2.1 Approaches to Sociological Research

Learning objectives.

By the end of this section, you should be able to:

  • Define and describe the scientific method.
  • Explain how the scientific method is used in sociological research.
  • Describe the function and importance of an interpretive framework.
  • Describe the differences in accuracy, reliability and validity in a research study.

When sociologists apply the sociological perspective and begin to ask questions, no topic is off limits. Every aspect of human behavior is a source of possible investigation. Sociologists question the world that humans have created and live in. They notice patterns of behavior as people move through that world. Using sociological methods and systematic research within the framework of the scientific method and a scholarly interpretive perspective, sociologists have discovered social patterns in the workplace that have transformed industries, in families that have enlightened family members, and in education that have aided structural changes in classrooms.

Sociologists often begin the research process by asking a question about how or why things happen in this world. It might be a unique question about a new trend or an old question about a common aspect of life. Once the question is formed, the sociologist proceeds through an in-depth process to answer it. In deciding how to design that process, the researcher may adopt a scientific approach or an interpretive framework. The following sections describe these approaches to knowledge.

The Scientific Method

Sociologists make use of tried and true methods of research, such as experiments, surveys, and field research. But humans and their social interactions are so diverse that these interactions can seem impossible to chart or explain. It might seem that science is about discoveries and chemical reactions or about proving ideas right or wrong rather than about exploring the nuances of human behavior.

However, this is exactly why scientific models work for studying human behavior. A scientific process of research establishes parameters that help make sure results are objective and accurate. Scientific methods provide limitations and boundaries that focus a study and organize its results.

The scientific method involves developing and testing theories about the social world based on empirical evidence. It is defined by its commitment to systematic observation of the empirical world and strives to be objective, critical, skeptical, and logical. It involves a series of six prescribed steps that have been established over centuries of scientific scholarship.

Sociological research does not reduce knowledge to right or wrong facts. Results of studies tend to provide people with insights they did not have before—explanations of human behaviors and social practices and access to knowledge of other cultures, rituals and beliefs, or trends and attitudes.

In general, sociologists tackle questions about the role of social characteristics in outcomes or results. For example, how do different communities fare in terms of psychological well-being, community cohesiveness, range of vocation, wealth, crime rates, and so on? Are communities functioning smoothly? Sociologists often look between the cracks to discover obstacles to meeting basic human needs. They might also study environmental influences and patterns of behavior that lead to crime, substance abuse, divorce, poverty, unplanned pregnancies, or illness. And, because sociological studies are not all focused on negative behaviors or challenging situations, social researchers might study vacation trends, healthy eating habits, neighborhood organizations, higher education patterns, games, parks, and exercise habits.

Sociologists can use the scientific method not only to collect but also to interpret and analyze data. They deliberately apply scientific logic and objectivity. They are interested in—but not attached to—the results. They work outside of their own political or social agendas. This does not mean researchers do not have their own personalities, complete with preferences and opinions. But sociologists deliberately use the scientific method to maintain as much objectivity, focus, and consistency as possible in collecting and analyzing data in research studies.

With its systematic approach, the scientific method has proven useful in shaping sociological studies. The scientific method provides a systematic, organized series of steps that help ensure objectivity and consistency in exploring a social problem. They provide the means for accuracy, reliability, and validity. In the end, the scientific method provides a shared basis for discussion and analysis (Merton 1963). Typically, the scientific method has 6 steps which are described below.

Step 1: Ask a Question or Find a Research Topic

The first step of the scientific method is to ask a question, select a problem, and identify the specific area of interest. The topic should be narrow enough to study within a geographic location and time frame. “Are societies capable of sustained happiness?” would be too vague. The question should also be broad enough to have universal merit. “What do personal hygiene habits reveal about the values of students at XYZ High School?” would be too narrow. Sociologists strive to frame questions that examine well-defined patterns and relationships.

In a hygiene study, for instance, hygiene could be defined as “personal habits to maintain physical appearance (as opposed to health),” and a researcher might ask, “How do differing personal hygiene habits reflect the cultural value placed on appearance?”

Step 2: Review the Literature/Research Existing Sources

The next step researchers undertake is to conduct background research through a literature review , which is a review of any existing similar or related studies. A visit to the library, a thorough online search, and a survey of academic journals will uncover existing research about the topic of study. This step helps researchers gain a broad understanding of work previously conducted, identify gaps in understanding of the topic, and position their own research to build on prior knowledge. Researchers—including student researchers—are responsible for correctly citing existing sources they use in a study or that inform their work. While it is fine to borrow previously published material (as long as it enhances a unique viewpoint), it must be referenced properly and never plagiarized.

To study crime, a researcher might also sort through existing data from the court system, police database, prison information, interviews with criminals, guards, wardens, etc. It’s important to examine this information in addition to existing research to determine how these resources might be used to fill holes in existing knowledge. Reviewing existing sources educates researchers and helps refine and improve a research study design.

Step 3: Formulate a Hypothesis

A hypothesis is an explanation for a phenomenon based on a conjecture about the relationship between the phenomenon and one or more causal factors. In sociology, the hypothesis will often predict how one form of human behavior influences another. For example, a hypothesis might be in the form of an “if, then statement.” Let’s relate this to our topic of crime: If unemployment increases, then the crime rate will increase.

In scientific research, we formulate hypotheses to include an independent variables (IV) , which are the cause of the change, and a dependent variable (DV) , which is the effect , or thing that is changed. In the example above, unemployment is the independent variable and the crime rate is the dependent variable.

In a sociological study, the researcher would establish one form of human behavior as the independent variable and observe the influence it has on a dependent variable. How does gender (the independent variable) affect rate of income (the dependent variable)? How does one’s religion (the independent variable) affect family size (the dependent variable)? How is social class (the dependent variable) affected by level of education (the independent variable)?

Taking an example from Table 12.1, a researcher might hypothesize that teaching children proper hygiene (the independent variable) will boost their sense of self-esteem (the dependent variable). Note, however, this hypothesis can also work the other way around. A sociologist might predict that increasing a child’s sense of self-esteem (the independent variable) will increase or improve habits of hygiene (now the dependent variable). Identifying the independent and dependent variables is very important. As the hygiene example shows, simply identifying related two topics or variables is not enough. Their prospective relationship must be part of the hypothesis.

Step 4: Design and Conduct a Study

Researchers design studies to maximize reliability , which refers to how likely research results are to be replicated if the study is reproduced. Reliability increases the likelihood that what happens to one person will happen to all people in a group or what will happen in one situation will happen in another. Cooking is a science. When you follow a recipe and measure ingredients with a cooking tool, such as a measuring cup, the same results is obtained as long as the cook follows the same recipe and uses the same type of tool. The measuring cup introduces accuracy into the process. If a person uses a less accurate tool, such as their hand, to measure ingredients rather than a cup, the same result may not be replicated. Accurate tools and methods increase reliability.

Researchers also strive for validity , which refers to how well the study measures what it was designed to measure. To produce reliable and valid results, sociologists develop an operational definition , that is, they define each concept, or variable, in terms of the physical or concrete steps it takes to objectively measure it. The operational definition identifies an observable condition of the concept. By operationalizing the concept, all researchers can collect data in a systematic or replicable manner. Moreover, researchers can determine whether the experiment or method validly represent the phenomenon they intended to study.

A study asking how tutoring improves grades, for instance, might define “tutoring” as “one-on-one assistance by an expert in the field, hired by an educational institution.” However, one researcher might define a “good” grade as a C or better, while another uses a B+ as a starting point for “good.” For the results to be replicated and gain acceptance within the broader scientific community, researchers would have to use a standard operational definition. These definitions set limits and establish cut-off points that ensure consistency and replicability in a study.

We will explore research methods in greater detail in the next section of this chapter.

Step 5: Draw Conclusions

After constructing the research design, sociologists collect, tabulate or categorize, and analyze data to formulate conclusions. If the analysis supports the hypothesis, researchers can discuss the implications of the results for the theory or policy solution that they were addressing. If the analysis does not support the hypothesis, researchers may consider repeating the experiment or think of ways to improve their procedure.

However, even when results contradict a sociologist’s prediction of a study’s outcome, these results still contribute to sociological understanding. Sociologists analyze general patterns in response to a study, but they are equally interested in exceptions to patterns. In a study of education, a researcher might predict that high school dropouts have a hard time finding rewarding careers. While many assume that the higher the education, the higher the salary and degree of career happiness, there are certainly exceptions. People with little education have had stunning careers, and people with advanced degrees have had trouble finding work. A sociologist prepares a hypothesis knowing that results may substantiate or contradict it.

Sociologists carefully keep in mind how operational definitions and research designs impact the results as they draw conclusions. Consider the concept of “increase of crime,” which might be defined as the percent increase in crime from last week to this week, as in the study of Swedish crime discussed above. Yet the data used to evaluate “increase of crime” might be limited by many factors: who commits the crime, where the crimes are committed, or what type of crime is committed. If the data is gathered for “crimes committed in Houston, Texas in zip code 77021,” then it may not be generalizable to crimes committed in rural areas outside of major cities like Houston. If data is collected about vandalism, it may not be generalizable to assault.

Step 6: Report Results

Researchers report their results at conferences and in academic journals. These results are then subjected to the scrutiny of other sociologists in the field. Before the conclusions of a study become widely accepted, the studies are often repeated in the same or different environments. In this way, sociological theories and knowledge develops as the relationships between social phenomenon are established in broader contexts and different circumstances.

Interpretive Framework

While many sociologists rely on empirical data and the scientific method as a research approach, others operate from an interpretive framework . While systematic, this approach doesn’t follow the hypothesis-testing model that seeks to find generalizable results. Instead, an interpretive framework, sometimes referred to as an interpretive perspective , seeks to understand social worlds from the point of view of participants, which leads to in-depth knowledge or understanding about the human experience.

Interpretive research is generally more descriptive or narrative in its findings. Rather than formulating a hypothesis and method for testing it, an interpretive researcher will develop approaches to explore the topic at hand that may involve a significant amount of direct observation or interaction with subjects including storytelling. This type of researcher learns through the process and sometimes adjusts the research methods or processes midway to optimize findings as they evolve.

Critical Sociology

Critical sociology focuses on deconstruction of existing sociological research and theory. Informed by the work of Karl Marx, scholars known collectively as the Frankfurt School proposed that social science, as much as any academic pursuit, is embedded in the system of power constituted by the set of class, caste, race, gender, and other relationships that exist in the society. Consequently, it cannot be treated as purely objective. Critical sociologists view theories, methods, and the conclusions as serving one of two purposes: they can either legitimate and rationalize systems of social power and oppression or liberate humans from inequality and restriction on human freedom. Deconstruction can involve data collection, but the analysis of this data is not empirical or positivist.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/introduction-sociology-3e/pages/1-introduction
  • Authors: Tonja R. Conerly, Kathleen Holmes, Asha Lal Tamang
  • Publisher/website: OpenStax
  • Book title: Introduction to Sociology 3e
  • Publication date: Jun 3, 2021
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/introduction-sociology-3e/pages/1-introduction
  • Section URL: https://openstax.org/books/introduction-sociology-3e/pages/2-1-approaches-to-sociological-research

© Jan 18, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

importance of hypothesis in social research

Home Market Research

Research Hypothesis: What It Is, Types + How to Develop?

A research hypothesis proposes a link between variables. Uncover its types and the secrets to creating hypotheses for scientific inquiry.

A research study starts with a question. Researchers worldwide ask questions and create research hypotheses. The effectiveness of research relies on developing a good research hypothesis. Examples of research hypotheses can guide researchers in writing effective ones.

In this blog, we’ll learn what a research hypothesis is, why it’s important in research, and the different types used in science. We’ll also guide you through creating your research hypothesis and discussing ways to test and evaluate it.

What is a Research Hypothesis?

A hypothesis is like a guess or idea that you suggest to check if it’s true. A research hypothesis is a statement that brings up a question and predicts what might happen.

It’s really important in the scientific method and is used in experiments to figure things out. Essentially, it’s an educated guess about how things are connected in the research.

A research hypothesis usually includes pointing out the independent variable (the thing they’re changing or studying) and the dependent variable (the result they’re measuring or watching). It helps plan how to gather and analyze data to see if there’s evidence to support or deny the expected connection between these variables.

Importance of Hypothesis in Research

Hypotheses are really important in research. They help design studies, allow for practical testing, and add to our scientific knowledge. Their main role is to organize research projects, making them purposeful, focused, and valuable to the scientific community. Let’s look at some key reasons why they matter:

  • A research hypothesis helps test theories.

A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior.

  • It serves as a great platform for investigation activities.

It serves as a launching pad for investigation activities, which offers researchers a clear starting point. A research hypothesis can explore the relationship between exercise and stress reduction.

  • Hypothesis guides the research work or study.

A well-formulated hypothesis guides the entire research process. It ensures that the study remains focused and purposeful. For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study.

