mnemonic works or by having them quiz each other on the information that the mnemonic is supposed to help them remember.

One of the key aspects of memorizing anatomy concepts is visualization, which was aided by the use of cadavers during campus learning time. However, at home, the students utilized online 3D anatomy software and atlases that worked efficiently to boost learning and appreciation of spatial relationships between anatomical structures in lieu of actual dissection and teamwork.

In the present study, it was observed that students were able to control their thoughts and actions, hence showing meta-cognitive skills use in anatomy learning. With reduced constant supervision, the skill was employed differently among anatomy learners in both universities during COVID-19-induced home learning. The majority of the students were able to self-evaluate, set goals, plan their work, and keep, monitor and review the information records in several different ways. Studies have examined the use of metacognition in the learning of anatomy before [ 46 ] and after the COVID-19 lockdown [ 47 ]. In Zimbabwe, students were finding challenges in meta-cognitively monitoring their anatomy learning due to several factors, such as the nonfixed learning schedules during the pandemic or disruptions caused by doing household chores. However, students were planning their study for a shorter period (within a few days) and monitored their notes regularly to keep the information easy to recall. They also worked with other students to evaluate each other using online platforms such as WhatsApp.

Self-evaluation skills are necessary at every stage of self-regulated learning, especially for anatomy learners who have to cover a large amount of information in a short period. The students used multiple-choice questions, online discussions and homemade review questions to evaluate their own learning. These results indicated that anatomy learners at UZ and MSU were able to evaluate themselves at home during the self-reflection phase of self-regulated learning amid challenges imposed by the COVID-19 pandemic [ 16 ]. The use of self-evaluation by anatomy students before the lockdown [ 48 ] and during the COVID-19 pandemic lockdown has been noted as an important tool that provides room for improvement [ 49 ]. The results from the current study on self-evaluation reports are in agreement with those of previous studies that evaluated its use among medical students and particularly anatomy learners in India [ 47 ] and in the USA [ 47 ]. Zimbabwean anatomy learners at UZ and MSU developed self-evaluation strategies to compensate for the reduced in-person discussions, quiz sessions and practice tests. Family members were utilized to evaluate the learner by employing randomly set questions and presentations as a way to use a multisensory learning strategy.

Due to the different environments in which students lived, a wide range of evaluation strategies were employed. The students who lived in remote areas did not have reliable internet connections to engage in online academic activities like their peers. Hence, such students are more prone to depression, less motivation [ 50 ], and even poor academic performance than expected [ 51 ]. However, while many studies in resource-limited settings listed similar challenges with the internet, overall anatomy learning has largely been reported as comparable to pre-pandemic levels [ 52 ]. Future studies must find connections between different student circumstances and academic performance as well as posit solutions that would be relevant in crisis and normal education times.

Self-initiated study plans and goals are crucial in the learning of anatomy, which is a content-heavy subject [ 25 ]. Most students from both institutions in the present study planned and set goals for their daily and weekly studies. However, a minority showed weakness in this skill, mainly due to disturbances at home. For instance, participating in household chores, attending to visitors and other unplanned events disrupted plans and goal attainment during the lockdown period. This reflects the use of goal- and plan-setting strategies by anatomy students in Zimbabwean medical schools, which is an element of the forethought phase of self-regulated learning [ 53 ]. Previous studies have shown results similar to those of this current study on the employment of self-initiated goals and plans. A study conducted in the USA [ 54 ] before and during the COVID-19 lockdown showed that anatomy students planned and set goals. Anatomy learners in Zimbabwe planned and set goals to make it easier to study anatomy. This skill is an important lifelong tool in different aspects of life, of keynote in the medical field [ 55 ]. However, a minority have also faced challenges due to the instability of home environments, which slowed down the student’s work rate. Most Zimbabwean female students reported more difficulties due to frequent house chores and related disturbances. Student residency [ 52 ] and gender [ 56 ] have previously been shown to affect learning differently. Several studies have reported that many students generally face challenges in learning anatomy at home and eventually become worried and stressed over their study progress [ 57 ]. Therefore, it is crucial for anatomy educators to be aware of the breadth of students’ challenges so that they can offer support.

