Skip to Content

  • Dissertations & Theses

» PhD Dissertations    » Masters Theses    » Research Experience for Undergraduates (REU) in PER    » Undergraduate Honors Theses

Dissertations by former PER@C graduate PhD students:

Bethany r. wilcox, 2015.

New Tools for Investigating Student Learning in Upper-division Electrostatics

Student learning in upper-division physics courses is a growing area of research in the field of Physics Education. Developing effective new curricular materials and pedagogical techniques to improve student learning in upper-division courses requires knowledge of both what material students struggle with and what curricular approaches help to overcome these struggles. To facilitate the course transformation process for one specific content area — upper-division electrostatics — this thesis presents two new methodological tools: (1) an analytical framework designed to investigate students' struggles with the advanced physics content and mathematically sophisticated tools/techniques required at the junior and senior level, and (2) a new multiple-response conceptual assessment designed to measure student learning and assess the effectiveness of different curricular approaches.

We first describe the development and theoretical grounding of a new analytical framework designed to characterize how students use mathematical tools and techniques during physics problem solving. We apply this framework to investigate student difficulties with three specific mathematical tools used in upper-division electrostatics: multivariable integration in the context of Coulomb's law, the Dirac delta function in the context of expressing volume charge densities, and separation of variables as a technique to solve Laplace's equation. We find a number of common themes in students' difficulties around these mathematical tools including: recognizing when a particular mathematical tool is appropriate for a given physics problem, mapping between the specific physical context and the formal mathematical structures, and reflecting spontaneously on the solution to a physics problem to gain physical insight or ensure consistency with expected results.

We then describe the development of a novel, multiple-response version of an existing conceptual assessment in upper-division electrostatics courses. The goal of this new version is to provide an easily-graded electrostatics assessment that can potentially be implemented to investigate student learning on a large scale. We show that student performance on the new multiple-response version exhibits a significant degree of consistency with performance on the free-response version, and that it continues to provide significant insight into student reasoning and student difficulties. Moreover, we demonstrate that the new assessment is both valid and reliable using data from upper-division physics students at multiple institutions. Overall, the work described in this thesis represents a significant contribution to the methodological tools available to researchers and instructors interested in improving student learning at the upper-division level.

Benjamin T. Spike, 2014

An Investigation of the Knowledge, Beliefs, and Practices of Physics Teaching Assistants, with Implications for TA Preparation

Physics Teaching Assistants (TAs) serve a critical role in supporting student learning in various classroom environments, including discussions and laboratories. As research-based instructional strategies become more widespread in these settings, the TA's role is expanding beyond simply presenting physics content to encompass facilitating student discussion and attending to student reasoning. At the same time, we recognize that these TAs are physics professionals and future faculty, and their teaching experiences in graduate school have the potential for long-term impact on their professional identities. Consequently, there is a need to enhance traditional forms of preparation to support TAs in this expanded role in ways that complement broader professional development opportunities. Enhancing TA preparation requires understanding how TAs make sense of their roles as instructors so that we may identify potential avenues for intervention that support the development of practices that are (1) supportive of curricular goals and (2) consistent with the TAs' overall pedagogical model. The intent of this thesis is to develop a single overarching framework for analyzing how TAs talk about and carry out their roles as instructors. We then apply this framework to a set of interview and video data from multiple semesters, and make claims regarding instances of coordination and dis-coordination between TAs' beliefs and practices. Furthermore, we are able to track changes in beliefs and practices along various time scales. Finally, we return to the issue of TA preparation by identifying features of enhanced professional and pedagogical development, drawn from results of these studies, that could operate within existing institutional structures

Charles Baily, 2011

Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical

An investigation into student and expert perspectives on the physical interpretation of quantum mechanics, with implications for modern physics instruction.

A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wave function an ad hoc rule, or a physical transition not described by any equation? Does an electron, being a form of matter, exist as a localized particle at all times? These questions, which are of personal and academic interest to our students, are largely only superficially addressed in our introductory courses, often for fear of opening a Pandora’s Box of student questions, none of which have easy answers. We show how a transformed modern physics curriculum (recently implemented at the University of Colorado) may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of our course, but also by making the beliefs of our students, and not just those of scientists, an explicit topic of discussion.

Lauren Kost-Smith, 2011

Characterizing, Modeling, and Addressing Gender Disparities in Introductory College Physics

The under representation and under performance of females in physics has been well documented and has long concerned policy-makers, educators, and the physics community. In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model gender differences in the introductory physics courses in three areas: student performance, retention, and psychological factors. We observe gender differences on several measures in the introductory physics courses: females are less likely to take a high school physics course than males and have lower standardized mathematics test scores; males outscore females on both pre- and post-course conceptual physics surveys and in-class exams; and males have more expert-like attitudes and beliefs about physics than females. These background differences of males and females account for 60% to 70% of the gender gap that we observe on a post-course survey of conceptual physics understanding. In analyzing underlying psychological factors of learning, we find that female students report lower self-confidence related to succeeding in the introductory courses (self-efficacy) and are less likely to report seeing themselves as a “physics person”. Students’ self-efficacy beliefs are significant predictors of their performance, even when measures of physics and mathematics background are controlled, and account for an additional 10% of the gender gap. Informed by results from these studies, we implemented and tested a psychological, self-affirmation intervention aimed at enhancing female students’ performance in Physics 1. Self-affirmation reduced the gender gap in performance on both in-class exams and the post-course conceptual physics survey. Further, the benefit of the self-affirmation was strongest for females who endorsed the stereotype that men do better than women in physics. The findings of this thesis suggest that there are multiple factors that contribute to the under performance of females in physics. Establishing this model of gender differences is a first step towards increasing females’ participation and performance in physics, and can be used to guide future interventions to address the disparities.

Colin S. Wallace, 2011

An investigation into introductory astronomy students' difficulties with cosmology, and the development, validation, and efficacy of a new suite of cosmology lecture-tutorials

This study reports the results of the first systematic investigation into Astro 101 students' conceptual and reasoning difficulties with cosmology. We developed four surveys with which we measured students' conceptual knowledge of the Big Bang, the expansion and evolution of the universe, and the evidence for dark matter. Our classical test theory and item response theory analyses of over 2300 students' pre- and post-instruction responses, combined with daily classroom observations, videotapes of students working in class, and one-on-one semi-structured think-aloud interviews with nineteen Astro 101 students, revealed several common learning difficulties. In order to help students overcome these difficulties, we used our results to inform the development of a new suite of cosmology lecture-tutorials. In our initial testing of the new lecture-tutorials at the University of Colorado at Boulder and the University of Arizona, we found many cases in which students who used the lecture-tutorials achieved higher learning gains (as measured by our surveys) at statistically significant levels than students who did not. Subsequent use of the lecture-tutorials at a variety of colleges and universities across the United States produced a wide range of learning gains, suggesting that instructors' pedagogical practices and implementations of the lecture-tutorials significantly affect whether or not students achieve high learning gains.

Chandra Turpen, 2010

Towards a Model of Educational Transformation: Documenting the changing educational practices of professors, institutions, and students in introductory physics

While research-based curricula and instructional strategies in introductory physics are becoming more widespread, how these strategies are implemented by educators is less well understood. Understanding classroom implementation of these strategies is further complicated by the fact that they are being used beyond the institutions at which they were developed. This thesis examines how educational innovations are taken up, take root, and transform educational practice. Data is analyzed from two case studies in educational change at the University of Colorado: the use of Peer Instruction (PI) and the use of the Tutorials in Introductory Physics. Our research studies on PI establish that 1) professors’ actual practices involving the use of PI differ strikingly, thus exposing students to different scientific practices, 2) variations in classroom practices create different classroom norms, and 3) students perceive PI classrooms differently in ways that are associated with corresponding PI implementation. Investigations into the use of the Tutorials in Introductory Physics (Tutorials) reveal that focusing purely on individual faculty members’ experiences does not fully capture the complexity of the change processes associated with Tutorials adoption. Although individual faculty members play important roles in the adoption and institutionalization process, other changes occur simultaneously throughout the educational system (i.e. shifts in internal and external funding, as well as expanding partnerships between the physics department, other STEM departments, the School of Education, and other university programs). By examining faculty within the situations that they work, we have found that structural changes in how institutions operate are coupled with changes in how individual faculty members’ teach their courses. These findings call into question the common assumption of dissemination approaches that focus solely on individual faculty members’ adoption and individual use of curricular materials and suggest that approaches to educational change might be more successful by coordinating and addressing multiple levels of the educational system simultaneously.

Noah Podolefsky, 2008

Analogical Scaffolding: Making Meaning in Physics through Representation and Analogy

This work reviews the literature on analogy, introduces a new model of analogy, and presents a series of experiments that test and confirm the utility of this model to describe and predict student learning in physics with analogy. Pilot studies demonstrate that representations (e.g., diagrams) can play a key role in students’ use of analogy. A new model of analogy, Analogical Scaffolding, is developed to explain these initial empirical results. This model will be described in detail, and then applied to describe and predict the outcomes of further experiments. Two large-scale (N>100) studies will demonstrate that: (1) students taught with analogies, according to the Analogical Scaffolding model, outperform students taught without analogies on pre- post assessments focused on electromagnetic waves; (2) the representational forms used to teach with analogy can play a significant role in student learning, with students in one treatment group outperforming students in other treatment groups by factors of two or three. It will be demonstrated that Analogical Scaffolding can be used to predict these results, as well as finer-grained results such as the types of distracters students choose in different treatment groups, and to describe and analyze student reasoning in interviews. Abstraction in physics is reconsidered using Analogical Scaffolding. An operational definition of abstraction is developed within the Analogical Scaffolding framework and employed to explain (a) why physicists consider some ideas more abstract than others in physics, and (b) how students conceptions of these ideas can be modeled. This new approach to abstraction suggests novel approaches to curriculum design in physics using Analogical Scaffolding.

Wendy Adams, 2007

Development of a Problem Solving Evaluation Instrument; untangling of specific problem solving skills

The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly.

This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate skills (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these skills identified by this content-free evaluation tool are the same skills that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component skills will help teachers and researchers address problem solving within the classroom.

Pat Kohl, 2007

Towards an Understanding of Student Use of Representations In Physics Problem Solving

Skill with different representations and multiple representations is highly valued in physics, and prior work has shown that novice physics students can struggle with the representations typically used in solving physics problems. There exists work in PER examining student use of representations and multiple representations, but there have been no comprehensive attempts to understand what factors influence how introductory students succeed or fail in using representations in physics. This thesis is such an attempt, and is organized around four main goals and results. First, we establish that representation is a major factor in student performance, and uncover some of the mechanisms by which representation can affect performance, including representation-dependent cueing. Second, we study the effect of different instructional environments on student learning of multiple representation use during problem solving, and find that courses that are rich in representations can have significant impacts on student skills. Third, we evaluate the role of meta-representational skills in solving physics problems at the introductory level, and find that the meta-representational abilities that we test for in our studies are poorly developed in introductory students. Fourth, we characterize the differences in representation use between expert and novice physics problem solvers, and note that the major differences appear not to lie in whether representations are used, but in how they are used.