  • Hypothesis sometimes suggests theories.

In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the effectiveness of a new drug might prompt a reconsideration of current medical theories.

  • It helps in knowing the data needs.

A hypothesis clarifies the data requirements for a study, ensuring that researchers collect the necessary information—a hypothesis guiding the collection of demographic data to analyze the influence of age on a particular phenomenon.

  • The hypothesis explains social phenomena.

Hypotheses are instrumental in explaining complex social phenomena. For instance, a hypothesis might explore the relationship between economic factors and crime rates in a given community.

  • Hypothesis provides a relationship between phenomena for empirical Testing.

Hypotheses establish clear relationships between phenomena, paving the way for empirical testing. An example could be a hypothesis exploring the correlation between sleep patterns and academic performance.

  • It helps in knowing the most suitable analysis technique.

A hypothesis guides researchers in selecting the most appropriate analysis techniques for their data. For example, a hypothesis focusing on the effectiveness of a teaching method may lead to the choice of statistical analyses best suited for educational research.

Characteristics of a Good Research Hypothesis

A hypothesis is a specific idea that you can test in a study. It often comes from looking at past research and theories. A good hypothesis usually starts with a research question that you can explore through background research. For it to be effective, consider these key characteristics:

  • Clear and Focused Language: A good hypothesis uses clear and focused language to avoid confusion and ensure everyone understands it.
  • Related to the Research Topic: The hypothesis should directly relate to the research topic, acting as a bridge between the specific question and the broader study.
  • Testable: An effective hypothesis can be tested, meaning its prediction can be checked with real data to support or challenge the proposed relationship.
  • Potential for Exploration: A good hypothesis often comes from a research question that invites further exploration. Doing background research helps find gaps and potential areas to investigate.
  • Includes Variables: The hypothesis should clearly state both the independent and dependent variables, specifying the factors being studied and the expected outcomes.
  • Ethical Considerations: Check if variables can be manipulated without breaking ethical standards. It’s crucial to maintain ethical research practices.
  • Predicts Outcomes: The hypothesis should predict the expected relationship and outcome, acting as a roadmap for the study and guiding data collection and analysis.
  • Simple and Concise: A good hypothesis avoids unnecessary complexity and is simple and concise, expressing the essence of the proposed relationship clearly.
  • Clear and Assumption-Free: The hypothesis should be clear and free from assumptions about the reader’s prior knowledge, ensuring universal understanding.
  • Observable and Testable Results: A strong hypothesis implies research that produces observable and testable results, making sure the study’s outcomes can be effectively measured and analyzed.

When you use these characteristics as a checklist, it can help you create a good research hypothesis. It’ll guide improving and strengthening the hypothesis, identifying any weaknesses, and making necessary changes. Crafting a hypothesis with these features helps you conduct a thorough and insightful research study.

Types of Research Hypotheses

The research hypothesis comes in various types, each serving a specific purpose in guiding the scientific investigation. Knowing the differences will make it easier for you to create your own hypothesis. Here’s an overview of the common types:

01. Null Hypothesis

The null hypothesis states that there is no connection between two considered variables or that two groups are unrelated. As discussed earlier, a hypothesis is an unproven assumption lacking sufficient supporting data. It serves as the statement researchers aim to disprove. It is testable, verifiable, and can be rejected.

For example, if you’re studying the relationship between Project A and Project B, assuming both projects are of equal standard is your null hypothesis. It needs to be specific for your study.

02. Alternative Hypothesis

The alternative hypothesis is basically another option to the null hypothesis. It involves looking for a significant change or alternative that could lead you to reject the null hypothesis. It’s a different idea compared to the null hypothesis.

When you create a null hypothesis, you’re making an educated guess about whether something is true or if there’s a connection between that thing and another variable. If the null view suggests something is correct, the alternative hypothesis says it’s incorrect. 

For instance, if your null hypothesis is “I’m going to be $1000 richer,” the alternative hypothesis would be “I’m not going to get $1000 or be richer.”

03. Directional Hypothesis

The directional hypothesis predicts the direction of the relationship between independent and dependent variables. They specify whether the effect will be positive or negative.

If you increase your study hours, you will experience a positive association with your exam scores. This hypothesis suggests that as you increase the independent variable (study hours), there will also be an increase in the dependent variable (exam scores).

04. Non-directional Hypothesis

The non-directional hypothesis predicts the existence of a relationship between variables but does not specify the direction of the effect. It suggests that there will be a significant difference or relationship, but it does not predict the nature of that difference.

For example, you will find no notable difference in test scores between students who receive the educational intervention and those who do not. However, once you compare the test scores of the two groups, you will notice an important difference.

05. Simple Hypothesis

A simple hypothesis predicts a relationship between one dependent variable and one independent variable without specifying the nature of that relationship. It’s simple and usually used when we don’t know much about how the two things are connected.

For example, if you adopt effective study habits, you will achieve higher exam scores than those with poor study habits.

06. Complex Hypothesis

A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis.

While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they’re connected to each other.

For example, when you increase your study time, you tend to achieve higher exam scores. The connection between your study time and exam performance is affected by various factors, including the quality of your sleep, your motivation levels, and the effectiveness of your study techniques.

If you sleep well, stay highly motivated, and use effective study strategies, you may observe a more robust positive correlation between the time you spend studying and your exam scores, unlike those who may lack these factors.

07. Associative Hypothesis

An associative hypothesis proposes a connection between two things without saying that one causes the other. Basically, it suggests that when one thing changes, the other changes too, but it doesn’t claim that one thing is causing the change in the other.

For example, you will likely notice higher exam scores when you increase your study time. You can recognize an association between your study time and exam scores in this scenario.

Your hypothesis acknowledges a relationship between the two variables—your study time and exam scores—without asserting that increased study time directly causes higher exam scores. You need to consider that other factors, like motivation or learning style, could affect the observed association.

08. Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between two variables. It suggests that changes in one variable directly cause changes in another variable.

For example, when you increase your study time, you experience higher exam scores. This hypothesis suggests a direct cause-and-effect relationship, indicating that the more time you spend studying, the higher your exam scores. It assumes that changes in your study time directly influence changes in your exam performance.

09. Empirical Hypothesis

An empirical hypothesis is a statement based on things we can see and measure. It comes from direct observation or experiments and can be tested with real-world evidence. If an experiment proves a theory, it supports the idea and shows it’s not just a guess. This makes the statement more reliable than a wild guess.

For example, if you increase the dosage of a certain medication, you might observe a quicker recovery time for patients. Imagine you’re in charge of a clinical trial. In this trial, patients are given varying dosages of the medication, and you measure and compare their recovery times. This allows you to directly see the effects of different dosages on how fast patients recover.

This way, you can create a research hypothesis: “Increasing the dosage of a certain medication will lead to a faster recovery time for patients.”

10. Statistical Hypothesis

A statistical hypothesis is a statement or assumption about a population parameter that is the subject of an investigation. It serves as the basis for statistical analysis and testing. It is often tested using statistical methods to draw inferences about the larger population.

In a hypothesis test, statistical evidence is collected to either reject the null hypothesis in favor of the alternative hypothesis or fail to reject the null hypothesis due to insufficient evidence.

For example, let’s say you’re testing a new medicine. Your hypothesis could be that the medicine doesn’t really help patients get better. So, you collect data and use statistics to see if your guess is right or if the medicine actually makes a difference.

If the data strongly shows that the medicine does help, you say your guess was wrong, and the medicine does make a difference. But if the proof isn’t strong enough, you can stick with your original guess because you didn’t get enough evidence to change your mind.

How to Develop a Research Hypotheses?

Step 1: identify your research problem or topic..

Define the area of interest or the problem you want to investigate. Make sure it’s clear and well-defined.

Start by asking a question about your chosen topic. Consider the limitations of your research and create a straightforward problem related to your topic. Once you’ve done that, you can develop and test a hypothesis with evidence.

Step 2: Conduct a literature review

Review existing literature related to your research problem. This will help you understand the current state of knowledge in the field, identify gaps, and build a foundation for your hypothesis. Consider the following questions:

  • What existing research has been conducted on your chosen topic?
  • Are there any gaps or unanswered questions in the current literature?
  • How will the existing literature contribute to the foundation of your research?

Step 3: Formulate your research question

Based on your literature review, create a specific and concise research question that addresses your identified problem. Your research question should be clear, focused, and relevant to your field of study.

Step 4: Identify variables

Determine the key variables involved in your research question. Variables are the factors or phenomena that you will study and manipulate to test your hypothesis.

  • Independent Variable: The variable you manipulate or control.
  • Dependent Variable: The variable you measure to observe the effect of the independent variable.

Step 5: State the Null hypothesis

The null hypothesis is a statement that there is no significant difference or effect. It serves as a baseline for comparison with the alternative hypothesis.

Step 6: Select appropriate methods for testing the hypothesis

Choose research methods that align with your study objectives, such as experiments, surveys, or observational studies. The selected methods enable you to test your research hypothesis effectively.

Creating a research hypothesis usually takes more than one try. Expect to make changes as you collect data. It’s normal to test and say no to a few hypotheses before you find the right answer to your research question.

Testing and Evaluating Hypotheses

Testing hypotheses is a really important part of research. It’s like the practical side of things. Here, real-world evidence will help you determine how different things are connected. Let’s explore the main steps in hypothesis testing:

  • State your research hypothesis.

Before testing, clearly articulate your research hypothesis. This involves framing both a null hypothesis, suggesting no significant effect or relationship, and an alternative hypothesis, proposing the expected outcome.

  • Collect data strategically.

Plan how you will gather information in a way that fits your study. Make sure your data collection method matches the things you’re studying.

Whether through surveys, observations, or experiments, this step demands precision and adherence to the established methodology. The quality of data collected directly influences the credibility of study outcomes.

  • Perform an appropriate statistical test.

Choose a statistical test that aligns with the nature of your data and the hypotheses being tested. Whether it’s a t-test, chi-square test, ANOVA, or regression analysis, selecting the right statistical tool is paramount for accurate and reliable results.

  • Decide if your idea was right or wrong.

Following the statistical analysis, evaluate the results in the context of your null hypothesis. You need to decide if you should reject your null hypothesis or not.

  • Share what you found.

When discussing what you found in your research, be clear and organized. Say whether your idea was supported or not, and talk about what your results mean. Also, mention any limits to your study and suggest ideas for future research.

The Role of QuestionPro to Develop a Good Research Hypothesis

QuestionPro is a survey and research platform that provides tools for creating, distributing, and analyzing surveys. It plays a crucial role in the research process, especially when you’re in the initial stages of hypothesis development. Here’s how QuestionPro can help you to develop a good research hypothesis:

  • Survey design and data collection: You can use the platform to create targeted questions that help you gather relevant data.
  • Exploratory research: Through surveys and feedback mechanisms on QuestionPro, you can conduct exploratory research to understand the landscape of a particular subject.
  • Literature review and background research: QuestionPro surveys can collect sample population opinions, experiences, and preferences. This data and a thorough literature evaluation can help you generate a well-grounded hypothesis by improving your research knowledge.
  • Identifying variables: Using targeted survey questions, you can identify relevant variables related to their research topic.
  • Testing assumptions: You can use surveys to informally test certain assumptions or hypotheses before formalizing a research hypothesis.
  • Data analysis tools: QuestionPro provides tools for analyzing survey data. You can use these tools to identify the collected data’s patterns, correlations, or trends.
  • Refining your hypotheses: As you collect data through QuestionPro, you can adjust your hypotheses based on the real-world responses you receive.

A research hypothesis is like a guide for researchers in science. It’s a well-thought-out idea that has been thoroughly tested. This idea is crucial as researchers can explore different fields, such as medicine, social sciences, and natural sciences. The research hypothesis links theories to real-world evidence and gives researchers a clear path to explore and make discoveries.

QuestionPro Research Suite is a helpful tool for researchers. It makes creating surveys, collecting data, and analyzing information easily. It supports all kinds of research, from exploring new ideas to forming hypotheses. With a focus on using data, it helps researchers do their best work.

Are you interested in learning more about QuestionPro Research Suite? Take advantage of QuestionPro’s free trial to get an initial look at its capabilities and realize the full potential of your research efforts.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

data information vs insight

Data Information vs Insight: Essential differences

May 14, 2024

pricing analytics software

Pricing Analytics Software: Optimize Your Pricing Strategy

May 13, 2024

relationship marketing

Relationship Marketing: What It Is, Examples & Top 7 Benefits

May 8, 2024

email survey tool

The Best Email Survey Tool to Boost Your Feedback Game

May 7, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Developing a Research Question

18 Hypotheses

When researchers do not have predictions about what they will find, they conduct research to answer a question or questions, with an open-minded desire to know about a topic, or to help develop hypotheses for later testing. In other situations, the purpose of research is to test a specific hypothesis or hypotheses.  A hypothesis is a statement, sometimes but not always causal, describing a researcher’s expectations regarding anticipated finding. Often hypotheses are written to describe the expected relationship between two variables (though this is not a requirement). To develop a hypothesis, one needs to understand the differences between independent and dependent variables and between units of observation and units of analysis. Hypotheses are typically drawn from theories and usually describe how an independent variable is expected to affect some dependent variable or variables. Researchers following a deductive approach to their research will hypothesize about what they expect to find based on the theory or theories that frame their study. If the theory accurately reflects the phenomenon it is designed to explain, then the researcher’s hypotheses about what would be observed in the real world should bear out.