Students at UZ and MSU kept records of past online lectures, tutorials, personal study sessions and discussions in the form of short notes, audio, videos and pictures for future use, hence proving a meta-cognitive skill in anatomy learning that reflected their metacognitive skills in the performance phase [ 58 ]. Previous studies have shown results similar to those obtained in the current study. A study that was performed in Spain showed that anatomy students kept track of what they had learned for future reference as self-regulators [ 59 ]. Note writing, as a way of keeping simplified and compressed information, also motivated students during their studying and online lecture sessions. Some students were not able to revise their notes due to the vast information they had to take in every daytime as well as accumulated over time. Students who stayed in remote areas of Zimbabwe depended more on their self-kept records to frequently visit and revise because they could not participate more frequently in online classes, which proved to be useful.

In the performance phase of self-regulated learning, effort regulation is an essential skill during home-based anatomy learning [ 60 ]. Self-control was assessed in students during focus group discussions, and students generally showed abilities to govern their environments and actions by self-reward and punishment in different ways, which is effort regulation. Challenges in sustaining effort were widely reported, but some students could still adapt during the lockdown, as was described previously in a similar study [ 49 ].

Environmental structuring is an important aspect of student learning during the COVID-19-induced phase of online learning at home [ 61 ]. The environment affects the productivity of students’ learning, as noted previously [ 62 ]. Some students structured their environment to be suitable for effective study before time. Students from different residential areas managed their environments differently. For instance, students who resided in high-density residential areas and semi-urban and rural areas were greatly affected by the lockdown, even though they came up with ways to manage even in such places. Other studies have reported similar results to those of the current study, showing that students could also manage their study environment during the pandemic lockdown [ 62 ]. Self-isolation from other family members was used to reduce disturbances and boost their focus during the anatomy study. Most students tended to utilize the night time more than they normally did before the lockdown. This change in study time was to escape the busy and noisy daytime at home. Music was also used to close out the noise at home, and some students gained concentration through it [ 63 ]. Concentration and motivation to study are affected by the environment; hence, anatomy students in Zimbabwe regulate their environment to achieve personal study goals.

Self-reward and punishment are required for the learner to control their actions and increase motivation [ 64 ]. The current study reviewed how first- and second-year anatomy learners at UZ and MSU controlled themselves when studying anatomy during the COVID-19-induced lockdown. The majority rewarded themselves mainly with food, social media and sleep. Upon achieving a specific study goal, students tend to reward and punish themselves accordingly, hence showing an element of self-control [ 65 ]. This is in line with reports from other studies concerning the balance between self-reward and punishment [ 66 ]. Students had minimum supervision at home over their studies compared to the time they were on campus; hence, some controlled their actions by reward and punishment mechanisms to boost motivation and self-discipline, respectively [ 67 ]. Anatomy learning is difficult for most students [ 68 ]; hence, punishment after not reaching a specific self-set goal seemed to add pain to pain. Most students commonly rewarded themselves with more time on social media because it is the most commonly used form of leisure and entertainment and a way of connecting with other peers in several places. Students also rewarded themselves with sleep because it is an aspect of their lives that is commonly deprived due to long late-night studies. This was important in refreshing their minds and boosting motivation as well as confidence, which led to a healthy mental state.

The transition from campus to a home-based learning environment required the students to search for anatomy information from many sources. Most students studying anatomy in Zimbabwe sought information on the internet from online libraries. This finding showed that students were self-regulators by seeking information during the performance phase of the regulation process [ 69 ]. Studies in the USA have also examined the utilization of learning resources by medical students, which reflects results from the current study [ 69 ]. Most physical libraries closed in line with COVID-19 pandemic regulations, which is why students resorted to online libraries and information platforms. The main challenges faced by most students who resided in remote areas were limited internet data access and connectivity as well as resources to fund such pursuits [ 70 ]. A minority of the students could not search for extra sources of information beyond what was provided by the lecturer because of the limited information and to reduce confusion in their studies.