With these results in hand, we introduce a model of student use of representations during physics problem solving. This model consists of a set of practical heuristics plus an analysis framework adapted from cultural-constructivist theory. We demonstrate that this model can be useful in understanding and synthesizing our results, and we discuss the instructional implications of our findings.

Theses by Former PER@C Masters Degree Students

Christopher keller, 2006.

On the Use of Clickers at CU & Clicker Literature Review

Research on computer-based educational activities for introductory college physics

Research Experience for Undergraduates (REU) in PER

Lisa goodhew, 2012.

What Representations Teach Us About Student Reasoning

The importance of informal science education to the field of Physics Education Research includes extending to a broader range of ages and environments than formal science and focusing on broader goals such as participants' identities as scientists. This paper describes 3 aspects of informal science education: programming, research, and curriculum development. A summer camp was run through JILA's PISEC (Partnerships of Informal Science in the Community) program. Participants' use of representations, in particular drawings, in response to different types of prompting was analyzed in both lab notebooks and stop-motion videos made by the participants. In light of the results of this study, a new curriculum was developed for use in the fall 2012 semester of the PISEC program.

Danny Rehn, 2011

Heuristics for Creating Assignments to Incorporate Simulations

The use of simulations in learning physics is a topic of growing interest in physics education research circles. While prior research has been conducted to understand the factors that promote engaging and interacting with sims in an interview setting, little work has been done to understand how assignments affect students' interactions with the sims in various environments. This paper explores this issue through analyzing two different case studies in radically different settings. One is a study done in a middle school classroom using the build-a-molecule PhET simulation, and the other investigates the use of a PhET quantum tunneling sim used in a college-level modern physics course. These assignments were created with a tentative list of "heuristics" we felt would be useful in writing these assignments, and through these studies we present a list of refined and expanded heuristics that are more representative of our findings. In addition to these heuristics, we present a framework which is more inclusive than the set of heuristics alone in accounting for the design of these assignments across different contexts.

Alex Fout, 2009

The Role of Contextual Framing: Assessments, Classroom Practice, and Student Perceptions

Contextual framing in physics problems has been shown to generally affect student performance on assessments. This study seeks to identify some of the main influences of this effect, and to characterize how contextual framing may vary within a classroom. Students in summer introductory physics courses (algebra based and calculus based) are administered surveys that assess performance on problems that are contextually rich (more “real world”) vs. contextually bland (more abstract, “laboratory” descriptions). Initially females perform worse than do males on the contextually rich versions of the assessments when performance was equal on the contextually bland versions of the test. However further assessment reveals no clear trend how explicit contextual framing influences male and females differently. Students were polled on Attitudes and beliefs regarding the use of different kinds of context in the classroom, and the researcher’s observations of instructor practice correlated well with students’ opinions. Other roles of problem contextualization are identified, including the triggering of intuition and reasoning, albeit sometimes incorrect.

Undergraduate Honors Theses in PER

Elias euler, 2015.

Beliefs, Intentions, Actions, & Reflections (BIAR): A New Way to Look at the Interactions of Teachers and Students

An accurate, nuanced capturing and characterization of student/teacher behavior inside and outside the classroom is a necessity in today’s education reform. In this paper, a new framework, called the BIAR (Beliefs, Intentions, Actions, and Reflections) Student-Teacher Interaction Model, is introduced. This tool incorporates the use of TDOP (Teaching Dimensions Observation Protocol) in classroom observations alongside student/faculty interviews, stimulated recall sessions, and electronic surveys. Once gathered, the data can be compared and rated for their degree of correlation. While the work in this project wasn’t aimed at making any specific claims about the practices of teachers or students, the introduction of the BIAR Model provides a structure for future work in this area.

Heuristics for Incorporating Simulations into Assignments

The use of simulations in educational environments is a topic of growing interest, particularly in science education. While much research has been done to understand simulation use in interview settings, less has been done in the environments in which the majority of simulation use arises. The purpose of this thesis is to provide a framework for how simulations can be used in these natural environments, and analyze what can be done to promote effective use of simulations in these settings. We propose a list of heuristics or strategies that can be used when writing assignments to incorporate simulations, and additionally, provide a tentative theoretical view of how to implement these heuristics and why they work. This is done through a series of case studies that make use of the heuristics, as we first give an analysis of the heuristics that were used, and then provide a tentative theoretical view of how the heuristics were implemented, and why they work.

Laura Archibald, 2009

Expert and Novice Student Use of Computer Simulations: Fourier: Making Waves

Jessica Bartly, Cum Laude, 2009

Brandon tarshis, suma cum laude, 2008.

Measuring What's Hidden: How College Physics Courses Implicitly Influence Student Beliefs

Educators devote most of their attention to students learning the subject matter of a course. What is less recognized by educators, is that beyond learning the content, students’ attitudes, beliefs, and values change too—sometimes in unexpected and unintended ways. When something is not explicitly taught, but students learn it anyway, it is part of the “hidden curriculum.” Because the explicit curriculum tends to focus on content, it’s the hidden curriculum that influences students’ beliefs about the nature of science, and the nature of learning science. This thesis presents a study of the hidden curricula in three different introductory physics courses. All three are second semester Electricity and Magnetism courses at the University of Colorado at Boulder. This research focuses on four dimensions of the hidden curriculum: Process vs. Product, Source of Knowledge, Real World vs. Abstract, and Gender Bias vs. Gender Neutral. In order to measure these four dimensions of the hidden curricula of three courses, rubrics have been developed, and course environments have been observed and measured using these rubrics. Additionally, the impact that varying hidden curricula have on students is addressed by surveying student beliefs. Results indicate that course practices implicitly affect student attitudes and beliefs in a way that might be predictable by measuring the hidden curriculum—especially for students with less strongly held beliefs. Furthermore, the hidden curriculum sends mixed messages to students, and certain course elements have greater influence on students’ beliefs than others (like lecture versus homework).

Heather Demarest: Suma Cum Laude, 2004

Examining Teacher Expectations about Physics Homework

There are many different ways by which students learn physics and develop beliefs about physics. These range from exams to lectures, from labs to homework. Teachers have beliefs about the ideal content for each of these media to contain, as well as beliefs about what they typically do contain. The purpose of my thesis, therefore, is to examine in detail, a small but vital way that this information is conveyed from teacher to student: Homework. First, I design a survey to be administered to teachers of introductory university classes. This survey is designed to acquire data about teachers’expectations and beliefs about their homework content. Next, I administer the survey and simultaneously conduct an interview with each professor in my study. Then, I acquire homework sets from the teachers’ classes. I rate these homework sets along the same dimensions the teachers were asked to rate them. Finally, I compare the ratings and analyze them for agreement.

Research - old

  • Graduate Study in PER
  • Talks & Posters
  • Position paper
  • Open access
  • Published: 28 November 2019

Physics education research for 21 st century learning

  • Lei Bao   ORCID: orcid.org/0000-0003-3348-4198 1 &
  • Kathleen Koenig 2  

Disciplinary and Interdisciplinary Science Education Research volume  1 , Article number:  2 ( 2019 ) Cite this article

39k Accesses

79 Citations

2 Altmetric

Metrics details

Education goals have evolved to emphasize student acquisition of the knowledge and attributes necessary to successfully contribute to the workforce and global economy of the twenty-first Century. The new education standards emphasize higher end skills including reasoning, creativity, and open problem solving. Although there is substantial research evidence and consensus around identifying essential twenty-first Century skills, there is a lack of research that focuses on how the related subskills interact and develop over time. This paper provides a brief review of physics education research as a means for providing a context towards future work in promoting deep learning and fostering abilities in high-end reasoning. Through a synthesis of the literature around twenty-first Century skills and physics education, a set of concretely defined education and research goals are suggested for future research, along with how these may impact the next generation physics courses and how physics should be taught in the future.

Introduction

Education is the primary service offered by society to prepare its future generation workforce. The goals of education should therefore meet the demands of the changing world. The concept of learner-centered, active learning has broad, growing support in the research literature as an empirically validated teaching practice that best promotes learning for modern day students (Freeman et al., 2014 ). It stems out of the constructivist view of learning, which emphasizes that it is the learner who needs to actively construct knowledge and the teacher should assume the role of a facilitator rather than the source of knowledge. As implied by the constructivist view, learner-centered education usually emphasizes active-engagement and inquiry style teaching-learning methods, in which the learners can effectively construct their understanding under the guidance of instruction. The learner-centered education also requires educators and researchers to focus their efforts on the learners’ needs, not only to deliver effective teaching-learning approaches, but also to continuously align instructional practices to the education goals of the times. The goals of introductory college courses in science, technology, engineering, and mathematics (STEM) disciplines have constantly evolved from some notion of weed-out courses that emphasize content drilling, to the current constructivist active-engagement type of learning that promotes interest in STEM careers and fosters high-end cognitive abilities.

Following the conceptually defined framework of twenty-first Century teaching and learning, this paper aims to provide contextualized operational definitions of the goals for twenty-first Century learning in physics (and STEM in general) as well as the rationale for the importance of these outcomes for current students. Aligning to the twenty-first Century learning goals, research in physics education is briefly reviewed to provide a context towards future work in promoting deep learning and fostering abilities in high-end reasoning in parallel. Through a synthesis of the literature around twenty-first Century skills and physics education, a set of concretely defined education and research goals are suggested for future research. These goals include: domain-specific research in physics learning; fostering scientific reasoning abilities that are transferable across the STEM disciplines; and dissemination of research-validated curriculum and approaches to teaching and learning. Although this review has a focus on physics education research (PER), it is beneficial to expand the perspective to view physics education in the broader context of STEM learning. Therefore, much of the discussion will blend PER with STEM education as a continuum body of work on teaching and learning.

Education goals for twenty-first century learning

Education goals have evolved to emphasize student acquisition of essential “21 st Century skills”, which define the knowledge and attributes necessary to successfully contribute to the workforce and global economy of the 21st Century (National Research Council, 2011 , 2012a ). In general, these standards seek to transition from emphasizing content-based drilling and memorization towards fostering higher-end skills including reasoning, creativity, and open problem solving (United States Chamber of Commerce, 2017 ). Initiatives on advancing twenty-first Century education focus on skills that converge on three broad clusters: cognitive, interpersonal, and intrapersonal, all of which include a rich set of sub-dimensions.

Within the cognitive domain, multiple competencies have been proposed, including deep learning, non-routine problem solving, systems thinking, critical thinking, computational and information literacy, reasoning and argumentation, and innovation (National Research Council, 2012b ; National Science and Technology Council, 2018 ). Interpersonal skills are those necessary for relating to others, including the ability to work creatively and collaboratively as well as communicate clearly. Intrapersonal skills, on the other hand, reside within the individual and include metacognitive thinking, adaptability, and self-management. These involve the ability to adjust one’s strategy or approach along with the ability to work towards important goals without significant distraction, both essential for sustained success in long-term problem solving and career development.