Sometimes researchers will hypothesize that a relationship will take a specific direction. As a result, an increase or decrease in one area might be said to cause an increase or decrease in another. For example, you might choose to study the relationship between age and legalization of marijuana. Perhaps you have done some reading in your spare time, or in another course you have taken.  Based on the theories you have read, you hypothesize that “age is negatively related to support for marijuana legalization.” What have you just hypothesized? You have hypothesized that as people get older, the likelihood of their support for marijuana legalization decreases. Thus, as age moves in one direction (up), support for marijuana legalization moves in another direction (down). If writing hypotheses feels tricky, it is sometimes helpful to draw them out. and depict each of the two hypotheses we have just discussed.

Note that you will almost never hear researchers say that they have proven their hypotheses. A statement that bold implies that a relationship has been shown to exist with absolute certainty and that there is no chance that there are conditions under which the hypothesis would not bear out. Instead, researchers tend to say that their hypotheses have been supported (or not) . This more cautious way of discussing findings allows for the possibility that new evidence or new ways of examining a relationship will be discovered. Researchers may also discuss a null hypothesis, one that predicts no relationship between the variables being studied. If a researcher rejects the null hypothesis, he or she is saying that the variables in question are somehow related to one another.

Quantitative and qualitative researchers tend to take different approaches when it comes to hypotheses. In quantitative research, the goal often is to empirically test hypotheses generated from theory. With a qualitative approach, on the other hand, a researcher may begin with some vague expectations about what he or she will find, but the aim is not to test one’s expectations against some empirical observations. Instead, theory development or construction is the goal. Qualitative researchers may develop theories from which hypotheses can be drawn and quantitative researchers may then test those hypotheses. Both types of research are crucial to understanding our social world, and both play an important role in the matter of hypothesis development and testing.  In the following section, we will look at qualitative and quantitative approaches to research, as well as mixed methods.

Text Attributions

  • This chapter has been adapted from Chapter 5.2 in Principles of Sociological Inquiry , which was adapted by the Saylor Academy without attribution to the original authors or publisher, as requested by the licensor. © Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License .

An Introduction to Research Methods in Sociology Copyright © 2019 by Valerie A. Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

3.1.3: Developing Theories and Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 109843

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

2.5: Developing a Hypothesis

Learning objectives.

  • Distinguish between a theory and a hypothesis.
  • Discover how theories are used to generate hypotheses and how the results of studies can be used to further inform theories.
  • Understand the characteristics of a good hypothesis.

Theories and Hypotheses

Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes, functions, or organizing principles that have not been observed directly. Consider, for example, Zajonc’s theory of social facilitation and social inhibition (1965) [1] . He proposed that being watched by others while performing a task creates a general state of physiological arousal, which increases the likelihood of the dominant (most likely) response. So for highly practiced tasks, being watched increases the tendency to make correct responses, but for relatively unpracticed tasks, being watched increases the tendency to make incorrect responses. Notice that this theory—which has come to be called drive theory—provides an explanation of both social facilitation and social inhibition that goes beyond the phenomena themselves by including concepts such as “arousal” and “dominant response,” along with processes such as the effect of arousal on the dominant response.

Outside of science, referring to an idea as a theory often implies that it is untested—perhaps no more than a wild guess. In science, however, the term theory has no such implication. A theory is simply an explanation or interpretation of a set of phenomena. It can be untested, but it can also be extensively tested, well supported, and accepted as an accurate description of the world by the scientific community. The theory of evolution by natural selection, for example, is a theory because it is an explanation of the diversity of life on earth—not because it is untested or unsupported by scientific research. On the contrary, the evidence for this theory is overwhelmingly positive and nearly all scientists accept its basic assumptions as accurate. Similarly, the “germ theory” of disease is a theory because it is an explanation of the origin of various diseases, not because there is any doubt that many diseases are caused by microorganisms that infect the body.

A hypothesis , on the other hand, is a specific prediction about a new phenomenon that should be observed if a particular theory is accurate. It is an explanation that relies on just a few key concepts. Hypotheses are often specific predictions about what will happen in a particular study. They are developed by considering existing evidence and using reasoning to infer what will happen in the specific context of interest. Hypotheses are often but not always derived from theories. So a hypothesis is often a prediction based on a theory but some hypotheses are a-theoretical and only after a set of observations have been made, is a theory developed. This is because theories are broad in nature and they explain larger bodies of data. So if our research question is really original then we may need to collect some data and make some observations before we can develop a broader theory.

Theories and hypotheses always have this if-then relationship. “ If drive theory is correct, then cockroaches should run through a straight runway faster, and a branching runway more slowly, when other cockroaches are present.” Although hypotheses are usually expressed as statements, they can always be rephrased as questions. “Do cockroaches run through a straight runway faster when other cockroaches are present?” Thus deriving hypotheses from theories is an excellent way of generating interesting research questions.

But how do researchers derive hypotheses from theories? One way is to generate a research question using the techniques discussed in this chapter and then ask whether any theory implies an answer to that question. For example, you might wonder whether expressive writing about positive experiences improves health as much as expressive writing about traumatic experiences. Although this question is an interesting one on its own, you might then ask whether the habituation theory—the idea that expressive writing causes people to habituate to negative thoughts and feelings—implies an answer. In this case, it seems clear that if the habituation theory is correct, then expressive writing about positive experiences should not be effective because it would not cause people to habituate to negative thoughts and feelings. A second way to derive hypotheses from theories is to focus on some component of the theory that has not yet been directly observed. For example, a researcher could focus on the process of habituation—perhaps hypothesizing that people should show fewer signs of emotional distress with each new writing session.

Among the very best hypotheses are those that distinguish between competing theories. For example, Norbert Schwarz and his colleagues considered two theories of how people make judgments about themselves, such as how assertive they are (Schwarz et al., 1991) [2] . Both theories held that such judgments are based on relevant examples that people bring to mind. However, one theory was that people base their judgments on the number of examples they bring to mind and the other was that people base their judgments on how easily they bring those examples to mind. To test these theories, the researchers asked people to recall either six times when they were assertive (which is easy for most people) or 12 times (which is difficult for most people). Then they asked them to judge their own assertiveness. Note that the number-of-examples theory implies that people who recalled 12 examples should judge themselves to be more assertive because they recalled more examples, but the ease-of-examples theory implies that participants who recalled six examples should judge themselves as more assertive because recalling the examples was easier. Thus the two theories made opposite predictions so that only one of the predictions could be confirmed. The surprising result was that participants who recalled fewer examples judged themselves to be more assertive—providing particularly convincing evidence in favor of the ease-of-retrieval theory over the number-of-examples theory.

Theory Testing

The primary way that scientific researchers use theories is sometimes called the hypothetico-deductive method (although this term is much more likely to be used by philosophers of science than by scientists themselves). Researchers begin with a set of phenomena and either construct a theory to explain or interpret them or choose an existing theory to work with. They then make a prediction about some new phenomenon that should be observed if the theory is correct. Again, this prediction is called a hypothesis. The researchers then conduct an empirical study to test the hypothesis. Finally, they reevaluate the theory in light of the new results and revise it if necessary. This process is usually conceptualized as a cycle because the researchers can then derive a new hypothesis from the revised theory, conduct a new empirical study to test the hypothesis, and so on. As Figure \(\PageIndex{1}\) shows, this approach meshes nicely with the model of scientific research in psychology presented earlier in the textbook—creating a more detailed model of “theoretically motivated” or “theory-driven” research.

4.4.png

As an example, let us consider Zajonc’s research on social facilitation and inhibition. He started with a somewhat contradictory pattern of results from the research literature. He then constructed his drive theory, according to which being watched by others while performing a task causes physiological arousal, which increases an organism’s tendency to make the dominant response. This theory predicts social facilitation for well-learned tasks and social inhibition for poorly learned tasks. He now had a theory that organized previous results in a meaningful way—but he still needed to test it. He hypothesized that if his theory was correct, he should observe that the presence of others improves performance in a simple laboratory task but inhibits performance in a difficult version of the very same laboratory task. To test this hypothesis, one of the studies he conducted used cockroaches as subjects (Zajonc, Heingartner, & Herman, 1969) [3] . The cockroaches ran either down a straight runway (an easy task for a cockroach) or through a cross-shaped maze (a difficult task for a cockroach) to escape into a dark chamber when a light was shined on them. They did this either while alone or in the presence of other cockroaches in clear plastic “audience boxes.” Zajonc found that cockroaches in the straight runway reached their goal more quickly in the presence of other cockroaches, but cockroaches in the cross-shaped maze reached their goal more slowly when they were in the presence of other cockroaches. Thus he confirmed his hypothesis and provided support for his drive theory. (Zajonc also showed that drive theory existed in humans [Zajonc & Sales, 1966] [4] in many other studies afterward).

Incorporating Theory into Your Research

When you write your research report or plan your presentation, be aware that there are two basic ways that researchers usually include theory. The first is to raise a research question, answer that question by conducting a new study, and then offer one or more theories (usually more) to explain or interpret the results. This format works well for applied research questions and for research questions that existing theories do not address. The second way is to describe one or more existing theories, derive a hypothesis from one of those theories, test the hypothesis in a new study, and finally reevaluate the theory. This format works well when there is an existing theory that addresses the research question—especially if the resulting hypothesis is surprising or conflicts with a hypothesis derived from a different theory.

To use theories in your research will not only give you guidance in coming up with experiment ideas and possible projects, but it lends legitimacy to your work. Psychologists have been interested in a variety of human behaviors and have developed many theories along the way. Using established theories will help you break new ground as a researcher, not limit you from developing your own ideas.

There are three general characteristics of a good hypothesis. First, a good hypothesis must be testable and falsifiable . We must be able to test the hypothesis using the methods of science and if you’ll recall Popper’s falsifiability criterion, it must be possible to gather evidence that will disconfirm the hypothesis if it is indeed false. Second, a good hypothesis must be logical. As described above, hypotheses are more than just a random guess. Hypotheses should be informed by previous theories or observations and logical reasoning. Typically, we begin with a broad and general theory and use deductive reasoning to generate a more specific hypothesis to test based on that theory. Occasionally, however, when there is no theory to inform our hypothesis, we use inductive reasoning which involves using specific observations or research findings to form a more general hypothesis. Finally, the hypothesis should be positive. That is, the hypothesis should make a positive statement about the existence of a relationship or effect, rather than a statement that a relationship or effect does not exist. As scientists, we don’t set out to show that relationships do not exist or that effects do not occur so our hypotheses should not be worded in a way to suggest that an effect or relationship does not exist. The nature of science is to assume that something does not exist and then seek to find evidence to prove this wrong, to show that it really does exist. That may seem backward to you but that is the nature of the scientific method. The underlying reason for this is beyond the scope of this chapter but it has to do with statistical theory.

  • Zajonc, R. B. (1965). Social facilitation. Science, 149 , 269–274 ↵
  • Schwarz, N., Bless, H., Strack, F., Klumpp, G., Rittenauer-Schatka, H., & Simons, A. (1991). Ease of retrieval as information: Another look at the availability heuristic. Journal of Personality and Social Psychology, 61 , 195–202. ↵
  • Zajonc, R. B., Heingartner, A., & Herman, E. M. (1969). Social enhancement and impairment of performance in the cockroach. Journal of Personality and Social Psychology, 13 , 83–92. ↵
  • Zajonc, R.B. & Sales, S.M. (1966). Social facilitation of dominant and subordinate responses. Journal of Experimental Social Psychology, 2 , 160-168. ↵

Theory in Social Research

  • First Online: 27 October 2022

Cite this chapter

importance of hypothesis in social research

  • Mumtaz Ali 4 ,
  • Maya Khemlani David 5 &
  • Kuang Ching Hei 5  

2407 Accesses

In this chapter, the importance and link between social research and theory are discussed. Social research is taken as the sociological understanding of connections—connections between action, experience, and change—and it is the major vehicle for realizing these connections. The debate on using theory in any scope of social research is being deliberated by various scholars with many emphasizing the merits of using theory in social research. They argue that an appropriate theory clarifies the findings a researcher has uncovered in the study. Without a theory, the researcher could face difficulties in streamlining the study or the researcher may overlook particular phenomena or events from within the study. Thus, the researcher would be unable to relate the variables in the study. A theorist always tries to view things from his/her perspective. Upon reflection, the theorist may develop a refined framework which then becomes the intensive framework, hereby, called a theory. This phenomenon may not necessarily be agreed upon by every social scientist as can be illustrated by cases where, after using a theory, researchers have modified such a theory to suit their outcomes. The theory used in social research supports and facilitates the researcher to raise fundamental questions and facts which could serve as the common core or body of knowledge. From the basis of given facts and explanations, it can be claimed that the theory used in social research has a pivotal role to align the study. In social research, a researcher should make the matter of selecting a theory seriously as a good theory produces a better piece of research work. This chapter elaborates on the various aspects of using theory in social research. Several diagrams are used to make explanations clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bickman, L., & Rog, J. D. (1998). Handbook of applied social research methods . Sage Publications.