As part of self-directed resource utilization, seeking social assistance is an important strategy in the learning of anatomy. The results from the present study at two medical schools showed that students sought social assistance and that females reached out more for help than males, as previously reported by a study on university students at the University of Edinburgh [ 71 ]. Most students in the present study sought help with anatomy from peers, elders and teachers, which is in line with previous observations [ 65 ]. Harmon and colleagues recently demonstrated that anatomy students can utilize available resources to enhance their learning and academic performance [ 69 ]. However, most challenges were faced by students who could not obtain good internet connectivity, as they could not seek help from their friends, tutors and lecturers. Students at UZ and MSU preferred peer-to-peer interactions, which were also more common and comfortable than student-to-lecturer interactions. Family members played a crucial part in providing emotional and psychological support to the student during the home learning period; hence, the role of the family is significant, as noted in other studies [ 72 ]. Therefore, awareness of students’ help-seeking behaviors and student counseling during the lockdown was essential and could be incorporated into future student support systems.

Study limitations

The current study has some limitations. The study may not have captured a good picture of the student’s self-regulated learning behaviors due to the unequal numbers between students at UZ and MSU. Further studies must consider larger samples of medical students across many subjects in crises and normal times. The online questionnaire may have largely been responded to by those who had an internet connection at the time of data collection; hence, the majority of students in remote areas could not have fully participated. The online focus group discussions that were conducted using Zoom meetings were only attended by those who could also afford and access an internet connection. Future studies must provide equal opportunities for the full participation of all in the target population.

From this present phenomenological study, it has been noted that students were generally self-regulators despite the challenges they met during the COVID-19-induced home-based learning period. There was no specific difference in how the students from both universities directed their anatomy learning during lockdown. The effect of student location during lockdown had a significant effect on how students regulated learning, with grave challenges affecting students coming from low-income homes and remote areas. This study sheds light on the dynamic interplay between individual agency and external challenges faced by preclinical medical students in a low-income setting during the COVID-19 pandemic. The findings underscore the necessity of adaptable, supportive educational frameworks that can accommodate the diverse needs of students, especially in times of crisis. The resilience, adaptability, and collaborative spirit demonstrated by the students offer valuable insights for future educational planning and the development of more inclusive and flexible learning environments.

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due guarantees given to audio data confidentiality but quantitative data are available from the corresponding author on reasonable request.

Murewanhema G, Burukai TV, Chiwaka L, Maunganidze F, Munodawafa D, Pote W et al. The effect of increased mobility on SARS-CoV-2 transmission: a descriptive study of the trends of COVID-19 in Zimbabwe between December 2020 and January 2021. Pan Afr Med J. 2021;39(1).

Brown A, Kassam A, Paget M, Blades K, Mercia M, Kachra R. Exploring the global impact of the COVID-19 pandemic on medical education: an international cross-sectional study of medical learners. Can Med Educ J. 2021;12(3):28–43.

Google Scholar  

Souza AD, Kotian SR, Pandey AK, Rao P, Kalthur SG. Cadaver as a first teacher: a module to learn the ethics and values of cadaveric dissection. J Taibah Univ Med Sci. 2020;15(2):94–101.

Iwanaga J, Loukas M, Dumont AS, Tubbs RS. A review of anatomy education during and after the COVID-19 pandemic: revisiting traditional and modern methods to achieve future innovation. Clin Anat. 2021;34(1):108–14.

Article   Google Scholar  

Dost S, Hossain A, Shehab M, Abdelwahed A, Al-Nusair L. Perceptions of medical students towards online teaching during the COVID-19 pandemic: a national cross-sectional survey of 2721 UK medical students. BMJ Open. 2020;10(11):e042378.

Barbosa J, Silva Á, Ferreira MA, Severo M. Transition from secondary school to medical school: the role of self-study and self-regulated learning skills in freshman burnout. Acta Med Port. 2016;29(12):803–8.

Zhang J, Zilundu PLM, Fu R, Zheng X, Zhou L, Guo G. Medical students’ perceptions and performance in an online regional anatomy course during the Covid-19 pandemic. Anat Sci Educ. 2022;15(5):928–42.

Mogodi M, Griffiths D, Molwantwa M, Kebaetse M, Tarpley M, Prozesky D. Justice as fairness in preparing for emergency remote teaching: a case from Botswana. Afr J Health Prof Educ. 2022;14(1):8–12.

Biwer F, Wiradhany W, Oude Egbrink M, Hospers H, Wasenitz S, Jansen W, et al. Changes and adaptations: how university students self-regulate their online learning during the COVID-19 pandemic. Front Psychol. 2021;12:642593.

Santos J, Figueiredo AS, Vieira M. Innovative pedagogical practices in higher education: an integrative literature review. Nurse Educ Today. 2019;72:12–7.