Although many descriptions exist for what qualifies as twenty-first Century skills, student abilities in scientific reasoning and critical thinking are the most commonly noted and widely studied. They are highly connected with the other cognitive skills of problem solving, decision making, and creative thinking (Bailin, 1996 ; Facione, 1990 ; Fisher, 2001 ; Lipman, 2003 ; Marzano et al., 1988 ), and have been important educational goals since the 1980s (Binkley et al., 2010 ; NCET, 1987 ). As a result, they play a foundational role in defining, assessing, and developing twenty-first Century skills.

The literature for critical thinking is extensive (Bangert-Drowns & Bankert, 1990 ; Facione, 1990 ; Glaser, 1941 ). Various definitions exist with common underlying principles. Broadly defined, critical thinking is the application of the cognitive skills and strategies that aim for and support evidence-based decision making. It is the thinking involved in solving problems, formulating inferences, calculating likelihoods, and making decisions (Halpern, 1999 ). It is the “reasonable reflective thinking focused on deciding what to believe or do” (Ennis, 1993 ). Critical thinking is recognized as a way to understand and evaluate subject matter; producing reliable knowledge and improving thinking itself (Paul, 1990 ; Siegel, 1988 ).

The notion of scientific reasoning is often used to label the set of skills that support critical thinking, problem solving, and creativity in STEM. Broadly defined, scientific reasoning includes the thinking and reasoning skills involved in inquiry, experimentation, evidence evaluation, inference and argument that support the formation and modification of concepts and theories about the natural world; such as the ability to systematically explore a problem, formulate and test hypotheses, manipulate and isolate variables, and observe and evaluate consequences (Bao et al., 2009 ; Zimmerman, 2000 ). Critical thinking and scientific reasoning share many features, where both emphasize evidence-based decision making in multivariable causal conditions. Critical thinking can be promoted through the development of scientific reasoning, which includes student ability to reach a reliable conclusion after identifying a question, formulating hypotheses, gathering relevant data, and logically testing and evaluating the hypothesis. In this way, scientific reasoning can be viewed as a scientific domain instantiation of critical thinking in the context of STEM learning.

In STEM learning, cognitive aspects of the twenty-first Century skills aim to develop reasoning skills, critical thinking skills, and deep understanding, all of which allow students to develop well connected expert-like knowledge structures and engage in meaningful scientific inquiry and problem solving. Within physics education, a core component of STEM education, the learning of conceptual understanding and problem solving remains a current emphasis. However, the fast-changing work environment and technology-driven world require a new set of core knowledge, skills, and habits of mind to solve complex interdisciplinary problems, gather and evaluate evidence, and make sense of information from a variety of sources (Tanenbaum, 2016 ). The education goals in physics are transitioning towards ability fostering as well as extension and integration with other STEM disciplines. Although curriculum that supports these goals is limited, there are a number of attempts, particularly in developing active learning classrooms and inquiry-based laboratory activities, which have demonstrated success. Some of these are described later in this paper as they provide a foundation for future work in physics education.

Interpersonal skills, such as communication and collaboration, are also essential for twenty-first Century problem-solving tasks, which are often open-ended, complex, and team-based. As the world becomes more connected in a multitude of dimensions, tackling significant problems involving complex systems often goes beyond the individual and requires working with others who are increasingly from culturally diverse backgrounds. Due to the rise of communication technologies, being able to articulate thoughts and ideas in a variety of formats and contexts is crucial, as well as the ability to effectively listen or observe to decipher meaning. Interpersonal skills can be promoted by integrating group-learning experiences into the classroom setting, while providing students with the opportunity to engage in open-ended tasks with a team of peer learners who may propose more than one plausible solution. These experiences should be designed such that students must work collaboratively and responsibly in teams to develop creative solutions, which are later disseminated through informative presentations and clearly written scientific reports. Although educational settings in general have moved to providing students with more and more opportunities for collaborative learning, a lack of effective assessments for these important skills has been a limiting factor for producing informative research and widespread implementation. See Liu ( 2010 ) for an overview of measurement instruments reported in the research literature.

Intrapersonal skills are based on the individual and include the ability to manage one’s behavior and emotions to achieve goals. These are especially important for adapting in the fast-evolving collaborative modern work environment and for learning new tasks to solve increasingly challenging interdisciplinary problems, both of which require intellectual openness, work ethic, initiative, and metacognition, to name a few. These skills can be promoted using instruction which, for example, includes metacognitive learning strategies, provides opportunities to make choices and set goals for learning, and explicitly connects to everyday life events. However, like interpersonal skills, the availability of relevant assessments challenges advancement in this area. In this review, the vast amount of studies on interpersonal and intrapersonal skills will not be discussed in order to keep the main focus on the cognitive side of skills and reasoning.

The purpose behind discussing twenty-first Century skills is that this set of skills provides important guidance for establishing essential education goals for modern society and learners. However, although there is substantial research evidence and consensus around identifying necessary twenty-first Century skills, there is a lack of research that focuses on how the related subskills interact and develop over time (Reimers & Chung, 2016 ), with much of the existing research residing in academic literature that is focused on psychology rather than education systems (National Research Council, 2012a ). Therefore, a major and challenging task for discipline-based education researchers and educators is to operationally define discipline-specific goals that align with the twenty-first Century skills for each of the STEM fields. In the following sections, this paper will provide a limited vision of the research endeavors in physics education that can translate the past and current success into sustained impact for twenty-first Century teaching and learning.

Proposed education and research goals

Physics education research (PER) is often considered an early pioneer in discipline-based education research (National Research Council, 2012c ), with well-established, broad, and influential outcomes (e.g., Hake, 1998 ; Hsu, Brewe, Foster, & Harper, 2004 ; McDermott & Redish, 1999 ; Meltzer & Thornton, 2012 ). Through the integration of twenty-first Century skills with the PER literature, a set of broadly defined education and research goals is proposed for future PER work:

Discipline-specific deep learning: Cognitive and education research involving physics learning has established a rich literature on student learning behaviors along with a number of frameworks. Some of the popular frameworks include conceptual understanding and concept change, problem solving, knowledge structure, deep learning, and knowledge integration. Aligned with twenty-first Century skills, future research in physics learning should aim to integrate the multiple areas of existing work, such that they help students develop well integrated knowledge structures in order to achieve deep leaning in physics.

Fostering scientific reasoning for transfer across STEM disciplines: The broad literature in physics learning and scientific reasoning can provide a solid foundation to further develop effective physics education approaches, such as active engagement instruction and inquiry labs, specifically targeting scientific inquiry abilities and reasoning skills. Since scientific reasoning is a more domain-general cognitive ability, success in physics can also more readily inform research and education practices in other STEM fields.

Research, development, assessment, and dissemination of effective education approaches: Developing and maintaining a supportive infrastructure of education research and implementation has always been a challenge, not only in physics but in all STEM areas. The twenty-first Century education requires researchers and instructors across STEM to work together as an extended community in order to construct a sustainable integrated STEM education environment. Through this new infrastructure, effective team-based inquiry learning and meaningful assessment can be delivered to help students develop a comprehensive skills set including deep understanding and scientific reasoning, as well as communication and other non-cognitive abilities.

The suggested research will generate understanding and resources to support education practices that meet the requirements of the Next Generation Science Standards (NGSS), which explicitly emphasize three areas of learning including disciplinary core ideas, crosscutting concepts, and practices (National Research Council, 2012b ). The first goal for promoting deep learning of disciplinary knowledge corresponds well to the NGSS emphasis on disciplinary core ideas, which play a central role in helping students develop well integrated knowledge structures to achieve deep understanding. The second goal on fostering transferable scientific reasoning skills supports the NGSS emphasis on crosscutting concepts and practices. Scientific reasoning skills are crosscutting cognitive abilities that are essential to the development of domain-general concepts and modeling strategies. In addition, the development of scientific reasoning requires inquiry-based learning and practices. Therefore, research on scientific reasoning can produce a valuable knowledge base on education means that are effective for developing crosscutting concepts and promoting meaningful practices in STEM. The third research goal addresses the challenge in the assessment of high-end skills and the dissemination of effective educational approaches, which supports all NGSS initiatives to ensure sustainable development and lasting impact. The following sections will discuss the research literature that provides the foundation for these three research goals and identify the specific challenges that will need to be addressed in future work.

Promoting deep learning in physics education

Physics education for the twenty-first Century aims to foster high-end reasoning skills and promote deep conceptual understanding. However, many traditional education systems place strong emphasis on only problem solving with the expectation that students obtain deep conceptual understanding through repetitive problem-solving practices, which often doesn’t occur (Alonso, 1992 ). This focus on problem solving has been shown to have limitations as a number of studies have revealed disconnections between learning conceptual understanding and problem-solving skills (Chiu, 2001 ; Chiu, Guo, & Treagust, 2007 ; Hoellwarth, Moelter, & Knight, 2005 ; Kim & Pak, 2002 ; Nakhleh, 1993 ; Nakhleh & Mitchell, 1993 ; Nurrenbern & Pickering, 1987 ; Stamovlasis, Tsaparlis, Kamilatos, Papaoikonomou, & Zarotiadou, 2005 ). In fact, drilling in problem solving may actually promote memorization of context-specific solutions with minimal generalization rather than transitioning students from novices to experts.

Towards conceptual understanding and learning, many models and definitions have been established to study and describe student conceptual knowledge states and development. For example, students coming into a physics classroom often hold deeply rooted, stable understandings that differ from expert conceptions. These are commonly referred to as misconceptions or alternative conceptions (Clement, 1982 ; Duit & Treagust, 2003 ; Dykstra Jr, Boyle, & Monarch, 1992 ; Halloun & Hestenes, 1985a , 1985b ). Such students’ conceptions are context dependent and exist as disconnected knowledge fragments, which are strongly situated within specific contexts (Bao & Redish, 2001 , 2006 ; Minstrell, 1992 ).

In modeling students’ knowledge structures, DiSessa’s proposed phenomenological primitives (p-prim) describe a learner’s implicit thinking, cued from specific contexts, as an underpinning cognitive construct for a learner’s expressed conception (DiSessa, 1993 ; Smith III, DiSessa, & Roschelle, 1994 ). Facets, on the other hand, map between the implicit p-prim and concrete statements of beliefs and are developed as discrete and independent units of thought, knowledge, or strategies used by individuals to address specific situations (Minstrell, 1992 ). Ontological categories, defined by Chi, describe student reasoning in the most general sense. Chi believed that these are distinct, stable, and constraining, and that a core reason behind novices’ difficulties in physics is that they think of physics within the category of matter instead of processes (Chi, 1992 ; Chi & Slotta, 1993 ; Chi, Slotta, & De Leeuw, 1994 ; Slotta, Chi, & Joram, 1995 ). More details on conceptual learning and problem solving are well summarized in the literature (Hsu et al., 2004 ; McDermott & Redish, 1999 ), from which a common theme emerges from the models and definitions. That is, learning is context dependent and students with poor conceptual understanding typically have locally connected knowledge structures with isolated conceptual constructs that are unable to establish similarities and contrasts between contexts.