Google Scholar  

Brown, K. W. P.C., Cozby, D., & Kee, W. (1999). Research methods in human development . California State University: Mayfield Publishing Company.

Bulmer, M., Gibbs, J., et al. (2010). Social measurement through social surveys: An applied approach. Ashgate Publishing Limited.

Burr, W. R. (1973). Theory construction and the sociology of the family . Wiley Interscience.

Fisher, L. (2008). Rock, paper, scissors: Game theory in everyday life . Basic Books. ISBN. 0786726938.

Gilbert, N. (2005). Researching social life . SAGE Publications Ltd.

Leedy, P. D., & Ormrod, J. E. (2005). Practical research planning and design (5th ed.). Pearson Merrill Prentice Hall.

Mladovsky, P., & Mossialos, E. (2008). A conceptual framework for community-based health insurance in low-income countries: Social capital and economic development. World Development, 36 (4), 590–607. https://doi.org/10.1016/j.worlddev.2007.04.018

Parsons, T. (1975). The present status of ‘structural-functional’ theory in sociology. In Social systems and the evolution of action theory, The free press.

Silver, P. (1983). Educational administration : Theoretical perspectives on practice and research. Harper & Row.

Tavallaei, M., & Abu Talib, M. (2010). A general perspective on role of theory in qualitative research. Uluslararası Sosyal Aratırmalar Dergisi, The Journal of International Social Research, 3 / 11 (Spring 2010), 570–578.

Download references

Author information

Authors and affiliations.

Department of Sociology, University of Sindh, Jamshoro, Sindh, Pakistan

University of Malaya, Kuala Lumpur, Malaysia

Maya Khemlani David & Kuang Ching Hei

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Mumtaz Ali .

Editor information

Editors and affiliations.

Centre for Family and Child Studies, Research Institute of Humanities and Social Sciences, University of Sharjah, Sharjah, United Arab Emirates

M. Rezaul Islam

Department of Development Studies, University of Dhaka, Dhaka, Bangladesh

Niaz Ahmed Khan

Department of Social Work, School of Humanities, University of Johannesburg, Johannesburg, South Africa

Rajendra Baikady

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Ali, M., David, M.K., Hei, K.C. (2022). Theory in Social Research. In: Islam, M.R., Khan, N.A., Baikady, R. (eds) Principles of Social Research Methodology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5441-2_4

Download citation

DOI : https://doi.org/10.1007/978-981-19-5441-2_4

Published : 27 October 2022

Publisher Name : Springer, Singapore

Print ISBN : 978-981-19-5219-7

Online ISBN : 978-981-19-5441-2

eBook Packages : Social Sciences

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.34(45); 2019 Nov 25

Logo of jkms

Scientific Hypotheses: Writing, Promoting, and Predicting Implications

Armen yuri gasparyan.

1 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.

Lilit Ayvazyan

2 Department of Medical Chemistry, Yerevan State Medical University, Yerevan, Armenia.

Ulzhan Mukanova

3 Department of Surgical Disciplines, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

George D. Kitas

5 Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester, UK.

Scientific hypotheses are essential for progress in rapidly developing academic disciplines. Proposing new ideas and hypotheses require thorough analyses of evidence-based data and predictions of the implications. One of the main concerns relates to the ethical implications of the generated hypotheses. The authors may need to outline potential benefits and limitations of their suggestions and target widely visible publication outlets to ignite discussion by experts and start testing the hypotheses. Not many publication outlets are currently welcoming hypotheses and unconventional ideas that may open gates to criticism and conservative remarks. A few scholarly journals guide the authors on how to structure hypotheses. Reflecting on general and specific issues around the subject matter is often recommended for drafting a well-structured hypothesis article. An analysis of influential hypotheses, presented in this article, particularly Strachan's hygiene hypothesis with global implications in the field of immunology and allergy, points to the need for properly interpreting and testing new suggestions. Envisaging the ethical implications of the hypotheses should be considered both by authors and journal editors during the writing and publishing process.

INTRODUCTION

We live in times of digitization that radically changes scientific research, reporting, and publishing strategies. Researchers all over the world are overwhelmed with processing large volumes of information and searching through numerous online platforms, all of which make the whole process of scholarly analysis and synthesis complex and sophisticated.

Current research activities are diversifying to combine scientific observations with analysis of facts recorded by scholars from various professional backgrounds. 1 Citation analyses and networking on social media are also becoming essential for shaping research and publishing strategies globally. 2 Learning specifics of increasingly interdisciplinary research studies and acquiring information facilitation skills aid researchers in formulating innovative ideas and predicting developments in interrelated scientific fields.

Arguably, researchers are currently offered more opportunities than in the past for generating new ideas by performing their routine laboratory activities, observing individual cases and unusual developments, and critically analyzing published scientific facts. What they need at the start of their research is to formulate a scientific hypothesis that revisits conventional theories, real-world processes, and related evidence to propose new studies and test ideas in an ethical way. 3 Such a hypothesis can be of most benefit if published in an ethical journal with wide visibility and exposure to relevant online databases and promotion platforms.

Although hypotheses are crucially important for the scientific progress, only few highly skilled researchers formulate and eventually publish their innovative ideas per se . Understandably, in an increasingly competitive research environment, most authors would prefer to prioritize their ideas by discussing and conducting tests in their own laboratories or clinical departments, and publishing research reports afterwards. However, there are instances when simple observations and research studies in a single center are not capable of explaining and testing new groundbreaking ideas. Formulating hypothesis articles first and calling for multicenter and interdisciplinary research can be a solution in such instances, potentially launching influential scientific directions, if not academic disciplines.

The aim of this article is to overview the importance and implications of infrequently published scientific hypotheses that may open new avenues of thinking and research.

Despite the seemingly established views on innovative ideas and hypotheses as essential research tools, no structured definition exists to tag the term and systematically track related articles. In 1973, the Medical Subject Heading (MeSH) of the U.S. National Library of Medicine introduced “Research Design” as a structured keyword that referred to the importance of collecting data and properly testing hypotheses, and indirectly linked the term to ethics, methods and standards, among many other subheadings.

One of the experts in the field defines “hypothesis” as a well-argued analysis of available evidence to provide a realistic (scientific) explanation of existing facts, fill gaps in public understanding of sophisticated processes, and propose a new theory or a test. 4 A hypothesis can be proven wrong partially or entirely. However, even such an erroneous hypothesis may influence progress in science by initiating professional debates that help generate more realistic ideas. The main ethical requirement for hypothesis authors is to be honest about the limitations of their suggestions. 5

EXAMPLES OF INFLUENTIAL SCIENTIFIC HYPOTHESES

Daily routine in a research laboratory may lead to groundbreaking discoveries provided the daily accounts are comprehensively analyzed and reproduced by peers. The discovery of penicillin by Sir Alexander Fleming (1928) can be viewed as a prime example of such discoveries that introduced therapies to treat staphylococcal and streptococcal infections and modulate blood coagulation. 6 , 7 Penicillin got worldwide recognition due to the inventor's seminal works published by highly prestigious and widely visible British journals, effective ‘real-world’ antibiotic therapy of pneumonia and wounds during World War II, and euphoric media coverage. 8 In 1945, Fleming, Florey and Chain got a much deserved Nobel Prize in Physiology or Medicine for the discovery that led to the mass production of the wonder drug in the U.S. and ‘real-world practice’ that tested the use of penicillin. What remained globally unnoticed is that Zinaida Yermolyeva, the outstanding Soviet microbiologist, created the Soviet penicillin, which turned out to be more effective than the Anglo-American penicillin and entered mass production in 1943; that year marked the turning of the tide of the Great Patriotic War. 9 One of the reasons of the widely unnoticed discovery of Zinaida Yermolyeva is that her works were published exclusively by local Russian (Soviet) journals.

The past decades have been marked by an unprecedented growth of multicenter and global research studies involving hundreds and thousands of human subjects. This trend is shaped by an increasing number of reports on clinical trials and large cohort studies that create a strong evidence base for practice recommendations. Mega-studies may help generate and test large-scale hypotheses aiming to solve health issues globally. Properly designed epidemiological studies, for example, may introduce clarity to the hygiene hypothesis that was originally proposed by David Strachan in 1989. 10 David Strachan studied the epidemiology of hay fever in a cohort of 17,414 British children and concluded that declining family size and improved personal hygiene had reduced the chances of cross infections in families, resulting in epidemics of atopic disease in post-industrial Britain. Over the past four decades, several related hypotheses have been proposed to expand the potential role of symbiotic microorganisms and parasites in the development of human physiological immune responses early in life and protection from allergic and autoimmune diseases later on. 11 , 12 Given the popularity and the scientific importance of the hygiene hypothesis, it was introduced as a MeSH term in 2012. 13

Hypotheses can be proposed based on an analysis of recorded historic events that resulted in mass migrations and spreading of certain genetic diseases. As a prime example, familial Mediterranean fever (FMF), the prototype periodic fever syndrome, is believed to spread from Mesopotamia to the Mediterranean region and all over Europe due to migrations and religious prosecutions millennia ago. 14 Genetic mutations spearing mild clinical forms of FMF are hypothesized to emerge and persist in the Mediterranean region as protective factors against more serious infectious diseases, particularly tuberculosis, historically common in that part of the world. 15 The speculations over the advantages of carrying the MEditerranean FeVer (MEFV) gene are further strengthened by recorded low mortality rates from tuberculosis among FMF patients of different nationalities living in Tunisia in the first half of the 20th century. 16

Diagnostic hypotheses shedding light on peculiarities of diseases throughout the history of mankind can be formulated using artefacts, particularly historic paintings. 17 Such paintings may reveal joint deformities and disfigurements due to rheumatic diseases in individual subjects. A series of paintings with similar signs of pathological conditions interpreted in a historic context may uncover mysteries of epidemics of certain diseases, which is the case with Ruben's paintings depicting signs of rheumatic hands and making some doctors to believe that rheumatoid arthritis was common in Europe in the 16th and 17th century. 18

WRITING SCIENTIFIC HYPOTHESES

There are author instructions of a few journals that specifically guide how to structure, format, and make submissions categorized as hypotheses attractive. One of the examples is presented by Med Hypotheses , the flagship journal in its field with more than four decades of publishing and influencing hypothesis authors globally. However, such guidance is not based on widely discussed, implemented, and approved reporting standards, which are becoming mandatory for all scholarly journals.

Generating new ideas and scientific hypotheses is a sophisticated task since not all researchers and authors are skilled to plan, conduct, and interpret various research studies. Some experience with formulating focused research questions and strong working hypotheses of original research studies is definitely helpful for advancing critical appraisal skills. However, aspiring authors of scientific hypotheses may need something different, which is more related to discerning scientific facts, pooling homogenous data from primary research works, and synthesizing new information in a systematic way by analyzing similar sets of articles. To some extent, this activity is reminiscent of writing narrative and systematic reviews. As in the case of reviews, scientific hypotheses need to be formulated on the basis of comprehensive search strategies to retrieve all available studies on the topics of interest and then synthesize new information selectively referring to the most relevant items. One of the main differences between scientific hypothesis and review articles relates to the volume of supportive literature sources ( Table 1 ). In fact, hypothesis is usually formulated by referring to a few scientific facts or compelling evidence derived from a handful of literature sources. 19 By contrast, reviews require analyses of a large number of published documents retrieved from several well-organized and evidence-based databases in accordance with predefined search strategies. 20 , 21 , 22

The format of hypotheses, especially the implications part, may vary widely across disciplines. Clinicians may limit their suggestions to the clinical manifestations of diseases, outcomes, and management strategies. Basic and laboratory scientists analysing genetic, molecular, and biochemical mechanisms may need to view beyond the frames of their narrow fields and predict social and population-based implications of the proposed ideas. 23

Advanced writing skills are essential for presenting an interesting theoretical article which appeals to the global readership. Merely listing opposing facts and ideas, without proper interpretation and analysis, may distract the experienced readers. The essence of a great hypothesis is a story behind the scientific facts and evidence-based data.