Zimmerman BJ. Self-regulated learning. 2001.

Panadero E. A review of self-regulated learning: six models and four directions for research. Front Psychol. 2017;8:422.

Zimmerman BJ. Self-regulation involves more than metacognition: a social cognitive perspective. Educ Psychol. 1995;30(4):217–21.

Cleary TJ, Callan GL. Assessing self-regulated learning using microanalytic methods. Handbook of self-regulation of learning and performance. Routledge; 2017. pp. 338–51.

Mahlangu VP. The good, the bad, and the ugly of distance learning in higher education. Trends E-Learn. 2018;10:17–29.

Schunk DH. Self-Evaluation and Self-Regulated Learning. 1996.

Zimmerman BJ. Becoming a self-regulated learner: which are the key subprocesses? Contemp Educ Psychol. 1986;11(4):307–13.

Corno L, Mandinach EB. The role of cognitive engagement in classroom learning and motivation. Educ Psychol. 1983;18(2):88–108.

Ysseldyke JE, Pianta B, Christenson S, Wang J, Algozzine B. An analysis of prereferral interventions. Psychol Sch. 1983;20(2):184–90.

McCombs BL. Processes and skills underlying continuing intrinsic motivation to learn: toward a definition of motivational skills training interventions. Educ Psychol. 1984;19(4):199–218.

Bol L, Garner JK. Challenges in supporting self-regulation in distance education environments. J Comput High Educ. 2011;23:104–23.

Pintrich PR. The role of goal orientation in self-regulated learning. Handbook of self-regulation. Elsevier; 2000. pp. 451–502.

Kingsbury T. Exploring the Potential for a First Year Experience Online with Learning Styles. 2015.

Pandey P, Zimitat C. Medical students’ learning of anatomy: memorisation, understanding and visualisation. Med Educ. 2007;41(1):7–14.

Pizzimenti MA, Axelson RD. Assessing student engagement and self-regulated learning in a medical gross anatomy course. Anat Sci Educ. 2015;8(2):104–10.

Yukselturk E, Bulut S. Predictors for student success in an online course. J Educ Technol Soc. 2007;10(2):71–83.

Zilundu PL, Chibhabha F, Yu G, Fu R, Zhou L. Pre-clinical medical students’ use of motivational and cognitive study strategies during anatomy learning: a three‐year cross‐sectional survey. Anat Sci Educ. 2022;15(3):522–34.

Guy R, Byrne B, Dobos M. Optional anatomy and physiology e-learning resources: student access, learning approaches, and academic outcomes. Adv Physiol Educ. 2018.

Cazan AM, Indreica SE. Need for cognition and approaches to learning among university students. Procedia-Soc Behav Sci. 2014;127:134–8.

Dunlosky J, Rawson KA, Marsh EJ, Nathan MJ, Willingham DT. Improving students’ learning with effective learning techniques: promising directions from cognitive and educational psychology. Psychol Sci Public Interest. 2013;14(1):4–58.

Wilhelmsson N, Dahlgren LO, Hult H, Scheja M, Lonka K, Josephson A. The anatomy of learning anatomy. Adv Health Sci Educ. 2010;15:153–65.

Ferrel MN, Ryan JJ. The impact of COVID-19 on medical education. Cureus. 2020;12(3).

Smith CF, Border S. The twelve cranial nerves of Christmas: mnemonics, rhyme, and anatomy–seeing the lighter side. Anat Sci Educ. 2019;12(6):673–7.

Owusu-Agyeman Y, Mugume T. Academic adjustment of first year students and their transition experiences: the moderating effect of social adjustment. Tert Educ Manag. 2023;1–21.

Alsoufi A, Alsuyihili A, Msherghi A, Elhadi A, Atiyah H, Ashini A, et al. Impact of the COVID-19 pandemic on medical education: medical students’ knowledge, attitudes, and practices regarding electronic learning. PLoS ONE. 2020;15(11):e0242905.

Tomas N, Poroto A. The interplay between self-regulation, learning flow, academic stress and learning engagement as predictors for academic performance in a blended learning environment: a cross-sectional survey. Heliyon. 2023;9(11).