Additionally, this idea of fragmentation is demonstrated through many studies on student problem solving in physics and other fields. It has been shown that a student’s knowledge organization is a key aspect for distinguishing experts from novices (Bagno, Eylon, & Ganiel, 2000 ; Chi, Feltovich, & Glaser, 1981 ; De Jong & Ferguson-Hesler, 1986 ; Eylon & Reif, 1984 ; Ferguson-Hesler & De Jong, 1990 ; Heller & Reif, 1984 ; Larkin, McDermott, Simon, & Simon, 1980 ; Smith, 1992 ; Veldhuis, 1990 ; Wexler, 1982 ). Expert’s knowledge is organized around core principles of physics, which are applied to guide problem solving and develop connections between different domains as well as new, unfamiliar situations (Brown, 1989 ; Perkins & Salomon, 1989 ; Salomon & Perkins, 1989 ). Novices, on the other hand, lack a well-organized knowledge structure and often solve problems by relying on surface features that are directly mapped to certain problem-solving outcomes through memorization (Chi, Bassok, Lewis, Reimann, & Glaser, 1989 ; Hardiman, Dufresne, & Mestre, 1989 ; Schoenfeld & Herrmann, 1982 ).

This lack of organization creates many difficulties in the comprehension of basic concepts and in solving complex problems. This leads to the common complaint that students’ knowledge of physics is reduced to formulas and vague labels of the concepts, which are unable to substantively contribute to meaningful reasoning processes. A novice’s fragmented knowledge structure severely limits the learner’s conceptual understanding. In essence, these students are able to memorize how to approach a problem given specific information but lack the understanding of the underlying concept of the approach, limiting their ability to apply this approach to a novel situation. In order to achieve expert-like understanding, a student’s knowledge structure must integrate all of the fragmented ideas around the core principle to form a coherent and fully connected conceptual framework.

Towards a more general theoretical consideration, students’ alternative conceptions and fragmentation in knowledge structures can be viewed through both the “naïve theory” framework (e.g., Posner, Strike, Hewson, & Gertzog, 1982 ; Vosniadou, Vamvakoussi, & Skopeliti, 2008 ) and the “knowledge in pieces” (DiSessa, 1993 ) perspective. The “naïve theory” framework considers students entering the classroom with stable and coherent ideas (naïve theories) about the natural world that differ from those presented by experts. In the “knowledge in pieces” perspective, student knowledge is constructed in real-time and incorporates context features with the p-prims to form the observed conceptual expressions. Although there exists an ongoing debate between these two views (Kalman & Lattery, 2018 ), it is more productive to focus on their instructional implications for promoting meaningful conceptual change in students’ knowledge structures.

In the process of learning, students may enter the classroom with a range of initial states depending on the population and content. For topics with well-established empirical experiences, students often have developed their own ideas and understanding, while on topics without prior exposure, students may create their initial understanding in real-time based on related prior knowledge and given contextual features (Bao & Redish, 2006 ). These initial states of understanding, regardless of their origin, are usually different from those of experts. Therefore, the main function of teaching and learning is to guide students to modify their initial understanding towards the experts’ views. Although students’ initial understanding may exist as a body of coherent ideas within limited contexts, as students start to change their knowledge structures throughout the learning process, they may evolve into a wide range of transitional states with varying levels of knowledge integration and coherence. The discussion in this brief review on students’ knowledge structures regarding fragmentation and integration are primarily focused on the transitional stages emerged through learning.

The corresponding instructional goal is then to help students more effectively develop an integrated knowledge structure so as to achieve a deep conceptual understanding. From an educator’s perspective, Bloom’s taxonomy of education objectives establishes a hierarchy of six levels of cognitive skills based on their specificity and complexity: Remember (lowest and most specific), Understand, Apply, Analyze, Evaluate, and Create (highest and most general and complex) (Anderson et al., 2001 ; Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956 ). This hierarchy of skills exemplifies the transition of a learner’s cognitive development from a fragmented and contextually situated knowledge structure (novice with low level cognitive skills) to a well-integrated and globally networked expert-like structure (with high level cognitive skills).

As a student’s learning progresses from lower to higher cognitive levels, the student’s knowledge structure becomes more integrated and is easier to transfer across contexts (less context specific). For example, beginning stage students may only be able to memorize and perform limited applications of the features of certain contexts and their conditional variations, with which the students were specifically taught. This leads to the establishment of a locally connected knowledge construct. When a student’s learning progresses from the level of Remember to Understand, the student begins to develop connections among some of the fragmented pieces to form a more fully connected network linking a larger set of contexts, thus advancing into a higher level of understanding. These connections and the ability to transfer between different situations form the basis of deep conceptual understanding. This growth of connections leads to a more complete and integrated cognitive structure, which can be mapped to a higher level on Bloom’s taxonomy. This occurs when students are able to relate a larger number of different contextual and conditional aspects of a concept for analyzing and evaluating to a wider variety of problem situations.

Promoting the growth of connections would appear to aid in student learning. Exactly which teaching methods best facilitate this are dependent on the concepts and skills being learned and should be determined through research. However, it has been well recognized that traditional instruction often fails to help students obtain expert-like conceptual understanding, with many misconceptions still existing after instruction, indicating weak integration within a student’s knowledge structure (McKeachie, 1986 ).

Recognizing the failures of traditional teaching, various research-informed teaching methods have been developed to enhance student conceptual learning along with diagnostic tests, which aim to measure the existence of misconceptions. Most advances in teaching methods focus on the inclusion of inquiry-based interactive-engagement elements in lecture, recitations, and labs. In physics education, these methods were popularized after Hake’s landmark study demonstrated the effectiveness of interactive-engagement over traditional lectures (Hake, 1998 ). Some of these methods include the use of peer instruction (Mazur, 1997 ), personal response systems (e.g., Reay, Bao, Li, Warnakulasooriya, & Baugh, 2005 ), studio-style instruction (Beichner et al., 2007 ), and inquiry-based learning (Etkina & Van Heuvelen, 2001 ; Laws, 2004 ; McDermott, 1996 ; Thornton & Sokoloff, 1998 ). The key approach of these methods aims to improve student learning by carefully targeting deficits in student knowledge and actively encouraging students to explore and discuss. Rather than rote memorization, these approaches help promote generalization and deeper conceptual understanding by building connections between knowledge elements.

Based on the literature, including Bloom’s taxonomy and the new education standards that emphasize twenty-first Century skills, a common focus on teaching and learning can be identified. This focus emphasizes helping students develop connections among fragmented segments of their knowledge pieces and is aligned with the knowledge integration perspective, which focuses on helping students develop and refine their knowledge structure toward a more coherently organized and extensively connected network of ideas (Lee, Liu, & Linn, 2011 ; Linn, 2005 ; Nordine, Krajcik, & Fortus, 2011 ; Shen, Liu, & Chang, 2017 ). For meaningful learning to occur, new concepts must be integrated into a learner’s existing knowledge structure by linking the new knowledge to already understood concepts.

Forming an integrated knowledge structure is therefore essential to achieving deep learning, not only in physics but also in all STEM fields. However, defining what connections must occur at different stages of learning, as well as understanding the instructional methods necessary for effectively developing such connections within each STEM disciplinary context, are necessary for current and future research. Together these will provide the much needed foundational knowledge base to guide the development of the next generation of curriculum and classroom environment designed around twenty-first Century learning.

Developing scientific reasoning with inquiry labs

Scientific reasoning is part of the widely emphasized cognitive strand of twenty-first Century skills. Through development of scientific reasoning skills, students’ critical thinking, open-ended problem-solving abilities, and decision-making skills can be improved. In this way, targeting scientific reasoning as a curricular objective is aligned with the goals emphasized in twenty-first Century education. Also, there is a growing body of research on the importance of student development of scientific reasoning, which have been found to positively correlate with course achievement (Cavallo, Rozman, Blickenstaff, & Walker, 2003 ; Johnson & Lawson, 1998 ), improvement on concept tests (Coletta & Phillips, 2005 ; She & Liao, 2010 ), engagement in higher levels of problem solving (Cracolice, Deming, & Ehlert, 2008 ; Fabby & Koenig, 2013 ); and success on transfer (Ates & Cataloglu, 2007 ; Jensen & Lawson, 2011 ).

Unfortunately, research has shown that college students are lacking in scientific reasoning. Lawson ( 1992 ) found that ~ 50% of intro biology students are not capable of applying scientific reasoning in learning, including the ability to develop hypotheses, control variables, and design experiments; all necessary for meaningful scientific inquiry. Research has also found that traditional courses do not significantly develop these abilities, with pre-to-post-test gains of 1%–2%, while inquiry-based courses have gains around 7% (Koenig, Schen, & Bao, 2012 ; Koenig, Schen, Edwards, & Bao, 2012 ). Others found that undergraduates have difficulty developing evidence-based decisions and differentiating between and linking evidence with claims (Kuhn, 1992 ; Shaw, 1996 ; Zeineddin & Abd-El-Khalick, 2010 ). A large scale international study suggested that learning of physics content knowledge with traditional teaching practices does not improve students’ scientific reasoning skills (Bao et al., 2009 ).

Aligned to twenty-first Century learning, it is important to implement curriculum that is specifically designed for developing scientific reasoning abilities within current education settings. Although traditional lectures may continue for decades due to infrastructure constraints, a unique opportunity can be found in the lab curriculum, which may be more readily transformed to include hands-on minds-on group learning activities that are ideal for developing students’ abilities in scientific inquiry and reasoning.

For well over a century, the laboratory has held a distinctive role in student learning (Meltzer & Otero, 2015 ). However, many existing labs, which haven’t changed much since the late 1980s, have received criticism for their outdated cookbook style that lacks effectiveness in developing high-end skills. In addition, labs have been primarily used as a means for verifying the physical principles presented in lecture, and unfortunately, Hofstein and Lunetta ( 1982 ) found in an early review of the literature that research was unable to demonstrate the impact of the lab on student content learning.

About this same time, a shift towards a constructivist view of learning gained popularity and influenced lab curriculum development towards engaging students in the process of constructing knowledge through science inquiry. Curricula, such as Physics by Inquiry (McDermott, 1996 ), Real-Time Physics (Sokoloff, Thornton, & Laws, 2011 ), and Workshop Physics (Laws, 2004 ), were developed with a primary focus on engaging students in cognitive conflict to address misconceptions. Although these approaches have been shown to be highly successful in improving deep learning of physics concepts (McDermott & Redish, 1999 ), the emphasis on conceptual learning does not sufficiently impact the domain general scientific reasoning skills necessitated in the goals of twenty-first Century learning.

Reform in science education, both in terms of targeted content and skills, along with the emergence of knowledge regarding human cognition and learning (Bransford, Brown, & Cocking, 2000 ), have generated renewed interest in the potential of inquiry-based lab settings for skill development. In these types of hands-on minds-on learning, students apply the methods and procedures of science inquiry to investigate phenomena and construct scientific claims, solve problems, and communicate outcomes, which holds promise for developing both conceptual understanding and scientific reasoning skills in parallel (Trowbridge, Bybee, & Powell, 2000 ). In addition, the availability of technology to enhance inquiry-based learning has seen exponential growth, along with the emergence of more appropriate research methodologies to support research on student learning.