ETHICAL IMPLICATIONS

The authors of hypotheses substantiate their arguments by referring to and discerning rational points from published articles that might be overlooked by others. Their arguments may contradict the established theories and practices, and pose global ethical issues, particularly when more or less efficient medical technologies and public health interventions are devalued. The ethical issues may arise primarily because of the careless references to articles with low priorities, inadequate and apparently unethical methodologies, and concealed reporting of negative results. 24 , 25

Misinterpretation and misunderstanding of the published ideas and scientific hypotheses may complicate the issue further. For example, Alexander Fleming, whose innovative ideas of penicillin use to kill susceptible bacteria saved millions of lives, warned of the consequences of uncontrolled prescription of the drug. The issue of antibiotic resistance had emerged within the first ten years of penicillin use on a global scale due to the overprescription that affected the efficacy of antibiotic therapies, with undesirable consequences for millions. 26

The misunderstanding of the hygiene hypothesis that primarily aimed to shed light on the role of the microbiome in allergic and autoimmune diseases resulted in decline of public confidence in hygiene with dire societal implications, forcing some experts to abandon the original idea. 27 , 28 Although that hypothesis is unrelated to the issue of vaccinations, the public misunderstanding has resulted in decline of vaccinations at a time of upsurge of old and new infections.

A number of ethical issues are posed by the denial of the viral (human immunodeficiency viruses; HIV) hypothesis of acquired Immune deficiency Syndrome (AIDS) by Peter Duesberg, who overviewed the links between illicit recreational drugs and antiretroviral therapies with AIDS and refuted the etiological role of HIV. 29 That controversial hypothesis was rejected by several journals, but was eventually published without external peer review at Med Hypotheses in 2010. The publication itself raised concerns of the unconventional editorial policy of the journal, causing major perturbations and more scrutinized publishing policies by journals processing hypotheses.

WHERE TO PUBLISH HYPOTHESES

Although scientific authors are currently well informed and equipped with search tools to draft evidence-based hypotheses, there are still limited quality publication outlets calling for related articles. The journal editors may be hesitant to publish articles that do not adhere to any research reporting guidelines and open gates for harsh criticism of unconventional and untested ideas. Occasionally, the editors opting for open-access publishing and upgrading their ethics regulations launch a section to selectively publish scientific hypotheses attractive to the experienced readers. 30 However, the absence of approved standards for this article type, particularly no mandate for outlining potential ethical implications, may lead to publication of potentially harmful ideas in an attractive format.

A suggestion of simultaneously publishing multiple or alternative hypotheses to balance the reader views and feedback is a potential solution for the mainstream scholarly journals. 31 However, that option alone is hardly applicable to emerging journals with unconventional quality checks and peer review, accumulating papers with multiple rejections by established journals.

A large group of experts view hypotheses with improbable and controversial ideas publishable after formal editorial (in-house) checks to preserve the authors' genuine ideas and avoid conservative amendments imposed by external peer reviewers. 32 That approach may be acceptable for established publishers with large teams of experienced editors. However, the same approach can lead to dire consequences if employed by nonselective start-up, open-access journals processing all types of articles and primarily accepting those with charged publication fees. 33 In fact, pseudoscientific ideas arguing Newton's and Einstein's seminal works or those denying climate change that are hardly testable have already found their niche in substandard electronic journals with soft or nonexistent peer review. 34

CITATIONS AND SOCIAL MEDIA ATTENTION

The available preliminary evidence points to the attractiveness of hypothesis articles for readers, particularly those from research-intensive countries who actively download related documents. 35 However, citations of such articles are disproportionately low. Only a small proportion of top-downloaded hypotheses (13%) in the highly prestigious Med Hypotheses receive on average 5 citations per article within a two-year window. 36

With the exception of a few historic papers, the vast majority of hypotheses attract relatively small number of citations in a long term. 36 Plausible explanations are that these articles often contain a single or only a few citable points and that suggested research studies to test hypotheses are rarely conducted and reported, limiting chances of citing and crediting authors of genuine research ideas.

A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989, 10 is still attracting numerous citations on Scopus, the largest bibliographic database. As of August 28, 2019, the number of the linked citations in the database is 3,201. Of the citing articles, 160 are cited at least 160 times ( h -index of this research topic = 160). The first three citations are recorded in 1992 and followed by a rapid annual increase in citation activity and a peak of 212 in 2015 ( Fig. 1 ). The top 5 sources of the citations are Clin Exp Allergy (n = 136), J Allergy Clin Immunol (n = 119), Allergy (n = 81), Pediatr Allergy Immunol (n = 69), and PLOS One (n = 44). The top 5 citing authors are leading experts in pediatrics and allergology Erika von Mutius (Munich, Germany, number of publications with the index citation = 30), Erika Isolauri (Turku, Finland, n = 27), Patrick G Holt (Subiaco, Australia, n = 25), David P. Strachan (London, UK, n = 23), and Bengt Björksten (Stockholm, Sweden, n = 22). The U.S. is the leading country in terms of citation activity with 809 related documents, followed by the UK (n = 494), Germany (n = 314), Australia (n = 211), and the Netherlands (n = 177). The largest proportion of citing documents are articles (n = 1,726, 54%), followed by reviews (n = 950, 29.7%), and book chapters (n = 213, 6.7%). The main subject areas of the citing items are medicine (n = 2,581, 51.7%), immunology and microbiology (n = 1,179, 23.6%), and biochemistry, genetics and molecular biology (n = 415, 8.3%).

An external file that holds a picture, illustration, etc.
Object name is jkms-34-e300-g001.jpg

Interestingly, a recent analysis of 111 publications related to Strachan's hygiene hypothesis, stating that the lack of exposure to infections in early life increases the risk of rhinitis, revealed a selection bias of 5,551 citations on Web of Science. 37 The articles supportive of the hypothesis were cited more than nonsupportive ones (odds ratio adjusted for study design, 2.2; 95% confidence interval, 1.6–3.1). A similar conclusion pointing to a citation bias distorting bibliometrics of hypotheses was reached by an earlier analysis of a citation network linked to the idea that β-amyloid, which is involved in the pathogenesis of Alzheimer disease, is produced by skeletal muscle of patients with inclusion body myositis. 38 The results of both studies are in line with the notion that ‘positive’ citations are more frequent in the field of biomedicine than ‘negative’ ones, and that citations to articles with proven hypotheses are too common. 39

Social media channels are playing an increasingly active role in the generation and evaluation of scientific hypotheses. In fact, publicly discussing research questions on platforms of news outlets, such as Reddit, may shape hypotheses on health-related issues of global importance, such as obesity. 40 Analyzing Twitter comments, researchers may reveal both potentially valuable ideas and unfounded claims that surround groundbreaking research ideas. 41 Social media activities, however, are unevenly distributed across different research topics, journals and countries, and these are not always objective professional reflections of the breakthroughs in science. 2 , 42

Scientific hypotheses are essential for progress in science and advances in healthcare. Innovative ideas should be based on a critical overview of related scientific facts and evidence-based data, often overlooked by others. To generate realistic hypothetical theories, the authors should comprehensively analyze the literature and suggest relevant and ethically sound design for future studies. They should also consider their hypotheses in the context of research and publication ethics norms acceptable for their target journals. The journal editors aiming to diversify their portfolio by maintaining and introducing hypotheses section are in a position to upgrade guidelines for related articles by pointing to general and specific analyses of the subject, preferred study designs to test hypotheses, and ethical implications. The latter is closely related to specifics of hypotheses. For example, editorial recommendations to outline benefits and risks of a new laboratory test or therapy may result in a more balanced article and minimize associated risks afterwards.

Not all scientific hypotheses have immediate positive effects. Some, if not most, are never tested in properly designed research studies and never cited in credible and indexed publication outlets. Hypotheses in specialized scientific fields, particularly those hardly understandable for nonexperts, lose their attractiveness for increasingly interdisciplinary audience. The authors' honest analysis of the benefits and limitations of their hypotheses and concerted efforts of all stakeholders in science communication to initiate public discussion on widely visible platforms and social media may reveal rational points and caveats of the new ideas.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Gasparyan AY, Yessirkepov M, Kitas GD.
  • Methodology: Gasparyan AY, Mukanova U, Ayvazyan L.
  • Writing - original draft: Gasparyan AY, Ayvazyan L, Yessirkepov M.
  • Writing - review & editing: Gasparyan AY, Yessirkepov M, Mukanova U, Kitas GD.

Talk to Our counsellor: 9916082261

importance of hypothesis in social research

  • Book your demo
  • GS Foundation Classroom Program
  • Current Affairs Monthly Magazine
  • Our Toppers

></center></p><h2>ROLE OF HYPOTHESIS IN SOCIAL RESEARCH</h2><p><center><img style=

Practice  Questions  – Write short note on Importance and Sources of Hypothesis in Sociological Research. [ UPSC 2008]

Approach –  Introduction, What makes Hypothesis relevant in a sociological research?, What are the sources which aids us to derive hypothesis?, Conclusion

INTRODUCTION

A hypothesis is a prediction of what will be found at the outcome of a research project and is typically focused on the relationship between two different variables studied in the research. It is usually based on both theoretical expectations about how things work and already existing scientific evidence.

We know that research begins with a problem or a felt need or difficulty. The purpose of research is to find a solution to the difficulty. It is desirable that the researcher should propose a set of suggested solutions or explanations of the  difficulty which the research proposes to solve. Such tentative solutions formulated as a proposition are called hypotheses. The suggested solutions formulated as hypotheses may or may not be the real solutions to the problem. Whether they are or not is the task of research to test and establish.

DEFINTITIONS

  • Lundberg- A Hypothesis is a tentative generalisation, the validity of which remains to be tested. In its most elementary stages, the hypothesis may be any hunch, guess imaginative idea or Intuition whatsoever which becomes the basis of action or Investigation.
  • Bogardus- A Hypothesis is a proposition to be tested.
  • Goode and Hatt- It is a proposition which can be put to test to determinants validity.
  • P. V. Yaung- The idea of ​a temporary but central importance that becomes the basis of useful research is called a working hypothesis.

TYPES OF HYPOTHESIS

i)  Explanatory Hypothesis : The purpose of this hypothesis is to explain a certain fact. All hypotheses are in a way explanatory for a hypothesis is advanced only when we try to explain the observed fact. A large number of hypotheses are advanced to explain the individual facts in life. A theft, a murder, an accident are examples.

ii) Descriptive Hypothesis:  Some times a researcher comes across a complex phenomenon. He/ she does not understand the relations among the observed facts. But how to account for these facts? The answer is a descriptive hypothesis. A hypothesis is descriptive when it is based upon the points of resemblance of some thing. It describes the cause and effect relationship of a phenomenon e.g., the current unemployment rate of a state exceeds 25% of the work force. Similarly, the consumers of local made products constitute asignificant market segment.

iii) Analogical Hypothesis : When we formulate a hypothesis on the basis of similarities (analogy), it is called an analogical hypothesis e.g., families with higher earnings invest more surplus income on long term investments.

iv) Working hypothesis : Some times certain facts cannot be explained adequately by existing hypotheses, and no new hypothesis comes up. Thus, the investigation is held up. In this situation, a researcher formulates a hypothesis which enables to continue investigation. Such a hypothesis, though inadequate and formulated for the purpose of further investigation only, is called a working hypothesis. It is simply accepted as a starting point in the process of investigation.

v) Null Hypothesis:  It is an important concept that is used widely in the sampling theory. It forms the basis of many tests of significance. Under this type, the hypothesis is stated negatively. It is null because it may be nullified, if the evidence of a random sample is unfavourable to the hypothesis. It is a hypothesis being tested (H0). If the calculated value of the test is less than the permissible value, Null hypothesis is accepted, otherwise it is rejected. The rejection of a null hypothesis implies that the difference could not have arisen due to chance or sampling fluctuations.

USES OF HYPOTHESIS

i) It is a starting point for many a research work. ii) It helps in deciding the direction in which to proceed. iii) It helps in selecting and collecting pertinent facts. iv) It is an aid to explanation. v) It helps in drawing specific conclusions. vi) It helps in testing theories. vii) It works as a basis for future knowledge.

ROLE  OF HYPOTHESIS

In any scientific investigation, the role of hypothesis is indispensable as it always guides and gives direction to scientific research. Research remains unfocused without a hypothesis. Without it, the scientist is not in position to decide as to what to observe and how to observe. He may at best beat around the bush. In the words of Northrop, “The function of hypothesis is to direct our search for order among facts, the suggestions formulated in any hypothesis may be solution to the problem, whether they are, is the task of the enquiry”.

First ,  it is an operating tool of theory. It can be deduced from other hypotheses and theories. If it is correctly drawn and scientifically formulated, it enables the researcher to proceed on correct line of study. Due to this progress, the investigator becomes capable of drawing proper conclusions. In the words of Goode and Hatt, “without hypothesis the research is unfocussed, a random empirical wandering. The results cannot be studied as facts with clear meaning. Hypothesis is a necessary link between theory and investigation which leads to discovery and addition to knowledge.