Gandomkar R, Mirzazadeh A, Jalili M, Yazdani K, Fata L, Sandars J. Self-regulated learning processes of medical students during an academic learning task. Med Educ. 2016;50(10):1065–74.

Pelikan ER, Lüftenegger M, Holzer J, Korlat S, Spiel C, Schober B. Learning during COVID-19: the role of self-regulated learning, motivation, and procrastination for perceived competence. Z Für Erzieh. 2021;24(2):393–418.

Biggerstaff D, Thompson AR. Interpretative phenomenological analysis (IPA): a qualitative methodology of choice in healthcare research. Qual Res Psychol. 2008;5(3):214–24.

Sparkes AC, Smith B. Judging the quality of qualitative inquiry: Criteriology and relativism in action. Psychol Sport Exerc. 2009;10(5):491–7.

Wong LP. Focus group discussion: a tool for health and medical research. Singap Med J. 2008;49(3):256–60.

McParland JL, Flowers P. Nine lessons and recommendations from the conduct of focus group research in chronic pain samples. Br J Health Psychol. 2012;17(3):492–504.

Zimmerman BJ, Pons MM. Development of a structured interview for assessing student use of self-regulated learning strategies. Am Educ Res J. 1986;23(4):614–28.

Pietkiewicz I, Smith JA. A practical guide to using interpretative phenomenological analysis in qualitative research psychology. Psychol J. 2014;20(1):7–14.

Chung E, Subramaniam G, Dass LC. Online learning readiness among university students in Malaysia amidst COVID-19. Asian J Univ Educ. 2020;16(2):45–58.

Wenger E. A social theory of learning. Contemp Theor Learn. 2009;209–18.

Dobson JL, Linderholm T. Self-testing promotes superior retention of anatomy and physiology information. Adv Health Sci Educ. 2015;20:149–61.

Travill A. The anatomical basis of clinical practice: an anatomy learning programme. Med Educ. 1977;11(6):377–9.

Singal A, Bansal A, Chaudhary P, Singh H, Patra A. Anatomy education of medical and dental students during COVID-19 pandemic: a reality check. Surg Radiol Anat. 2021;43:515–21.

Egalite AJ. How family background influences student achievement. Educ Next. 2016;16(2):70–8.

Azin N, Ali N, Arezoo E, Alireza A, Mohammad Hossein K. Comparison of E-learning and traditional classroom instruction of dental public health for dental students of Shahid Beheshti dental school during 2010–2011. 2012.

Simões CA, Ribeiro MA Jr, Portilho AS, Favaro M, Santin S, Ferrada P, et al. Evaluation of a training model for cervical trauma using cadavers. Am Surg. 2019;85(1):21–3.

Eilam B, Aharon I. Students’ planning in the process of self-regulated learning. Contemp Educ Psychol. 2003;28(3):304–34.

Terrell M. Anatomy of learning: instructional design principles for the anatomical sciences. Anat Rec Part B New Anat off Publ Am Assoc Anat. 2006;289(6):252–60.

Turan S, Konan A. Self-regulated learning strategies used in surgical clerkship and the relationship with clinical achievement. J Surg Educ. 2012;69(2):218–25.

Pajares F. Gender and perceived self-efficacy in self-regulated learning. Theory Pract. 2002;41(2):116–25.

Cuschieri S, Calleja Agius J. Spotlight on the shift to remote anatomical teaching during Covid-19 pandemic: perspectives and experiences from the University of Malta. Anat Sci Educ. 2020;13(6):671–9.

Ablard KE, Lipschultz RE. Self-regulated learning in high-achieving students: relations to advanced reasoning, achievement goals, and gender. J Educ Psychol. 1998;90(1):94.

Bransen D, Govaerts MJ, Sluijsmans DM, Driessen EW. Beyond the self: the role of co-regulation in medical students’ self‐regulated learning. Med Educ. 2020;54(3):234–41.

Fisher D, Solomons D, Makhathini KB. Face-to-face versus online-based lectures: a COVID-19 induced study on assessments. In Frontiers; 2022. p. 1045311.

Roslan NS, Halim AS. Enablers and barriers to online learning among medical students during COVID-19 pandemic: an explanatory mixed-method study. Sustainability. 2021;13(11):6086.