Although inquiry-based labs hold promise for developing students’ high-end reasoning, analytic, and scientific inquiry abilities, these educational endeavors have not become widespread, with many existing physics laboratory courses still viewed merely as a place to illustrate the physical principles from the lecture course (Meltzer & Otero, 2015 ). Developing scientific ideas from practical experiences, however, is a complex process. Students need sufficient time and opportunity for interaction and reflection on complex, investigative tasks. Blended learning, which merges lecture and lab (such as studio style courses), addresses this issue to some extent, but has experienced limited adoption, likely due to the demanding infrastructure resources, including dedicated technology-intensive classroom space, equipment and maintenance costs, and fully committed trained staff.

Therefore, there is an immediate need to transform the existing standalone lab courses, within the constraints of the existing education infrastructure, into more inquiry-based designs, with one of its primary goals dedicated to developing scientific reasoning skills. These labs should center on constructing knowledge, along with hands-on minds-on practical skills and scientific reasoning, to support modeling a problem, designing and implementing experiments, analyzing and interpreting data, drawing and evaluating conclusions, and effective communication. In particular, training on scientific reasoning needs to be explicitly addressed in the lab curriculum, which should contain components specifically targeting a set of operationally-defined scientific reasoning skills, such as ability to control variables or engage in multivariate causal reasoning. Although effective inquiry may also implicitly develop some aspects of scientific reasoning skills, such development is far less efficient and varies with context when the primary focus is on conceptual learning.

Several recent efforts to enhance the standalone lab course have shown promise in supporting education goals that better align with twenty-first Century learning. For example, the Investigative Science Learning Environment (ISLE) labs involve a series of tasks designed to help students develop the “habits of mind” of scientists and engineers (Etkina et al., 2006 ). The curriculum targets reasoning as well as the lab learning outcomes published by the American Association of Physics Teachers (Kozminski et al., 2014 ). Operationally, ISLE methods focus on scaffolding students’ developing conceptual understanding using inquiry learning without a heavy emphasis on cognitive conflict, making it more appropriate and effective for entry level students and K-12 teachers.

Likewise, Koenig, Wood, Bortner, and Bao ( 2019 ) have developed a lab curriculum that is intentionally designed around the twenty-first Century learning goals for developing cognitive, interpersonal, and intrapersonal abilities. In terms of the cognitive domain, the lab learning outcomes center on critical thinking and scientific reasoning but do so through operationally defined sub-skills, all of which are transferrable across STEM. These selected sub-skills are found in the research literature, and include the ability to control variables and engage in data analytics and causal reasoning. For each targeted sub-skill, a series of pre-lab and in-class activities provide students with repeated, deliberate practice within multiple hypothetical science-based scenarios followed by real inquiry-based lab contexts. This explicit instructional strategy has been shown to be essential for the development of scientific reasoning (Chen & Klahr, 1999 ). In addition, the Karplus Learning Cycle (Karplus, 1964 ) provides the foundation for the structure of the lab activities and involves cycles of exploration, concept introduction, and concept application. The curricular framework is such that as the course progresses, the students engage in increasingly complex tasks, which allow students the opportunity to learn gradually through a progression from simple to complex skills.

As part of this same curriculum, students’ interpersonal skills are developed, in part, through teamwork, as students work in groups of 3 or 4 to address open-ended research questions, such as, What impacts the period of a pendulum? In addition, due to time constraints, students learn early on about the importance of working together in an efficient manor towards a common goal, with one set of written lab records per team submitted after each lab. Checkpoints built into all in-class activities involve Socratic dialogue between the instructor and students and promote oral communication. This use of directed questioning guides students in articulating their reasoning behind decisions and claims made, while supporting the development of scientific reasoning and conceptual understanding in parallel (Hake, 1992 ). Students’ intrapersonal skills, as well as communication skills, are promoted through the submission of individual lab reports. These reports require students to reflect upon their learning over each of four multi-week experiments and synthesize their ideas into evidence-based arguments, which support a claim. Due to the length of several weeks over which students collect data for each of these reports, the ability to organize the data and manage their time becomes essential.

Despite the growing emphasis on research and development of curriculum that targets twenty-first Century learning, converting a traditionally taught lab course into a meaningful inquiry-based learning environment is challenging in current reform efforts. Typically, the biggest challenge is a lack of resources; including faculty time to create or adapt inquiry-based materials for the local setting, training faculty and graduate student instructors who are likely unfamiliar with this approach, and the potential cost of new equipment. Koenig et al. ( 2019 ) addressed these potential implementation barriers by designing curriculum with these challenges in mind. That is, the curriculum was designed as a flexible set of modules that target specific sub-skills, with each module consisting of pre-lab (hypothetical) and in-lab (real) activities. Each module was designed around a curricular framework such that an adopting institution can use the materials as written, or can incorporate their existing equipment and experiments into the framework with minimal effort. Other non-traditional approaches have also been experimented with, such as the work by Sobhanzadeh, Kalman, and Thompson ( 2017 ), which targets typical misconceptions by using conceptual questions to engage students in making a prediction, designing and conducting a related experiment, and determining whether or not the results support the hypothesis.

Another challenge for inquiry labs is the assessment of skills-based learning outcomes. For assessment of scientific reasoning, a new instrument on inquiry in scientific thinking analytics and reasoning (iSTAR) has been developed, which can be easily implemented across large numbers of students as both a pre- and post-test to assess gains. iSTAR assesses reasoning skills necessary in the systematical conduct of scientific inquiry, which includes the ability to explore a problem, formulate and test hypotheses, manipulate and isolate variables, and observe and evaluate the consequences (see www.istarassessment.org ). The new instrument expands upon the commonly used classroom test of scientific reasoning (Lawson, 1978 , 2000 ), which has been identified with a number of validity weaknesses and a ceiling effect for college students (Bao, Xiao, Koenig, & Han, 2018 ).

Many education innovations need supporting infrastructures that can ensure adoption and lasting impact. However, making large-scale changes to current education settings can be risky, if not impossible. New education approaches, therefore, need to be designed to adapt to current environmental constraints. Since higher-end skills are a primary focus of twenty-first Century learning, which are most effectively developed in inquiry-based group settings, transforming current lecture and lab courses into this new format is critical. Although this transformation presents great challenges, promising solutions have already emerged from various research efforts. Perhaps the biggest challenge is for STEM educators and researchers to form an alliance to work together to re-engineer many details of the current education infrastructure in order to overcome the multitude of implementation obstacles.

This paper attempts to identify a few central ideas to provide a broad picture for future research and development in physics education, or STEM education in general, to promote twenty-first Century learning. Through a synthesis of the existing literature within the authors’ limited scope, a number of views surface.

Education is a service to prepare (not to select) the future workforce and should be designed as learner-centered, with the education goals and teaching-learning methods tailored to the needs and characteristics of the learners themselves. Given space constraints, the reader is referred to the meta-analysis conducted by Freeman et al. ( 2014 ), which provides strong support for learner-centered instruction. The changing world of the twenty-first Century informs the establishment of new education goals, which should be used to guide research and development of teaching and learning for present day students. Aligned to twenty-first Century learning, the new science standards have set the goals for STEM education to transition towards promoting deep learning of disciplinary knowledge, thereby building upon decades of research in PER, while fostering a wide range of general high-end cognitive and non-cognitive abilities that are transferable across all disciplines.

Following these education goals, more research is needed to operationally define and assess the desired high-end reasoning abilities. Building on a clear definition with effective assessments, a large number of empirical studies are needed to investigate how high-end abilities can be developed in parallel with deep learning of concepts, such that what is learned can be generalized to impact the development of curriculum and teaching methods which promote skills-based learning across all STEM fields. Specifically for PER, future research should emphasize knowledge integration to promote deep conceptual understanding in physics along with inquiry learning to foster scientific reasoning. Integration of physics learning in contexts that connect to other STEM disciplines is also an area for more research. Cross-cutting, interdisciplinary connections are becoming important features of the future generation physics curriculum and defines how physics should be taught collaboratively with other STEM courses.

This paper proposed meaningful areas for future research that are aligned with clearly defined education goals for twenty-first Century learning. Based on the existing literature, a number of challenges are noted for future directions of research, including the need for:

clear and operational definitions of goals to guide research and practice

concrete operational definitions of high-end abilities for which students are expected to develop

effective assessment methods and instruments to measure high-end abilities and other components of twenty-first Century learning

a knowledge base of the curriculum and teaching and learning environments that effectively support the development of advanced skills

integration of knowledge and ability development regarding within-discipline and cross-discipline learning in STEM

effective means to disseminate successful education practices

The list is by no means exhaustive, but these themes emerge above others. In addition, the high-end abilities discussed in this paper focus primarily on scientific reasoning, which is highly connected to other skills, such as critical thinking, systems thinking, multivariable modeling, computational thinking, design thinking, etc. These abilities are expected to develop in STEM learning, although some may be emphasized more within certain disciplines than others. Due to the limited scope of this paper, not all of these abilities were discussed in detail but should be considered an integral part of STEM learning.

Finally, a metacognitive position on education research is worth reflection. One important understanding is that the fundamental learning mechanism hasn’t changed, although the context in which learning occurs has evolved rapidly as a manifestation of the fast-forwarding technology world. Since learning is a process at the interface between a learner’s mind and the environment, the main focus of educators should always be on the learner’s interaction with the environment, not just the environment. In recent education developments, many new learning platforms have emerged at an exponential rate, such as the massive open online courses (MOOCs), STEM creative labs, and other online learning resources, to name a few. As attractive as these may be, it is risky to indiscriminately follow trends in education technology and commercially-incentivized initiatives before such interventions are shown to be effective by research. Trends come and go but educators foster students who have only a limited time to experience education. Therefore, delivering effective education is a high-stakes task and needs to be carefully and ethically planned and implemented. When game-changing opportunities emerge, one needs to not only consider the winners (and what they can win), but also the impact on all that is involved.

Based on a century of education research, consensus has settled on a fundamental mechanism of teaching and learning, which suggests that knowledge is developed within a learner through constructive processes and that team-based guided scientific inquiry is an effective method for promoting deep learning of content knowledge as well as developing high-end cognitive abilities, such as scientific reasoning. Emerging technology and methods should serve to facilitate (not to replace) such learning by providing more effective education settings and conveniently accessible resources. This is an important relationship that should survive many generations of technological and societal changes in the future to come. From a physicist’s point of view, a fundamental relation like this can be considered the “mechanics” of teaching and learning. Therefore, educators and researchers should hold on to these few fundamental principles without being distracted by the surfacing ripples of the world’s motion forward.

Availability of data and materials

Not applicable.

Abbreviations

American Association of Physics Teachers

Investigative Science Learning Environment

Inquiry in Scientific Thinking Analytics and Reasoning

Massive open online course

New Generation Science Standards

  • Physics education research

Science Technology Engineering and Math

Alonso, M. (1992). Problem solving vs. conceptual understanding. American Journal of Physics , 60 (9), 777–778. https://doi.org/10.1119/1.17056 .

Article   Google Scholar  

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., … Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives, abridged edition . White Plains: Longman.