Secondly,  the hypothesis acts as a pointer to enquiry. Scientific research has to proceed in certain definite lines and through hypothesis the researcher becomes capable of knowing specifically what he has to find out by determining the direction provided by the hypothesis. Hypotheses acts like a pole star or a compass to a sailor with the help of which he is able to head in the proper direction.

Thirdly , the hypothesis enables us to select relevant and pertinent facts and makes our task easier. Once, the direction and points are identified, the researcher is in a position to eliminate the irrelevant facts and concentrate only on the relevant facts. Highlighting the role of hypothesis in providing pertinent facts, P.V. Young has stated, “The use of hypothesis prevents a blind research and indiscriminate gathering of masses of data which may later prove irrelevant to the problem under study”. For example, if the researcher is interested in examining the relationship between broken home and juvenile delinquency, he can easily proceed in the proper direction and collect pertinent information succeeded only when he has succeed in formulating a useful hypothesis.

Fourthly , the hypothesis provides guidance by way of providing the direction, pointing to enquiry, enabling to select pertinent facts and helping to draw specific conclusions. It saves the researcher from the botheration of ‘trial and error’ which causes loss of money, energy and time.

Finally,  the hypothesis plays a significant role in facilitating advancement of knowledge beyond one’s value and opinions. In real terms, the science is incomplete without hypotheses.

STAGES OF HYPOTHESIS TESTING

  • EXPERIMENTATION   : Research study focuses its study which is manageable and approachable to it and where it can test its hypothesis. The study gradually becomes more focused on its variables and influences on variables so that hypothesis may be tested. In this process, hypothesis can be disproved.
  • REHEARSAL TESTING :   The researcher should conduct a pre testing or rehearsal before going for field work or data collection.
  • FIELD RESEARCH :  To test and investigate hypothesis, field work with predetermined research methodology tools is conducted in which interviews, observations with stakeholders, questionnaires, surveys etc are used to follow. The documentation study may also happens at this stage.
  • PRIMARY & SECONDARY DATA/INFORMATION ANALYSIS :  The primary or secondary data and information’s available prior to hypothesis testing may be used to ascertain validity of hypothesis itself.

Formulating a hypothesis can take place at the very beginning of a research project, or after a bit of research has already been done. Sometimes a researcher knows right from the start which variables she is interested in studying, and she may already have a hunch about their relationships. Other times, a researcher may have an interest in ​a particular topic, trend, or phenomenon, but he may not know enough about it to identify variables or formulate a hypothesis. Whenever a hypothesis is formulated, the most important thing is to be precise about what one’s variables are, what the nature of the relationship between them might be, and how one can go about conducting a study of them.

Request a call back.

Let us help you guide towards your career path We will give you a call between 9 AM to 9 PM

importance of hypothesis in social research

Join us to give your preparation a new direction and ultimately crack the Civil service examination with top rank.

  • #1360, 2nd floor,above Philips showroom, Marenhalli, 100ft road, Jayanagar 9th Block, Bangalore
  • [email protected]
  • +91 9916082261
  • Terms & Conditions
  • Privacy Policy

© 2022 Achievers IAS Classes

importance of hypothesis in social research

Click Here To Download Brochure

  • Increase Font Size

10 Research questions and testing hypotheses

Soumyajit Patra

This module will teach you about the importance of research questions and hypothesis in social science research. At the end of this module, you will find some digital resources and a bibliography for your further study.

  • Introduction

Knowledge is contextual and much of it depends on agreement. It is contextual as it has a time-space dimension – knowledge varies from time to time, region to region and from society to society. Take the example of the imperishable plastic bags. These were thought to be very useful even a few years back. But today its harmful effects on environment are known to all and we have started thinking the other way round. The old knowledge has been replaced by the new one.

Knowledge is a matter of agreement as well. A significant portion of what we know is a matter of agreement and belief. Little of it is based on our personal experience and discovery. As we grow up through the process of socialization, we learn to accept (to take it for granted) what everybody around us already knows. If we start questing everything we are taught and try to test instead of accepting what is given, life would be impossible to bear with (Babbie 2004: 5). We have to learn where and how to raise ‘questions’ in our everyday life. This is equally true in case of scientific knowledge. We need to clarify, in this context, the distinction between scientific knowledge and common sense as well as the purpose of scientific research.

2.1 Scientific Knowledge and Common Sense

The distinction between scientific knowledge and common sense would be relevant here. The former is based on logic and is verifiable. The foundation of scientific knowledge is systematic and critical questioning, observation and reasoning. But as Majumdar (2005: 10) defines it, common sense does not ‘take us beyond what are observable. It limits us to events and conclusions that are widely believed as true.’ So, for obvious reasons, knowledge gathered through scientific inquiries may oppose the common sense. Social scientists often emphasize upon the explanatory nature of science that, to a large extent, involves refined and fundamental questioning of the existing knowledge.

2.2 Scientific Research

The purpose of scientific research is to modify or contribute to the existing stock of knowledge through proper inquiry directed by properly framed research questions and reasoning. It is widely believed that there is no ‘absolute’ in science. Scientific knowledge is inclusive and is always open to further investigation and revision. In the words of Das (2004: 21), ‘research may be described as systematic and critical investigation of phenomena towards increasing the stream of knowledge.’ In a similar way Majumdar (2005: 25) writes: ‘The obvious function of research is to add new knowledge to our existing store. Therefore, scientific research is a cumulative process. Since new insights are obtained into the problem investigated, we need to review or modify our earlier beliefs and postulates’.

  • Learning Outcome

This Module will help you understand different types of research questions and hypotheses that give rise to reliable scientific knowledge. You will also learn how to formulate them.

  • What are Research Questions?

Researchers have many queries and curiosities in their mind and they try to reach at some satisfactory and valid answers and solutions of these after a careful and meticulous analysis of the relevant data collected through appropriate methods. Research questions are specific questions framed during the initial phase of the research, the answers of which a researcher tries to find out. The research questions set the direction of the entire research process. We can argue following Bryman (2012: 9) that

“A research question is a question that provides an explicit statement of what it is the researcher wants to know about. A research purpose can be presented as a statement … but a question forces the researcher to be more explicit about what is to be investigated”.

4.1 How can Research Questions be framed?

Mere selection of research topic does not direct a researcher to the actual methods to be followed and the specific areas to look at for collecting data. As Patrick White (2009: 33) has argued,

“It is usually much easier to decide upon a topic or area of interest than it is to produce a set of well-structured questions”.

It may be worth noting here that research involves certain definite stages and a researcher starts framing research questions and hypothesis after selection of topic and review of existing literature. The following diagram shows the stages of research before and after the research questions:

Selection of research topic, which is the elementary task of any research, is, however, not an easy task. One has to go through the existing literatures to find out gaps in research. Indian Council of Social Science Research (ICSSR) however publishes trend reports of research done on important themes in sociology and makes us aware of what has so far been done and what needs to be done (Singh 2013). Despite such literature, a researcher has to be very precise in focusing his or her attention while framing research questions. When, after going through the existing literatures on the concerned area, the researcher finally specifies the objectives of the study, he or she is better able to frame his or her research questions. Research questions can also be framed on the basis common sense.

  • De Vaus (2002) has provided us with some examples that can guide us in developing research questions particularly for descriptive researches. These are:
  • What is the time frame of our interest?
  • What is the geographical location of our interest?
  • Is our interest in broad description or in comparing and specifying patterns for subgroups?
  • What aspect of the topic are we interested in?
  • How abstract is our interest?

The research questions of explanatory studies mostly focus on delving the causal relationships between different variables. Naturally the ‘why-questions’ are more important in explanatory researches than the ‘what-questions’, which forms the basis of descriptive studies. According to Babbie (2008: 99), descriptive studies answer questions of what, where, when and how, exploratory studies questions of why? However, the suggestions of Ramkrishna Mukherjee (1993) can be helpful for formulating research questions for any type research in social sciences.

Calling his approach as ‘inductive-inferential method’ Mukherjee ( Ibid .) argues that a social scientist should try to find out the answer of the following questions:

What is it?

What will it be?

What should it be?

For obvious reasons when a researcher deals with the first two questions, i.e. ‘what is it?’ and ‘how is it?’ the orientation of her research is descriptive and classificatory (see also Bose 1997). As soon as she incorporates the question ‘why is it’, her work becomes more explanatory in its spirit. When a social scientist’s research questions include the fourth and fifth questions as well, it becomes a diagnostic study. There can be a reasonable debate among the positivists regarding the inclusion of the fifth question as they believe that the questions like ‘what should it be?’ involve value judgements. However, you canunderstand that a comprehensive research should be based on all the questions mentioned above. In many cases, the researchers deal with a number of research questions, but do not clearly state which questions are more important, or how the questions are related. Such a multiplicity of questions can lead to the problem of lack of focus (Andrews 2003). The researchers should select the number of research questions for her or his study considering the time-cost-labour components of the work. Time, labour and cost of the study would proportionately be increased with the increase in the number of research questions. Too many research questions are difficult to manage as well.

  • 2 Features of Research Questions?

Good research questions that lead to proper research findings have some important features (White 2009; De Vaus 2002; Andrews 2003). The following are the most important among them:

 Research questions should be interrogative – Research questions should be interrogative in nature, it should not be declarative. For example it should be like this: ‘What is the relationship between educational level and attitude towards the freedom of media?’ A statement like: ‘There may be some relationship between educational level and attitude towards the freedom of media’ is not a research question.

 Research questions should be based on the objectives of the study – Research questions should not divert the attention of the researcher from the basic objectives of the study. It should rather try to delve deep into the problem.

 Research questions should be specific – There should not be any ambiguity in the research questions. It should be easily understandable and precise as much as possible.

 It should be simple but well-structured – Much of the success of a research depends on the research questions. It should be focused and precisely framed. The ‘fallacy of many questions’ (i.e. aiming at ‘more than one inquiry in a single question’) should be avoided (White 2009). The questions should be structured in such a manner that they help the researcher unveil a specific dimension of the problem.

Self-check Exercise -1:

  • What do you mean by research?

Research is a scientific process of inquiry by which the existing stock of knowledge is either enriched or modified.

  • Distinguish between scientific knowledge and common sense.

Scientific knowledge is based on logic and is verifiable. The foundation of scientific knowledge is systematic and critical questioning, observation and reasoning. But common sense is gathered from direct day to day experience. Although common sense is not gathered through scientific inquiry it can be helpful in many research works.

  • What are research questions?

Research questions are specific questions emerged out of the broad problems of research, the answers of which a researcher tries to find out. The research questions set the direction of the entire research process.

  • What are the features of good research questions?

Research questions should be interrogative. It should not be a statement. A research question should also be specific, understandable and well-structured. Good research questions are based on the objectives of the study.

  • Distinguish between descriptive and explanatory research.

Descriptive research tries to describe a phenomenon or a situation or a problem. It generally deals with ‘what’ and ‘how’ questions. Explanatory research, on the other hand, tries to explain the ‘cause-effect’ relationships between different variables. This type of research also involves ‘why’ questions along with the ‘what’ and ‘how’ questions.

  • Research questions and hypothesis

Both research questions and hypotheses are useful in social science research. According to White (2009), the difference between them is that while research questions are interrogative in its form, hypotheses are declarative statements which are intended to be tested during the course of research. Hypotheses can be restructured in the form of questions. But then one should not call it hypothesis.

5.1 What is hypothesis?

When a researcher conceptualizes her research problems, she thinks about it in general terms. Research questions or hypotheses help look at the specific aspects of the problem. So hypotheses or research questions enable us to carry out meaningful analysis. Hypotheses are specific statements about the problem made at the initial stage of the research, which may be proved right or wrong also include things such as households, cities, organizations, schools, and nations. If an attribute does not vary, it is a constant” (Bryman 2012: 48).

Once a hypothesis assumes a relationship between two or more variables, the validity of such assumption, made on the basis of the personal experiences, knowledge and insights of the researcher, is tested through suitable statistical techniques. Hence, hypothesis is ‘[a]n informed speculation, which is set up to be tested, about the possible relationship between two or more variables’ Bryman (2012: 712). If the primary assumptions are proved correct after the analysis of data, they become part of the theory. So it is said that ‘hypothesis provides the link between the empirical world and the theory’ (Majumdar 2005: 78). Hypothesis formulation and testing are closely associated with the quantitative approach to study social phenomena (Jupp 2006).

5.2 Features of a good hypothesis

‘A hypothesis is a specified testable expectation about empirical reality that follows from a more general proposition’ (Babbie 2004: 44). It is the assumption made about the relationship between different variables on the basis of existing knowledge or common sense. But all declarative statements or assumptions are not hypotheses. Let us discuss some examples:

  • ‘The rate of dropout is higher among the girl students’.
  • ‘The rate of dropout varies with gender with the girl students having a higher dropout rate’.

The first assumption is not an example of a good hypothesis as it does not clearly state the two variables. But, the second one is a better one because it clearly mentions gender and rate of dropout as two variables and a relationship between them is assumed.