Mahdy MA, Sayed RK. Evaluation of the online learning of veterinary anatomy education during the Covid-19 pandemic lockdown in Egypt: students’ perceptions. Anat Sci Educ. 2022;15(1):67–82.

de Moya Martínez M, del Syroyid Syroyid V. Music as a Tool for promoting environmental awareness. Experiences of Undergraduate Education students on the production of video tales in the COVID-19 pandemic. Educ Sci. 2021;11(10):582.

Lapan RT, Kardash CM, Turner S. Empowering students to become self-regulated learners. Prof Sch Couns. 2002;5(4):257.

Karabenick SA, Urdan TC. Transitions across schools and cultures. Emerald Group Publishing Limited; 2012.

ten Cate OTJ, Kusurkar RA, Williams GC. How self-determination theory can assist our understanding of the teaching and learning processes in medical education. AMEE Guide 59 Med Teach. 2011;33(12):961–73.

Huang R, Ritzhaupt AD, Sommer M, Zhu J, Stephen A, Valle N, et al. The impact of gamification in educational settings on student learning outcomes: a meta-analysis. Educ Technol Res Dev. 2020;68:1875–901.

Saverino D. Teaching anatomy at the time of COVID-19. Clin Anat N Y Ny. 2020;34(8):1128–1128.

Harmon DJ, Attardi SM, Barremkala M, Bentley DC, Brown KM, Dennis JF, et al. An analysis of anatomy education before and during Covid-19: May–August 2020. Anat Sci Educ. 2021;14(2):132–47.

Polly D, McGee JR, Wang C, Lambert RG, Pugalee DK, Johnson S. The association between teachers’ beliefs, enacted practices, and student learning in mathematics. Math Educ. 2013;22(2):11–30.

Astin AW, Banta TW, Cross KP, El-Khawas E, Ewell PT, Hutchings P et al. Nine principles of good practice for assessing student learning. Am Assoc High Educ. 2003.

Hodges TS, Kerch C, Fowler M. Teacher Education in the Time of COVID-19: creating Digital Networks as University-School-Family partnerships. Middle Grades Rev. 2020;6(2):n2.

Download references

Acknowledgements

The authors wish to thank all the students who participated in this study. We would also like to extend our sincere gratitude to the UZ and MSU Anatomy departments for allowing us to give us permission to collect data from anatomy students. learners and creating a favorable environment for research. We are grateful to Ms. Phillipa, who accommodated us well in Gweru during data collection at MSU.

This research and manuscript was not funded by any external sources or organizations.

Author information

Authors and affiliations.

Department of Basic Dental and Medical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates

Tapiwa Chapupu & Prince L. M. Zilundu

Center of Medical and Bio-allied Health Sciences Research, Ajman, United Arab Emirates

Prince L. M. Zilundu

Anatomy Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe

Tapiwa Chapupu & Anesuishe B Gatsi

Department of Anatomy, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe

Fidelis Chibhabha

You can also search for this author in PubMed   Google Scholar

Contributions

PLMZ and FC conceived and planned the study. ABG and TC carried out the survey. PLMZ, FC, TC and ABG planned and carried out the focus group discussions. All authors contributed to the interpretation of the results. ABG took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Prince L. M. Zilundu .

Ethics declarations

Consent for publication.

Consent for publication was obtained from all individuals whose data or information is included in this study.

Competing interests

We declare that there was no conflict of interest to disclose in relation to this study.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Chapupu, T., Gatsi, A.B., Chibhabha, F. et al. Self-regulated learning of anatomy during the COVID-19 lockdown period in a low-income setting. BMC Med Educ 24 , 548 (2024). https://doi.org/10.1186/s12909-024-05329-x

Download citation

Received : 08 September 2023

Accepted : 20 March 2024

Published : 17 May 2024

DOI : https://doi.org/10.1186/s12909-024-05329-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Self-regulated learning
  • Remote learning
  • Low income setting

BMC Medical Education

ISSN: 1472-6920

essay education during pandemic

IMAGES

  1. How the pandemic has changed education

    essay education during pandemic

  2. Protecting and mobilizing youth in COVID-19 responses

    essay education during pandemic

  3. ≫ Nationalism and Covid-19 Pandemic Free Essay Sample on Samploon.com

    essay education during pandemic

  4. Fourth Grader Pens Essay About Coronavirus Anger and Fears

    essay education during pandemic

  5. ≫ Impact of Covid-19 on Education System in India Free Essay Sample on

    essay education during pandemic

  6. Social Sciences

    essay education during pandemic

COMMENTS

  1. Coronavirus and schools: Reflections on education one year into the

    March 12, 2021. 11 min read. One year ago, the World Health Organization declared the spread of COVID-19 a worldwide pandemic. Reacting to the virus, schools at every level were sent scrambling ...