Ates, S., & Cataloglu, E. (2007). The effects of students’ reasoning abilities on conceptual understandings and problem-solving abilities in introductory mechanics. European Journal of Physics , 28 , 1161–1171.

Bagno, E., Eylon, B.-S., & Ganiel, U. (2000). From fragmented knowledge to a knowledge structure: Linking the domains of mechanics and electromagnetism. American Journal of Physics , 68 (S1), S16–S26.

Bailin, S. (1996). Critical thinking. In J. J. Chambliss (Ed.), Philosophy of education: An encyclopedia , (vol. 1671, pp. 119–123). Routledge.

Bangert-Drowns, R. L., & Bankert, E. (1990). Meta-analysis of effects of explicit instruction for critical thinking. Research report. ERIC Number: ED328614.

Google Scholar  

Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., … Wu, N. (2009). Learning and scientific reasoning. Science , 323 , 586–587. https://doi.org/10.1126/science.1167740 .

Bao, L., & Redish, E. F. (2001). Concentration analysis: A quantitative assessment of student states. American Journal of Physics , 69 (S1), S45–S53.

Bao, L., & Redish, E. F. (2006). Model analysis: Representing and assessing the dynamics of student learning. Physical Review Special Topics-Physics Education Research , 2 (1), 010103.

Bao, L., Xiao, Y., Koenig, K., & Han, J. (2018). Validity evaluation of the Lawson classroom test of scientific reasoning. Physical Review Physics Education Research , 14 (2), 020106.

Beichner, R. J., Saul, J. M., Abbott, D. S., Morse, J. J., Deardorff, D., Allain, R. J., … Risley, J. S. (2007). The student-centered activities for large enrollment undergraduate programs (SCALE-UP) project. Research-Based Reform of University Physics , 1 (1), 2–39.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., & Rumble, M. (2010). Draft White paper defining 21st century skills . Melbourne: ACTS.

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: Handbook 1: Cognitive domain . New York: Longman.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn , (vol. 11). Washington, DC: National Academy Press.

Brown, A. (1989). Analogical learning and transfer: What develops? In S. Vosniadu, & A. Ortony (Eds.), Similarity and analogical reasoning , (pp. 369–412). New York: Cambridge U.P.

Chapter   Google Scholar  

Cavallo, A. M. L., Rozman, M., Blickenstaff, J., & Walker, N. (2003). Learning, reasoning, motivation, and epistemological beliefs: Differing approaches in college science courses. Journal of College Science Teaching , 33 (3), 18–22.

Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development , 70 , 1098–1120.

Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science , 13 (2), 145–182.

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science , 5 (2), 121–152.

Chi, M. T., & Slotta, J. D. (1993). The ontological coherence of intuitive physics. Cognition and Instruction , 10 (2–3), 249–260.

Chi, M. T., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction , 4 (1), 27–43.

Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. N. Giere (Ed.), Cognitive models of science . Minneapolis: University of Minnesota Press.

Chiu, M. H. (2001). Algorithmic problem solving and conceptual understanding of chemistry by students at a local high school in Taiwan. Proceedings-National Science Council Republic of China Part D Mathematics Science and Technology Education , 11 (1), 20–38.

Chiu, M.-H., Guo, C. J., & Treagust, D. F. (2007). Assessing students’ conceptual understanding in science: An introduction about a national project in Taiwan. International Journal of Science Education , 29 (4), 379–390.

Clement, J. (1982). Students’ preconceptions in introductory mechanics. American Journal of Physics , 50 (1), 66–71.

Coletta, V. P., & Phillips, J. A. (2005). Interpreting FCI scores: Normalized gain, preinstruction scores, and scientific reasoning ability. American Journal of Physics , 73 (12), 1172–1182.

Cracolice, M. S., Deming, J. C., & Ehlert, B. (2008). Concept learning versus problem solving: A cognitive difference. Journal of Chemical Education , 85 (6), 873.

De Jong, T., & Ferguson-Hesler, M. G. M. (1986). Cognitive structure of good and poor problem solvers in physics. Journal of Educational Psychology , 78 , 279–288.

DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction , 10 (2–3), 105–225.

Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education , 25 (6), 671–688.

Dykstra Jr., D. I., Boyle, C. F., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education , 76 (6), 615–652.

Ennis, R. (1993). Critical thinking assessment. Theory Into Practice , 32 (3), 179–186.

Etkina, E., & Van Heuvelen, A. (2001). Investigative science learning environment: Using the processes of science and cognitive strategies to learn physics. In Proceedings of the 2001 physics education research conference , (pp. 17–21). Rochester.

Etkina, E., Van Heuvelen, A., White-Brahmia, S., Brookes, D. T., Gentile, M., Murthy, S., … Warren, A. (2006). Scientific abilities and their assessment. Physical Review Special Topics-Physics Education Research , 2 (2), 020103.

Eylon, B.-S., & Reif, F. (1984). Effects of knowledge organization on task performance. Cognition and Instruction , 1 (1), 5–44.

Fabby, C., & Koenig, K. (2013). Relationship of scientific reasoning to solving different physics problem types. In Proceedings of the 2013 Physics Education Research Conference, Portland, OR .

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction – The Delphi report . Millbrae: California Academic Press.

Ferguson-Hesler, M. G. M., & De Jong, T. (1990). Studying physics texts: Differences in study processes between good and poor solvers. Cognition and Instruction , 7 (1), 41–54.

Fisher, A. (2001). Critical thinking: An introduction . Cambridge: Cambridge University Press.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences , 111 (23), 8410–8415.

Glaser, E. M. (1941). An experiment in the development of critical thinking . New York: Teachers College, Columbia University.

Hake, R. R. (1992). Socratic pedagogy in the introductory physics laboratory. The Physics Teacher , 30 , 546.

Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics , 66 (1), 64–74.

Halloun, I. A., & Hestenes, D. (1985a). The initial knowledge state of college physics students. American Journal of Physics , 53 (11), 1043–1055.

Halloun, I. A., & Hestenes, D. (1985b). Common sense concepts about motion. American Journal of Physics , 53 (11), 1056–1065.

Halpern, D. F. (1999). Teaching for critical thinking: Helping college students develop the skills and dispositions of a critical thinker. New Directions for Teaching and Learning , 80 , 69–74. https://doi.org/10.1002/tl.8005 .

Hardiman, P. T., Dufresne, R., & Mestre, J. P. (1989). The relation between problem categorization and problem solving among experts and novices. Memory & Cognition , 17 (5), 627–638.

Heller, J. I., & Reif, F. (1984). Prescribing effective human problem-solving processes: Problem description in physics. Cognition and Instruction , 1 (2), 177–216.

Hoellwarth, C., Moelter, M. J., & Knight, R. D. (2005). A direct comparison of conceptual learning and problem solving ability in traditional and studio style classrooms. American Journal of Physics , 73 (5), 459–462.

Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of Educational Research , 52 (2), 201–217.

Hsu, L., Brewe, E., Foster, T. M., & Harper, K. A. (2004). Resource letter RPS-1: Research in problem solving. American Journal of Physics , 72 (9), 1147–1156.

Jensen, J. L., & Lawson, A. (2011). Effects of collaborative group composition and inquiry instruction on reasoning gains and achievement in undergraduate biology. CBE - Life Sciences Education , 10 , 64–73.

Johnson, M. A., & Lawson, A. E. (1998). What are the relative effects of reasoning ability and prior knowledge on biology achievement in expository and inquiry classes? Journal of Research in Science Teaching , 35 (1), 89–103.

Kalman, C., & Lattery, M. (2018). Three active learning strategies to address mixed student epistemologies and promote conceptual change. Frontiers in ICT , 5 (19), 1–9.

Karplus, R. (1964). The science curriculum improvement study. Journal of College Science Teaching , 2 (4), 293–303.

Kim, E., & Pak, S.-J. (2002). Students do not overcome conceptual difficulties after solving 1000 traditional problems. American Journal of Physics , 70 (7), 759–765.

Koenig, K., Schen, M., & Bao, L. (2012). Explicitly targeting pre-service teacher scientific reasoning abilities and understanding of nature of science through an introductory science course. Science Educator , 21 (2), 1–9.

Koenig, K., Schen, M., Edwards, M., & Bao, L. (2012). Addressing STEM retention through a scientific thought and methods course. Journal of College Science Teaching , 41 , 23–29.

Koenig, K., Wood, K., Bortner, L., & Bao, L. (2019). Modifying traditional labs to target scientific reasoning. Journal of College Science Teaching , 48 (5), 28-35.

Kozminski, J., Beverly, N., Deardorff, D., Dietz, R., Eblen-Zayas, M., Hobbs, R., … Zwickl, B. (2014). AAPT recommendations for the undergraduate physics laboratory curriculum , (pp. 1–29). American Association of Physics Teachers Retrieved from https://www.aapt.org/Resources/upload/LabGuidlinesDocument_EBendorsed_nov10.pdf .

Kuhn, D. (1992). Thinking as argument. Harvard Educational Review , 62 (2), 155–178.

Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science , 208 (4450), 1335–1342.

Laws, P. W. (2004). Workshop physics activity guide, module 4: Electricity and magnetism. In Workshop physics activity guide . Wiley-VCH.

Lawson, A. E. (1978), The development and validation of a classroom test of formal reasoning, Journal of Research in Science Teaching , 15 (1), 11–24.

Lawson, A. E. (1992). The development of reasoning among college biology students - a review of research. Journal of College Science Teaching , 21 , 338–344.

Lawson, A. E. (2000). Classroom test of scientific reasoning: Multiple choice version, based on Lawson, A. E. 1978. Development and validation of the classroom test of formal reasoning. Journal of Research in Science Teaching , 15 (1), 11–24.

Lee, H. S., Liu, O. L., & Linn, M. C. (2011). Validating measurement of knowledge integration in science using multiple-choice and explanation items. Applied Measurement in Education , 24 (2), 115–136.

Linn, M. C. (2005). The knowledge integration perspective on learning and instruction. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences , (pp. 243–264). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511816833.016 .

Lipman, M. (2003). Thinking in education , (2nd ed., ). Cambridge: Cambridge University Press.

Liu, X. (2010). Science and engineering education sources. Using and developing measurement instruments in science education: A Rasch modeling approach . Charlotte: IAP Information Age Publishing.

Marzano, R. J., Brandt, R. S., Hughes, C. S., Jones, B. F., Presseisen, B. Z., Rankin, S. C., et al. (1988). Dimensions of thinking, a framework for curriculum and instruction . Alexandria: Association for Supervision and Curriculum Development.

Mazur, E. (1997). Peer instruction: A user’s manual . Upper Saddle River: Prentice Hall.

McDermott, L. C. (1996). Physics by Inquiry: An Introduction to the Physical Sciences . John Wiley & Sons, New York, NY.

McDermott, L. C., & Redish, E. F. (1999). Resource letter: PER-1: Physics education research. American Journal of Physics , 67 (9), 755–767.

McKeachie, W. J. (1986). Teaching and learning in the college classroom: A review of the research literature . Ann Arbor: National Center for Research to Improve Postsecondary Teaching and Learning.