The features of good hypotheses are as follows:

  • Hypothesis generally states (predicts) the relationship between two variables.
  • It is expressed as a statement and not as a question (Payne and Payne 2005: 112)
  • Hypothesis should be clearly stated, specific and conceptually clear.
  • It should be consistent with the known laws of nature (Majumdar 2005)
  • Hypothesis is testable (after the final analysis it may prove to be correct or incorrect).

5.3 Soures of hypotheses

Hypotheses are not ordinary or casual statements about the empirical reality. They emerge through a systematic and logical process. According to Goode and Hatt (1981), there are four possible sources from which hypotheses can emerge. These are:

 Culture can furnish hypotheses – Every human society has some distinctive cultural traits. Many social science researches focus on human behaviour or on meaningful social actions. Folkways, mores, values, customs, belief patterns can help formulate hypotheses in these studies. at the end of the analysis (Henn et al 2006).

Hypotheses are formulated at the third stage of the research process (see Diagram 1). According to Goode and Hatt (1981: 56), ‘[a] hypothesis states what we are looking for.’ They write ‘[i]t is a proposition which can be put to a test to determine its validity.’ Hypotheses are primary assumptions about the interrelations of different variables which set the direction of the entire research process. It may be noted that “a variable is simply an attribute on which cases vary. ‘Cases’ can obviously be people, but they can

Hypotheses can emerge from the science itself – In the backdrop of any research there should be one or more theories. Hypotheses are often deducted from a theory to verify or modify some of its basic conclusions. Goode and Hatt ( ibid .) opine that the socialization process, that a student of a particular discipline undergoes, teaches her/him about the promising areas, paradigms, laws, analytical categories, concepts and methods of that particular discipline. This knowledge can help the student to assume some possible causal relationships between some variables that she or he can put to a test for verification.

 Hypotheses can be formulated from analogies – Analogies between human society and nature, between two different types of communities are often a fertile source of hypotheses. For obvious reasons, the researcher should take care in making such analogies. Analogies should not be illogical, it should, on the other hand, be consistent with the known laws of nature.

 Hypotheses can come out from idiosyncratic, personal experiences of the researcher – The scientist lives in a particular culture or she can encounter some cultural traits of some other cultures. Her personal experiences can help her formulate effective hypotheses.

5.4 Types of hypothesis

Hypothesis can be classified in many ways. Goode and Hatt (1981) categorize them into three types on the basis of the level of abstraction.

  • pothesis that state the existence of empirical uniformities – Generally these hypotheses are framed when the researchers want to test the ‘common-sense propositions’. In other words, sometimes the researchers are interested to establish the parallels between what people think about a phenomenon and what actually exists. These often lead to the observations of simple differences. In these hypotheses, sometimes, common sense ideas are put into well-defined concepts and then the hypotheses are statistically verified.
  • Hypothesis that is concerned with complex ideal types – These hypotheses try to focus on the logically assumed relationships existing among empirical uniformities. In particular, these hypotheses ‘lead to specific coincidences of observations’ ( ibid .: 62). For obvious reasons, these types of hypotheses deal with a higher level of abstraction than the hypotheses that are concerned with the existence of empirical uniformities.
  • thesis that is concerned with the relation of analytical variables – According to Goode and Hatt ( ibid .) these hypotheses deal with the highest level of abstraction. In this case, the researcher analytically formulates a hypothesis that shows a relationship between changes in one aspect of the phenomenon with the actual or assumed changes in another aspect.

Majumdar (2005) has categorized hypothesis into two types – eliminative (or analytic) induction and enumerative induction. In the former case hypotheses are formulated as ‘universal generalization’ and the presence of any contrary evidence leads to its rejection. In case of enumerative induction, a complete enumeration is required to accept or reject the hypothesis. Look at the following examples:

Hypothesis I: Female students score better in Research Methodology course than the male students.

This is an example of eliminative or analytic induction. If any male student is found, who has scored more than the female students, there would be no reason to accept the hypothesis.

Hypothesis II: Ten Percent female students score better in Research Methodology course than the male students.

This is an example of enumerative induction. To accept or reject the hypothesis a complete enumeration is necessary.

5.5 Hypothesis Testing

A researcher formulates a number of hypotheses (sometimes called experimental hypotheses) and all these hypotheses are tested on the basis of data collected for the study. When a researcher wants to test the hypothesis with the help of some statistical techniques, he or she frames what is called null hypothesis. According to Babbie (2004: 49), in connection with hypothesis testing and tests of statistical significance, the hypothesis that suggests that there is no relationship among the variables under study is null hypothesis . Sometimes null hypothesis states that there is no difference between two variables.

Null Hypothesis (denoted by H 0 ): There is no difference between the percentage of male students and the percentage of female students who have got 60 per cent marks in Research Methodology course.

If the data collected for the study show, for example, that in reality there are differences between the percentage of male students and percentage of female students who have scored 60 per cent in Research Methodology course, there are statistical techniques to determine whether the difference found is statistically significant, or we can ignore the difference attributing it simply to chance factors and accept the null hypothesis (H0). If the difference obtained from the collected data is statistically significant the researcher rejects the null hypothesis and accepts the alternative hypothesis. For obvious reasons there may be more than one alternative hypotheses (denoted by: H1, H2, H3 etc) the researcher has to select any one from among the alternatives if the null hypothesis (H0) is rejected. The following are the examples:

Alternative Hypothesis (H 1 ): There is significant difference between the percentage of male students and the percentage of female students who have got 60 per cent marks in Research Methodology course.

Or, Alternative Hypothesis (H 2 ): The percentage of male students is higher than the percentage of female students who have got 60 per cent marks in Research Methodology course.   Or,

Alternative Hypothesis (H 3 ): The percentage of female students is higher than the percentage of male students who have got 60 per cent marks in Research Methodology course.

It is not always easy to accept a hypothesis from among the alternatives. The researchers often has to find out what is called crucial instance to take a final decision regarding the acceptance of a hypothesis from among a number of options (alternative hypotheses). Sometimes they have to go through an experiment to decide what actually would be the alternative hypothesis (in the above example whether H2 is correct or H3 is correct. It should be noted that both H2 and H3 cannot be correct at the same time.) The experiment which finally helps to come to a final decision regarding which one should be accepted reasonably from among the hypotheses is called experimentum crucis (Babbie 2004; Majumdar 2005) . There are a number of statistical techniques like Z-test, t-test, χ2-test etc to test the null hypothesis.

Self-check Exercise – 2:

  • Distinguish between research question and hypothesis.

Both research questions and hypothesis are framed at the initial stage of the research and both help to look at the research problem in a very specific manner. But while the research question is a specific question the answer of which is sought, hypothesis is a declarative statement framed on the basis of the initial assumptions the validity of which is tested with the help of some statistical techniques. Hypotheses are formulated mainly in case of quantitative research.

  • State any two features of a good hypothesis.

A good hypothesis is specific and it indicates the relationship between two variables.

  • What is null hypothesis?

In case of hypothesis testing, the hypothesis that states that there is no difference or relationship between two variables under study is called null hypothesis. It is denoted by Ho. The statistical testing of hypothesis starts with null hypothesis. If the test-result tells the researcher to reject the null hypothesis, the researcher accepts alternative hypothesis.

  • What are alternative hypotheses?

Alternative hypotheses are formulated against the null hypothesis that states that there is some relationship or difference between the variables. These are denoted by H1, H2 etc.

  • Type I error and Type II error

Although in case of quantitative research, the researcher specifies the variables and puts the null hypothesis to test using some statistical techniques, there are dangers of reaching at wrong decisions even if the researcher resort to scientific techniques in the testing of hypotheses. He or she can commit two types of errors – Type I error and Type II error. When the researcher accepts a hypothesis when it is actually incorrect it is called Type I error. In case of Type II error the test-result tells the researcher to reject a hypothesis when it is actually correct. Let us look into the following examples:

Suppose you are interested to know whether there is any relationship between the education of the mother and that of their daughters. Sociologists generally use χ2 test to determine such relationships statistically. The null hypothesis of such a test would be like this:

H 0: There is no relationship between mothers’ education and daughters’ education.

The alternative hypothesis would be:

H 1: There is a definite relationship between mothers’ education and daughters’ education.

Suppose the calculated value of χ2 forces the researcher to accept the null hypothesis and come to the conclusion that there is no relationship between the education of the mother and that of their daughters. But in reality these two are highly related. This is the example of Type I error.

Now, suppose you are interested to know about the relationship between distance of home from the nearest high road and the number of children of the married women.

The null hypothesis of such a test would be like this:

H 0: There is no relationship between distance of home from the high road and the number of children.

H 1: There is significant relationship between distance of home from the high road and the number of children.

Suppose the calculated value of χ2 forces the researcher to reject the null hypothesis and come to the conclusion that there is significant relationship between distance of home from the nearest high road and the number of children married women have. It is not difficult to understand that any such relationship between these two is absurd. This is the example of Type II error.

  • Hypothesis and qualitative research

It has been said that hypothesis is generally associated with quantitative research. But it would be wrong to assume that in qualitative studies, they are irrelevant. According to Jupp (2006), some qualitative researches aim at describing the nature, contexts and consequences of social interactions, social relationships and the process of creations of meanings. These studies also start with some assumptions about the social realities which can be treated as hypotheses. Obviously, these hypotheses do not indicate the relationships between variables. Hypothesis testing in ‘qualitative research is a continuous process, involving the search for cases or contexts that do not square with the assertions being made, rather than a once-and-for-all event’ (Jupp 2006: 138). This is the process of analytical induction and when contrary evidences or what is called crucial instances challenge the conclusions of previous study they are modified or rejected. New hypotheses are then framed in the light of new information or experiences and again their validity is checked.

The topic of any research, which the title of the dissertation signifies, indicates the broad area of research. It is often easy to decide about a topic of research. But, a researcher has to be precise in focusing his or her attention while framing his/her research questions. Research questions and hypotheses are framed to specify the areas in which the researcher concentrates. Research questions are interrogative whereas hypotheses are declarative statements. When the researcher finalizes the specific objectives of the study, he or she is better able to frame his research questions or hypotheses. The researcher tries to find out the answers of the research questions framed at the beginning of the study. Hypotheses or the assumptions.

  • Andrews, R. Research Questions. London: Continuum, 2003.
  • Babbie,  E. The Practice of Social Research . Australia: Thomson Wadsworth, 2004.
  • Bose, P. K. “Problems and Paradoxes of Inductive Social Science: A Critique of Ramkrishna Mukherjee”.
  • Sociological Bulletin 46, no. 2 (1997): 153-171.
  • Bryman, A, Quantity and Quality in Social Research. London: Routledge, 1988.
  • …….. Social Research Methods. Oxford: Oxford University Press, 2012. Das, D. K. L. Practice of Social Research. Jaipur: Rawat Publications, 2004.
  • Goode, W. J. and Hatt, P. K. Methods in Social Research. Auckland: McGraw – Hill International Book Company, 1981.
  • Henn, M.  et. al. A Short Introduction to Social Research, London: Sage Publications, 2006.
  • Jupp, V. The Sage Dictionary of Social Research Methods. London: Sage Publications, 2006.
  • Majumdar, P. K. Research Methods in Social Science. New Delhi: Viva Books Pvt. Ltd., 2005.
  • Mukherjee, R. Systematic Sociology. New Delhi: Sage Publications, 1993.
  • Payne, G. and Payne, J. Key Concepts in Social Research. London: Sage Publications, 2005.
  • Singh, Yogendra. ICSSR Research Surveys and Explorations: Indian Sociology. Box Set, Vols 1-3. New Delhi: Oxford, 2013.
  • Vaus, De D, Surveys in Social Research. London: Routledge, 2002.
  • White, P. Developing Research Questions: A Guide for Social Scientists. New York: Palgrave Macmillan, 2009.

Your Article Library

Role of hypothesis in social research.

importance of hypothesis in social research

ADVERTISEMENTS:

Role of Hypothesis in Social Research!

In any scientific investigation, the role of hypothesis is indispensable as it always guides and gives direction to scientific research. Research remains unfocused without a hypothesis. Without it, the scientist is not in position to decide as to what to observe and how to observe. He may at best beat around the bush. In the words of Northrop, “The function of hypothesis is to direct our search for order among facts, the suggestions formulated in any hypothesis may be solution to the problem, whether they are, is the task of the enquiry”.

Several near consequences are provided in the process of deductive development of hypothesis. In the process of conducting experiments for confirming the hypothesis, scores of new facts develop and expand the horizon of knowledge of the scientist. Since h3rpothesis is concerned with explaining facts, the rejection of hypothesis is not futile.

Rather, it is worthwhile in the sense that it can be of great service in pointing out the way to true hypothesis. Even a false hypothesis is capable of showing the direction of inquiry. Realizing the indispensability of hypothesis in a scientific investigation, Cohen and Nagel observe, ‘Hypotheses are required at every stage of an inquiry. It must not be forgotten that what are called general principles or laws can be applied to a present, still un-terminated inquiry only with some risk. For they may not in fact be applicable.