  2. COVID-19: How has the pandemic affected education?

    Follow. Before the pandemic, the world was already facing an education crisis. Last year, 53% of 10-year-old children in low- and middle-income countries either had failed to learn to read with comprehension or were out of school. COVID-19 has exacerbated learning gaps further, taking 1.6 billion students out of school at its peak.

  3. PDF The Impact of Covid-19 on Student Experiences and Expectations ...

    health shocks from the pandemic (for example, a family member losing income due to COVID-19, or the expected probability of hospitalization if contracting COVID-19) can explain much of the heterogeneity in pandemic e ects. We nd that both types of shock (economic and health) play an important role in determining students' COVID-19 experiences.

  4. Education Response and Recovery During and After COVID-19

    The COVID-19 pandemic has caused abrupt and profound changes around the world. This is the worst shock to education systems in decades, with the longest school closures combined with looming recession. It will set back progress made on global development goals, particularly those focused on education. The economic crises within countries and ...

  5. A Literature Review on Impact of COVID-19 Pandemic on Teaching and

    The challenges and opportunities of online and continuing education during the COVID-19 pandemic is summarized and way forward suggested. Pedagogy for Continuing Education Through Online Lockdown and social distancing measures due to the COVID-19 pandemic have led to closures of schools, training institutes and higher education facilities in ...

  6. A Better Education for All During—and After—the COVID-19 Pandemic

    1. Support caregivers at home to help children learn while schools are closed. With nearly 1.6 billion children out of school at the peak of the pandemic, many parents or caregivers, especially with young children, have taken on new roles to help with at-home learning. To support them and remote education efforts, many LMICs have used SMS ...

  7. The pandemic's impact on education

    The school closings due to coronavirus concerns have turned a spotlight on those problems and how they contribute to educational and income inequality in the nation. The Gazette talked to Reville, the Francis Keppel Professor of Practice of Educational Policy and Administration at Harvard Graduate School of Education, about the effects of the ...

  8. How to Write About Coronavirus in a College Essay

    Students can choose to write a full-length college essay on the coronavirus or summarize their experience in a shorter form. To help students explain how the pandemic affected them, The Common App ...

  9. The Impact of the COVID-19 Pandemic on the Quality of Educational

    1. Introduction. Education is "a fundamental human right, a global common good and a primary driver of progress across all the 17 Sustainable Development Goals (SDG) of the 2030 Agenda as a bedrock of just, equal, inclusive, peaceful societies" [].The COVID-19 pandemic, labelled as a "black swan" event [], "catastrophic calamity" [] and compared to the World War II in terms of ...

  10. The Effect of COVID-19 on Education

    The transition to an online education during the coronavirus disease 2019 (COVID-19) pandemic may bring about adverse educational changes and adverse health consequences for children and young adult learners in grade school, middle school, high school, college, and professional schools. The effects may differ by age, maturity, and socioeconomic ...

  11. COVID-19 and education: The lingering effects of unfinished learning

    As this most disrupted of school years draws to a close, it is time to take stock of the impact of the pandemic on student learning and well-being. Although the 2020-21 academic year ended on a high note—with rising vaccination rates, outdoor in-person graduations, and access to at least some in-person learning for 98 percent of students—it was as a whole perhaps one of the most ...

  12. Learning in times of COVID-19: Students', Families ...

    The COVID-19 pandemic has had a profound and sudden impact on many areas of life; work, leisure time and family alike. These changes have also affected educational processes in formal and informal learning environments. Public institutions such as childcare settings, schools, universities and further education providers ceased onsite teaching and moved to distance learning - or closed down ...

  13. PDF Education during COVID-19 and beyond

    2 POLICY BRIEF: EDUCATION DURING COVID-19 AND BEYOND Executive summary The COVID-19 pandemic has created the largest disruption of education systems in history, affecting nearly 1.6 billion learners

  14. Online education in the post-COVID era

    The COVID-19 pandemic has forced the world to engage in the ubiquitous use of virtual learning. And while online and distance learning has been used before to maintain continuity in education ...