Meltzer, D. E., & Otero, V. K. (2015). A brief history of physics education in the United States. American Journal of Physics , 83 (5), 447–458.

Meltzer, D. E., & Thornton, R. K. (2012). Resource letter ALIP-1: Active-learning instruction in physics. American Journal of Physics , 80 (6), 478–496.

Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Proceedings of the international workshop: Research in physics learning- theoretical issues and empirical studies , (pp. 110–128). The Institute for Science Education.

Nakhleh, M. B. (1993). Are our students conceptual thinkers or algorithmic problem solvers? Identifying conceptual students in general chemistry. Journal of Chemical Education , 70 (1), 52. https://doi.org/10.1021/ed070p52 .

Nakhleh, M. B., & Mitchell, R. C. (1993). Concept learning versus problem solving: There is a difference. Journal of Chemical Education , 70 (3), 190. https://doi.org/10.1021/ed070p190 .

National Research Council (2011). Assessing 21st century skills: Summary of a workshop . Washington, DC: The National Academies Press. https://doi.org/10.17226/13215 .

Book   Google Scholar  

National Research Council (2012a). Education for life and work: Developing transferable knowledge and skills in the 21st century . Washington, DC: The National Academies Press.

National Research Council (2012b). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas . Washington, DC: National Academies Press.

National Research Council (2012c). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington, DC: National Academies Press.

National Science & Technology Council (2018). Charting a course for success: America’s strategy for STEM education . Washington, DC: Office of Science and Technology Policy.

NCET. (1987). Critical thinking as defined by the National Council for excellence in critical thinking, statement by Michael Scriven & Richard Paul, presented at the 8th annual conference on critical thinking and education reform. Retrieved December 4, 2018, from http://www.criticalthinking.org/pages/defining-critical-thinking/766 .

Nordine, J., Krajcik, J., & Fortus, D. (2011). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education , 95 (4), 670–699.

Nurrenbern, S. C., & Pickering, M. (1987). Concept learning versus problem solving: Is there a difference? Journal of Chemical Education , 64 (6), 508.

Paul, R. (1990). Critical thinking: What every person needs to survive in a rapidly changing world . Rohnert Park: Center for Critical Thinking and Moral Critique.

Perkins, D. N., & Salomon, G. (1989). Are cognitive skills context-bound? Educational Researcher , 18 (1), 16–25.

Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education , 66 (2), 211–227.

Reay, N. W., Bao, L., Li, P., Warnakulasooriya, R., & Baugh, G. (2005). Toward the effective use of voting machines in physics lectures. American Journal of Physics , 73 (6), 554–558.

Reimers, F. M., & Chung, C. K. (Eds.) (2016). Teaching and learning for the twenty-first century: Educational goals, policies and curricula from six nations . Cambridge: Harvard Education Press.

Salomon, G., & Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanism of a neglected phenomenon. Educational Psychologist , 24 (2), 113–142.

Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception and knowledge structure in expert and novice mathematical problem solvers. Journal of Experimental Psychology: Learning, Memory, and Cognition , 8 (5), 484.

Shaw, V. F. (1996). The cognitive processes in informal reasoning. Thinking and Reasoning , 2 (1), 51–80.

She, H., & Liao, Y. (2010). Bridging scientific reasoning and conceptual change through adaptive web-based learning. Journal of Research in Science Teaching , 47 (1), 91–119.

Shen, J., Liu, O. L., & Chang, H.-Y. (2017). Assessing students’ deep conceptual understanding in physical sciences: An example on sinking and floating. International Journal of Science and Mathematics Education , 15 (1), 57–70. https://doi.org/10.1007/s10763-015-9680-z .

Siegel, H. (1988). Educating reason: Rationality, critical thinking and education , (vol. 1). New York: Routledge.

Slotta, J. D., Chi, M. T., & Joram, E. (1995). Assessing students’ misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction , 13 (3), 373–400.

Smith III, J. P., DiSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences , 3 (2), 115–163.

Smith, M. U. (1992). Expertise and organization of knowledge: Unexpected differences among genetic counselors, faculty members and students on problem categorization tasks. Journal of Research in Science Teaching , 29 (2), 179–205.

Sobhanzadeh, M., Kalman, C. S., & Thompson, R. I. (2017). Labatorials in introductory physics courses. European Journal of Physics , 38 , 1–18.

Sokoloff, D. R., Thornton, R. K., & Laws, P. W. (2011). RealTime physics: Active learning laboratories . New York: Wiley.

Stamovlasis, D., Tsaparlis, G., Kamilatos, C., Papaoikonomou, D., & Zarotiadou, E. (2005). Conceptual understanding versus algorithmic problem solving: Further evidence from a national chemistry examination. Chemistry Education Research and Practice , 6 (2), 104–118.

Tanenbaum, C. (2016). STEM 2026: A vision for innovation in STEM education . Washington, DC: US Department of Education.

Thornton, R. K., & Sokoloff, D. R. (1998). Assessing student learning of Newton’s laws: The force and motion conceptual evaluation and the evaluation of active learning laboratory and lecture curricula. American Journal of Physics , 66 (4), 338–352.

Trowbridge, L. W., Bybee, R. W., & Powell, J. C. (2000). Teaching secondary school science: Strategies for developing scientific literacy . Upper Saddle River: Merrill-Prentice Hall.

United States Chamber of Commerce (2017). Bridging the soft skills gap: How the business and education sectors are partnering to prepare students for the 21 st century workforce . Washington DC: Center for Education and Workforce, U.S. Chamber of Commerce Foundation.

Veldhuis, G. H. (1990). The use of cluster analysis in categorization of physics problems. Science Education , 74 (1), 105–118.

Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change . New York: Routledge.

Wexler, P. (1982). Structure, text, and subject: A critical sociology of school knowledge. In M. W. Apple (Ed.), Cultural and economic reproduction in education: Essays on class, ideology and the state . London: Routledge & Regan Paul.

Zeineddin, A., & Abd-El-Khalick, F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students. Journal of Research in Science Teaching , 47 (9), 1064–1093.

Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review , 20 (1), 99–149.

Download references

Acknowledgements

The research is supported in part by NSF Awards DUE-1431908 and DUE-1712238. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

The research is supported in part by NSF Awards DUE-1431908 and DUE-1712238.

Author information

Authors and affiliations.

The Ohio State University, Columbus, OH, 43210, USA

University of Cincinnati, Cincinnati, OH, 45221, USA

Kathleen Koenig

You can also search for this author in PubMed   Google Scholar

Contributions

LB developed the concept, wrote a significant portion of the review and position, and synthesized the paper. KK wrote and edited a significant portion of the paper. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Lei Bao .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Bao, L., Koenig, K. Physics education research for 21 st century learning. Discip Interdscip Sci Educ Res 1 , 2 (2019). https://doi.org/10.1186/s43031-019-0007-8

Download citation

Received : 17 April 2019

Accepted : 13 June 2019

Published : 28 November 2019

DOI : https://doi.org/10.1186/s43031-019-0007-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Twenty-first century learning
  • STEM education
  • Scientific reasoning
  • Deep learning

physics education thesis

home - login - register

  • FFPER: Puget Sound 2024
  • FFPER Series
  • Gordon Series
  • PERC Series
  • All Conferences
  • PER Programs
  • Community Events
  • Community Announcements
  • For the Media
  • PERTG & PERLOC
  • PER SOLO Group
  • PER Graduate Students
  • Course Packages
  • Student Activities
  • Research Instruments
  • Pedagogy Guides
  • Suggest a Material
  • Advanced Search
  • Suggest an Article
  • Suggest a Dissertation
  • Reviews in PER
  • PERC Proceedings

Thesis Detail Page

Subjects Levels Resource Types
Classical Mechanics Education - Applied Research Education - Basic Research Quantum Physics
PER-Central Types Intended Users Ratings

Want to rate this material?

Primary Details

Citation formats.

%A Derek Muller %T Designing Effective Multimedia for Physics Education %D June 30, 2008 %I University of Sydney %U https://www.sydney.edu.au/science/physics/pdfs/research/super/PhD(Muller).pdf %O Department of Physics %O application/pdf

%0 Thesis %A Muller, Derek %D June 30, 2008 %T Designing Effective Multimedia for Physics Education %B Department of Physics %I University of Sydney %8 June 30, 2008 %U https://www.sydney.edu.au/science/physics/pdfs/research/super/PhD(Muller).pdf

The AIP Style presented is based on information from the AIP Style Manual .

The AJP/PRST-PER presented is based on the AIP Style with the addition of journal article titles and conference proceeding article titles.

The APA Style presented is based on information from APA Style.org: Electronic References .

The Chicago Style presented is based on information from Examples of Chicago-Style Documentation .

The MLA Style presented is based on information from the MLA FAQ .

Make a Comment Relate this resource Contact us

Similar Materials

Research-design model for professional development of teachers: Designing…

Using Multimedia to Teach Optics to College Students

Using Multimedia to Teach College Students the Concepts of Electricity and…

ComPADRE Logo

  • Bibliography
  • More Referencing guides Blog Automated transliteration Relevant bibliographies by topics
  • Automated transliteration
  • Relevant bibliographies by topics
  • Referencing guides

Physical Review Physics Education Research

  • Collections
  • Editorial Team

Editorial: Call for Papers for Focused Collection of Physical Review Physics Education Research : AI Tools in Physics Teaching and PER

Charles henderson, phys. rev. phys. educ. res. 19 , 020003 – published 14 december 2023.

  • No Citing Articles

DOI: https://doi.org/10.1103/PhysRevPhysEducRes.19.020003

© 2023 American Physical Society

Authors & Affiliations

Charles Henderson (Chief Editor)

Article Text

Vol. 19, Iss. 2 — July - December 2023

physics education thesis

Authorization Required

Other options.

  • Buy Article »
  • Find an Institution with the Article »

Download & Share

Sign up to receive regular email alerts from Physical Review Physics Education Research

  • Forgot your username/password?
  • Create an account

Article Lookup

Paste a citation or doi, enter a citation.

W&M ScholarWorks

Home > Arts and Sciences > Physics > PHYSICSETD

Physics Theses, Dissertations, and Masters Projects

Theses/dissertations from 2023 2023.