The general laws of any science function as hypothesis, which guide the inquiry in all its phases”. Thus, there is little doubt that the importance of hypothesis in the field of scientific research is tremendous. At least five reasons may be advanced for justifying hypothesis as a significant device for scientific research.

First, it is an operating tool of theory. It can be deduced from other hypotheses and theories. If it is correctly drawn and scientifically formulated, it enables the researcher to proceed on correct line of study. Due to this progress, the investigator becomes capable of drawing proper conclusions.

In the words of Goode and Hatt, “without hypothesis the research is unfocussed, a random empirical wandering. The results cannot be studied as facts with clear meaning. Hypothesis is a necessary link between theory and investigation which leads to discovery and addition to knowledge.

Secondly, the hypothesis acts as a pointer to enquiry. Scientific research has to proceed in certain definite lines and through hypothesis the researcher becomes capable of knowing specifically what he has to find out by determining the direction provided by the hypothesis. Hypotheses acts like a pole star or a compass to a sailor with the help of which he is able to head in the proper direction.

Thirdly, the hypothesis enables us to select relevant and pertinent facts and makes our task easier. Once, the direction and points are identified, the researcher is in a position to eliminate the irrelevant facts and concentrate only on the relevant facts. Highlighting the role of hypothesis in providing pertinent facts, P.V. Young has stated, “The use of hypothesis prevents a blind research and indiscriminate gathering of masses of data which may later prove irrelevant to the problem under study”.

For example, if the researcher is interested in examining the relationship between broken home and juvenile delinquency, he can easily proceed in the proper direction and collect pertinent information succeeded only when he has succeed in formulating a useful hypothesis.

Fourthly, the hypothesis provides guidance by way of providing the direction, pointing to enquiry, enabling to select pertinent facts and helping to draw specific conclusions. It saves the researcher from the botheration of ‘trial and error’ which causes loss of money, energy and time.

Finally, the hypothesis plays a significant role in facilitating advancement of knowledge beyond one’s value and opinions. In real terms, the science is incomplete without hypotheses.

Related Articles:

  • Top 5 Phases of Research Process – Explained!
  • The Concept of Causality for Testing Hypothesis | Social Research

Comments are closed.

web statistics

Public Health Notes

Your partner for better health, hypothesis in research: definition, types and importance .

April 21, 2020 Kusum Wagle Epidemiology 0

importance of hypothesis in social research

Table of Contents

What is Hypothesis?

  • Hypothesis is a logical prediction of certain occurrences without the support of empirical confirmation or evidence.
  • In scientific terms, it is a tentative theory or testable statement about the relationship between two or more variables i.e. independent and dependent variable.

Different Types of Hypothesis:

1. Simple Hypothesis:

  • A Simple hypothesis is also known as composite hypothesis.
  • In simple hypothesis all parameters of the distribution are specified.
  • It predicts relationship between two variables i.e. the dependent and the independent variable

2. Complex Hypothesis:

  • A Complex hypothesis examines relationship between two or more independent variables and two or more dependent variables.

3. Working or Research Hypothesis:

  • A research hypothesis is a specific, clear prediction about the possible outcome of a scientific research study based on specific factors of the population.

4. Null Hypothesis:

  • A null hypothesis is a general statement which states no relationship between two variables or two phenomena. It is usually denoted by H 0 .

5. Alternative Hypothesis:

  • An alternative hypothesis is a statement which states some statistical significance between two phenomena. It is usually denoted by H 1 or H A .

6. Logical Hypothesis:

  • A logical hypothesis is a planned explanation holding limited evidence.

7. Statistical Hypothesis:

  • A statistical hypothesis, sometimes called confirmatory data analysis, is an assumption about a population parameter.

Although there are different types of hypothesis, the most commonly and used hypothesis are Null hypothesis and alternate hypothesis . So, what is the difference between null hypothesis and alternate hypothesis? Let’s have a look:

Major Differences Between Null Hypothesis and Alternative Hypothesis:

Importance of hypothesis:.

  • It ensures the entire research methodologies are scientific and valid.
  • It helps to assume the probability of research failure and progress.
  • It helps to provide link to the underlying theory and specific research question.
  • It helps in data analysis and measure the validity and reliability of the research.
  • It provides a basis or evidence to prove the validity of the research.
  • It helps to describe research study in concrete terms rather than theoretical terms.

Characteristics of Good Hypothesis:

  • Should be simple.
  • Should be specific.
  • Should be stated in advance.

References and For More Information:

https://ocw.jhsph.edu/courses/StatisticalReasoning1/PDFs/2009/BiostatisticsLecture4.pdf

https://keydifferences.com/difference-between-type-i-and-type-ii-errors.html

https://www.khanacademy.org/math/ap-statistics/tests-significance-ap/error-probabilities-power/a/consequences-errors-significance

https://stattrek.com/hypothesis-test/hypothesis-testing.aspx

http://davidmlane.com/hyperstat/A2917.html

https://study.com/academy/lesson/what-is-a-hypothesis-definition-lesson-quiz.html

https://keydifferences.com/difference-between-null-and-alternative-hypothesis.html

https://blog.minitab.com/blog/adventures-in-statistics-2/understanding-hypothesis-tests-why-we-need-to-use-hypothesis-tests-in-statistics

  • Characteristics of Good Hypothesis
  • complex hypothesis
  • example of alternative hypothesis
  • example of null hypothesis
  • how is null hypothesis different to alternative hypothesis
  • Importance of Hypothesis
  • null hypothesis vs alternate hypothesis
  • simple hypothesis
  • Types of Hypotheses
  • what is alternate hypothesis
  • what is alternative hypothesis
  • what is hypothesis?
  • what is logical hypothesis
  • what is null hypothesis
  • what is research hypothesis
  • what is statistical hypothesis
  • why is hypothesis necessary

' src=

Copyright © 2024 | WordPress Theme by MH Themes

IMAGES

  1. Importance of Hypothesis

    importance of hypothesis in social research

  2. Understanding the importance of a research hypothesis

    importance of hypothesis in social research

  3. Importance of hypothesis and Introduction to Data Collection

    importance of hypothesis in social research

  4. ROLE OF HYPOTHESIS IN SOCIAL RESEARCH

    importance of hypothesis in social research

  5. What is a Research Hypothesis and How to Write a Hypothesis

    importance of hypothesis in social research

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips

    importance of hypothesis in social research

VIDEO

  1. Sahulat

  2. Limitations and importance of hypothesis (Class by:- Dr. Jagjeet Singh Kavia)

  3. Importance of Hypothesis Testing in Quality Management #statistics

  4. What Is A Hypothesis?

  5. Types , Sources and Importance of Hypothesis / उपकल्पना के प्रकार, स्रोत एवं महत्व

  6. What is the Role of Hypotheses in Scientific Investigations?

COMMENTS

  1. 3.4 Hypotheses

    3.4 Hypotheses. When researchers do not have predictions about what they will find, they conduct research to answer a question or questions with an open-minded desire to know about a topic, or to help develop hypotheses for later testing. In other situations, the purpose of research is to test a specific hypothesis or hypotheses.

  2. 2.1 Approaches to Sociological Research

    A hypothesis is an explanation for a phenomenon based on a conjecture about the relationship between the phenomenon and one or more causal factors. In sociology, the hypothesis will often predict how one form of human behavior influences another. For example, a hypothesis might be in the form of an "if, then statement."

  3. Research Hypothesis: What It Is, Types + How to Develop?

    Importance of Hypothesis in Research. ... For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study. Hypothesis sometimes suggests theories. In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the ...

  4. Formulating Hypotheses for Different Study Designs

    Thus, hypothesis generation is an important initial step in the research workflow, reflecting accumulating evidence and experts' stance. In this article, we overview the genesis and importance of scientific hypotheses and their relevance in the era of the coronavirus disease 2019 (COVID-19) pandemic.

  5. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  6. Hypotheses

    Both types of research are crucial to understanding our social world, and both play an important role in the matter of hypothesis development and testing. In the following section, we will look at qualitative and quantitative approaches to research, as well as mixed methods. Text Attributions

  7. Social Research: Definitions, Types, Nature, and Characteristics

    Additionally, social research is important for its contribution to national and international policymaking, which explains the importance of social research. Download chapter PDF. ... between variables. Weller mentions that while conducting social research, often we need to establish a tentative hypothesis with two or more variables, and it is ...

  8. 2.1C: Formulating the Hypothesis

    A hypothesis is an assumption or suggested explanation about how two or more variables are related. It is a crucial step in the scientific method and, therefore, a vital aspect of all scientific research. There are no definitive guidelines for the production of new hypotheses. The history of science is filled with stories of scientists claiming ...

  9. The Research Hypothesis: Role and Construction

    A hypothesis (from the Greek, foundation) is a logical construct, interposed between a problem and its solution, which represents a proposed answer to a research question. It gives direction to the investigator's thinking about the problem and, therefore, facilitates a solution. Unlike facts and assumptions (presumed true and, therefore, not ...

  10. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  11. 3.1.3: Developing Theories and Hypotheses

    Theories and Hypotheses. Before describing how to develop a hypothesis, it is important to distinguish between a theory and a hypothesis. A theory is a coherent explanation or interpretation of one or more phenomena. Although theories can take a variety of forms, one thing they have in common is that they go beyond the phenomena they explain by including variables, structures, processes ...

  12. Theory in Social Research

    Theory as a peg. In the context of social science, Gilbert ( 2005 ) defines research as a sociological understanding of connections—connections between action, experience, and change—and theory is the major vehicle for realizing these connections as is illustrated in Fig. 4.3. Theory- the major vehicle.

  13. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    In fact, publicly discussing research questions on platforms of news outlets, such as Reddit, may shape hypotheses on health-related issues of global importance, such as obesity.40 Analyzing Twitter comments, researchers may reveal both potentially valuable ideas and unfounded claims that surround groundbreaking research ideas.41 Social media ...

  14. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  15. Research Problems and Hypotheses in Empirical Research

    Research problems and hypotheses are important means for attaining valuable knowledge. They are pointers or guides to such knowledge, or as formulated by Kerlinger ( 1986, p. 19): " … they direct investigation.". There are many kinds of problems and hypotheses, and they may play various roles in knowledge construction.

  16. ROLE OF HYPOTHESIS IN SOCIAL RESEARCH

    P. V. Yaung- The idea of a temporary but central importance that becomes the basis of useful research is called a working hypothesis. TYPES OF HYPOTHESIS. i) Explanatory Hypothesis: The purpose of this hypothesis is to explain a certain fact. All hypotheses are in a way explanatory for a hypothesis is advanced only when we try to explain the ...

  17. Understanding the importance of a research hypothesis

    A research hypothesis is a specification of a testable prediction about what a researcher expects as the outcome of the study. It comprises certain aspects such as the population, variables, and the relationship between the variables. It states the specific role of the position of individual elements through empirical verification.

  18. (PDF) Significance of Hypothesis in Research

    rela onship between variables. When formula ng a hypothesis deduc ve. reasoning is u lized as it aims in tes ng a theory or rela onships. Finally, hypothesis helps in discussion of ndings and ...

  19. Relationships and Hypotheses in Social Science Research

    Abstract. This paper highlights the variables and their relationships in a social. science framework, since most of the social science studies focus on. investigating relations and causal impacts ...

  20. Research questions and testing hypotheses

    This module will teach you about the importance of research questions and hypothesis in social science research. At the end of this module, you will find some digital resources and a bibliography for your further study. Introduction . Knowledge is contextual and much of it depends on agreement. It is contextual as it has a time-space dimension ...

  21. Role of Hypothesis in Social Research

    The general laws of any science function as hypothesis, which guide the inquiry in all its phases". Thus, there is little doubt that the importance of hypothesis in the field of scientific research is tremendous. At least five reasons may be advanced for justifying hypothesis as a significant device for scientific research.

  22. Discuss the importance and sources of hypothesis in social research

    Hypothesis in social research refers to a tentative statement or assumption about the relationship between two or more variables. It is a testable prediction that serves as a starting point for conducting a study. Hypotheses are important in social research for several reasons: 1. Direction and focus: Hypotheses provide a clear direction and ...

  23. Hypothesis in Research: Definition, Types And Importance

    2. Complex Hypothesis: A Complex hypothesis examines relationship between two or more independent variables and two or more dependent variables. 3. Working or Research Hypothesis: A research hypothesis is a specific, clear prediction about the possible outcome of a scientific research study based on specific factors of the population. 4.

  24. The importance of defining the hypothesis in scientific research

    2013. 2. Among hypotheses supporters exists a belief that the hypothesis creates the research process framework, implying that the other elements of the research are not as important for reaching the goal. This opinion directly promotes a methodology built solely on a system of hypotheses with its variables and indicators as a sufficient road ...