  15. Educational challenges and opportunities of the Coronavirus (COVID-19

    As of March 28, 2020, the COVID-19 pandemic is causing more than 1.6 billion children and youth to be out of school in 161 countries. This is close to 80% of the world's enrolled students. We were already experiencing a global leaning crisis, as many students were in school, but were not learning the fundamental skills needed for life.

  16. Why lockdown and distance learning during the COVID-19 pandemic are

    The COVID-19 pandemic led to school closures and distance learning that are likely to exacerbate social class academic disparities. This Review presents an agenda for future research and outlines ...

  17. The rise of online learning during the COVID-19 pandemic

    Follow. The COVID-19 has resulted in schools shut all across the world. Globally, over 1.2 billion children are out of the classroom. As a result, education has changed dramatically, with the distinctive rise of e-learning, whereby teaching is undertaken remotely and on digital platforms. Research suggests that online learning has been shown to ...

  18. Students' experience of online learning during the COVID‐19 pandemic: A

    This study explores how students at different stages of their K‐12 education reacted to the mandatory full‐time online learning during the COVID‐19 pandemic. For this purpose, we conducted a province‐wide survey study in which the online learning experience of 1,170,769 Chinese students was collected from the Guangdong Province of China.

  19. Impact of the COVID-19 pandemic on education

    The rapid spread of COVID-19 lockdowns forced many females into the traditional roles as caretakers. Common gender disparities that impact a female's education during the pandemic are finances enabling higher dropout rates, domestic violence, child marriage, early pregnancy, and exploitation of child labor. [71]

  20. Education during a pandemic

    The coronavirus pandemic has magnified deep-rooted racial and social injustices and perpetuated educational inequities. With the shift to online teaching, the digital divide has become a chasm, separating those who have access to school learning and those who don't. Families in our project, like so many other Americans, described struggling ...

  21. Schooling During the COVID-19 Pandemic

    Perhaps the most salient change was closure of schools forcing students to continue their education from home. The COVID-19 pandemic in the spring dramatically shifted the way children were being educated. From May 28 to June 2, when many school districts across the country are normally in session, 80% of people living with children distance ...

  22. How community colleges kept students engaged during and after the pandemic

    The transfer agreement happened in part because of steady enrollment declines over the years, which reached a breaking point when the pandemic hit and enrollment dropped 10% for the Wisconsin ...

  23. Students fell behind during the pandemic. How 1 educator is ...

    The systems of education as we know them have perpetuated gaps." The solution: Parents got a front-row seat to their kids' educational environment during the pandemic, and they aren't going ...

  24. The pandemic taught me the benefits of flipped homework

    In this extract from "Online Education During Covid-19 and Beyond" by Silvia Puiu and Samuel O. Idowu, Olga Amarie shares what she learned about flipped homework while teaching pandemic-era French lessons ... During the pandemic, my central objective was to tailor homework to students' unique learning styles, prompting me to investigate ...

  25. How community colleges kept students engaged during and after the pandemic

    On the education side, students take Organic Chemistry I and II. Completing these courses enables students to move into upper-level coursework in biological, chemical, environmental and other ...

  26. Integration of Fourth Industrial Revolution in teaching and learning

    Analysing lecturers' perceptions on traditional vs. distance learning: A conceptual study of emergency transferring to distance learning during COVID-19 pandemic Abstract In recent years, and also due to the COVID-19 pandemic, education institutions worldwide have changed their education paradigm from a traditional to an online system.

  27. Iranian Middle School Teachers' and Students ...

    DOI: 10.1080/19404476.2024.2347183 Corpus ID: 269810025; Iranian Middle School Teachers' and Students' Perceptions of Emergency Remote English Education During the COVID-19 Pandemic

  28. Self-regulated learning of anatomy during the COVID-19 lockdown period

    Evaluation of the online learning of veterinary anatomy education during the Covid-19 pandemic lockdown in Egypt: students' perceptions. Anat Sci Educ. 2022;15(1):67-82. Article Google Scholar de Moya Martínez M, del Syroyid Syroyid V. Music as a Tool for promoting environmental awareness. Experiences of Undergraduate Education students on ...