Ab Initio Computations Of Structural Properties In Solids By Auxiliary Field Quantum Monte Carlo , Siyuan Chen

Constraining Of The Minerνa Medium Energy Neutrino Flux Using Neutrino-Electron Scattering , Luis Zazueta

Experimental Studies Of Neutral Particles And The Isotope Effect In The Edge Of Tokamak Plasmas , Ryan Chaban

From The Hubbard Model To Coulomb Interactions: Quantum Monte Carlo Computations In Strongly Correlated Systems , Zhi-Yu Xiao

Theses/Dissertations from 2022 2022

Broadband Infrared Microspectroscopy and Nanospectroscopy of Local Material Properties: Experiment and Modeling , Patrick McArdle

Edge Fueling And Neutral Density Studies Of The Alcator C-Mod Tokamak Using The Solps-Iter Code , Richard M. Reksoatmodjo

Electronic Transport In Topological Superconducting Heterostructures , Joseph Jude Cuozzo

Inclusive and Inelastic Scattering in Neutrino-Nucleus Interactions , Amy Filkins

Investigation Of Stripes, Spin Density Waves And Superconductivity In The Ground State Of The Two-Dimensional Hubbard Model , Hao Xu

Partial Wave Analysis Of Strange Mesons Decaying To K + Π − Π + In The Reaction Γp → K + Π + Π − Λ(1520) And The Commissioning Of The Gluex Dirc Detector , Andrew Hurley

Partial Wave Analysis of the ωπ− Final State Photoproduced at GlueX , Amy Schertz

Quantum Sensing For Low-Light Imaging , Savannah Cuozzo

Radiative Width of K*(892) from Lattice Quantum Chromodynamics , Archana Radhakrishnan

Theses/Dissertations from 2021 2021

AC & DC Zeeman Interferometric Sensing With Ultracold Trapped Atoms On A Chip , Shuangli Du

Calculation Of Gluon Pdf In The Nucleon Using Pseudo-Pdf Formalism With Wilson Flow Technique In LQCD , Md Tanjib Atique Khan

Dihadron Beam Spin Asymmetries On An Unpolarized Hydrogen Target With Clas12 , Timothy Barton Hayward

Excited J-- Resonances In Meson-Meson Scattering From Lattice Qcd , Christopher Johnson

Forward & Off-Forward Parton Distributions From Lattice Qcd , Colin Paul Egerer

Light-Matter Interactions In Quasi-Two-Dimensional Geometries , David James Lahneman

Proton Spin Structure from Simultaneous Monte Carlo Global QCD Analysis , Yiyu Zhou

Radiofrequency Ac Zeeman Trapping For Neutral Atoms , Andrew Peter Rotunno

Theses/Dissertations from 2020 2020

A First-Principles Study of the Nature of the Insulating Gap in VO2 , Christopher Hendriks

Competing And Cooperating Orders In The Three-Band Hubbard Model: A Comprehensive Quantum Monte Carlo And Generalized Hartree-Fock Study , Adam Chiciak

Development Of Quantum Information Tools Based On Multi-Photon Raman Processes In Rb Vapor , Nikunjkumar Prajapati

Experiments And Theory On Dynamical Hamiltononian Monodromy , Matthew Perry Nerem

Growth Engineering And Characterization Of Vanadium Dioxide Films For Ultraviolet Detection , Jason Andrew Creeden

Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films , Scott Madaras

Quantitative Analysis Of EKG And Blood Pressure Waveforms , Denise Erin McKaig

Study Of Scalar Extensions For Physics Beyond The Standard Model , Marco Antonio Merchand Medina

Theses/Dissertations from 2019 2019

Beyond the Standard Model: Flavor Symmetry, Nonperturbative Unification, Quantum Gravity, and Dark Matter , Shikha Chaurasia

Electronic Properties of Two-Dimensional Van Der Waals Systems , Yohanes Satrio Gani

Extraction and Parametrization of Isobaric Trinucleon Elastic Cross Sections and Form Factors , Scott Kevin Barcus

Interfacial Forces of 2D Materials at the Oil–Water Interface , William Winsor Dickinson

Scattering a Bose-Einstein Condensate Off a Modulated Barrier , Andrew James Pyle

Topics in Proton Structure: BSM Answers to its Radius Puzzle and Lattice Subtleties within its Momentum Distribution , Michael Chaim Freid

Theses/Dissertations from 2018 2018

A Measurement of Nuclear Effects in Deep Inelastic Scattering in Neutrino-Nucleus Interactions , Anne Norrick

Applications of Lattice Qcd to Hadronic Cp Violation , David Brantley

Charge Dynamics in the Metallic and Superconducting States of the Electron-Doped 122-Type Iron Arsenides , Zhen Xing

Dynamics of Systems With Hamiltonian Monodromy , Daniel Salmon

Exotic Phases in Attractive Fermions: Charge Order, Pairing, and Topological Signatures , Peter Rosenberg

Extensions of the Standard Model Higgs Sector , Richard Keith Thrasher

First Measurements of the Parity-Violating and Beam-Normal Single-Spin Asymmetries in Elastic Electron-Aluminum Scattering , Kurtis David Bartlett

Lattice Qcd for Neutrinoless Double Beta Decay: Short Range Operator Contributions , Henry Jose Monge Camacho

Probe of Electroweak Interference Effects in Non-Resonant Inelastic Electron-Proton Scattering , James Franklyn Dowd

Proton Spin Structure from Monte Carlo Global Qcd Analyses , Jacob Ethier

Searching for A Dark Photon in the Hps Experiment , Sebouh Jacob Paul

Theses/Dissertations from 2017 2017

A global normal form for two-dimensional mode conversion , David Gregory Johnston

Computational Methods of Lattice Boltzmann Mhd , Christopher Robert Flint

Computational Studies of Strongly Correlated Quantum Matter , Hao Shi

Determination of the Kinematics of the Qweak Experiment and Investigation of an Atomic Hydrogen Møller Polarimeter , Valerie Marie Gray

Disconnected Diagrams in Lattice Qcd , Arjun Singh Gambhir

Formulating Schwinger-Dyson Equations for Qed Propagators in Minkowski Space , Shaoyang Jia

Highly-Correlated Electron Behavior in Niobium and Niobium Compound Thin Films , Melissa R. Beebe

Infrared Spectroscopy and Nano-Imaging of La0.67Sr0.33Mno3 Films , Peng Xu

Investigation of Local Structures in Cation-Ordered Microwave Dielectric a Solid-State Nmr and First Principle Calculation Study , Rony Gustam Kalfarisi

Measurement of the Elastic Ep Cross Section at Q2 = 0.66, 1.10, 1.51 and 1.65 Gev2 , YANG WANG

Modeling The Gross-Pitaevskii Equation using The Quantum Lattice Gas Method , Armen M. Oganesov

Optical Control of Multi-Photon Coherent Interactions in Rubidium Atoms , Gleb Vladimirovich Romanov

Plasmonic Approaches and Photoemission: Ag-Based Photocathodes , Zhaozhu Li

Quantum and Classical Manifestation of Hamiltonian Monodromy , Chen Chen

Shining Light on The Phase Transitions of Vanadium Dioxide , Tyler J. Huffman

Superconducting Thin Films for The Enhancement of Superconducting Radio Frequency Accelerator Cavities , Matthew Burton

Theses/Dissertations from 2016 2016

Ac Zeeman Force with Ultracold Atoms , Charles Fancher

A Measurement of the Parity-Violating Asymmetry in Aluminum and its Contribution to A Measurement of the Proton's Weak Charge , Joshua Allen Magee

An improved measurement of the Muon Neutrino charged current Quasi-Elastic cross-section on Hydrocarbon at Minerva , Dun Zhang

Applications of High Energy Theory to Superconductivity and Cosmic Inflation , Zhen Wang

A Precision Measurement of the Weak Charge of Proton at Low Q^2: Kinematics and Tracking , Siyuan Yang

Compton Scattering Polarimetry for The Determination of the Proton’S Weak Charge Through Measurements of the Parity-Violating Asymmetry of 1H(E,e')P , Juan Carlos Cornejo

Disorder Effects in Dirac Heterostructures , Martin Alexander Rodriguez-Vega

Electron Neutrino Appearance in the Nova Experiment , Ji Liu

Experimental Apparatus for Quantum Pumping with a Bose-Einstein Condensate. , Megan K. Ivory

Investigating Proton Spin Structure: A Measurement of G_2^p at Low Q^2 , Melissa Ann Cummings

Neutrino Flux Prediction for The Numi Beamline , Leonidas Aliaga Soplin

Quantitative Analysis of Periodic Breathing and Very Long Apnea in Preterm Infants. , Mary A. Mohr

Resolution Limits of Time-of-Flight Mass Spectrometry with Pulsed Source , Guangzhi Qu

Solving Problems of the Standard Model through Scale Invariance, Dark Matter, Inflation and Flavor Symmetry , Raymundo Alberto Ramos

Study of Spatial Structure of Squeezed Vacuum Field , Mi Zhang

Study of Variations of the Dynamics of the Metal-Insulator Transition of Thin Films of Vanadium Dioxide with An Ultra-Fast Laser , Elizabeth Lee Radue

Thin Film Approaches to The Srf Cavity Problem: Fabrication and Characterization of Superconducting Thin Films , Douglas Beringer

Turbulent Particle Transport in H-Mode Plasmas on Diii-D , Xin Wang

Theses/Dissertations from 2015 2015

Ballistic atom pumps , Tommy Byrd

Determination of the Proton's Weak Charge via Parity Violating e-p Scattering. , Joshua Russell Hoskins

Electronic properties of chiral two-dimensional materials , Christopher Lawrence Charles Triola

Heavy flavor interactions and spectroscopy from lattice quantum chromodynamics , Zachary S. Brown

Some properties of meson excited states from lattice QCD , Ekaterina V. Mastropas

Sterile Neutrino Search with MINOS. , Alena V. Devan

Ultracold rubidium and potassium system for atom chip-based microwave and RF potentials , Austin R. Ziltz

Theses/Dissertations from 2014 2014

Enhancement of MS Signal Processing for Improved Cancer Biomarker Discovery , Qian Si

Whispering-gallery mode resonators for nonlinear and quantum optical applications , Matthew Thomas Simons

Theses/Dissertations from 2013 2013

Applications of Holographic Dualities , Dylan Judd Albrecht

A search for a new gauge boson , Eric Lyle Jensen

Experimental Generation and Manipulation of Quantum Squeezed Vacuum via Polarization Self-Rotation in Rb Vapor , Travis Scott Horrom

Low Energy Tests of the Standard Model , Benjamin Carl Rislow

Magnetic Order and Dimensional Crossover in Optical Lattices with Repulsive Interaction , Jie Xu

Multi-meson systems from Lattice Quantum Chromodynamics , Zhifeng Shi

Theses/Dissertations from 2012 2012

Dark matter in the heavens and at colliders: Models and constraints , Reinard Primulando

Measurement of Single and Double Spin Asymmetries in p(e, e' pi(+/-,0))X Semi-Inclusive Deep-Inelastic Scattering , Sucheta Shrikant Jawalkar

NMR study of paramagnetic nano-checkerboard superlattices , Christopher andrew Maher

Parity-violating asymmetry in the nucleon to delta transition: A Study of Inelastic Electron Scattering in the G0 Experiment , Carissa Lee Capuano

Studies of polarized and unpolarized helium -3 in the presence of alkali vapor , Kelly Anita Kluttz

  • Collections
  • Disciplines

Advanced Search

  • Notify me via email or RSS

Author Corner

  • Physics departmenal website

About Scholarworks

  • Honors Theses
  • W&M Libraries
  • VIMS Hargis Library
  • W&M Law School Repository
  • Research Guides

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

Physics Theses and Dissertations

Permanent uri for this collection, recent submissions.

  • No Thumbnail Available Item HIGH PERFORMANCE NANOPHOTONIC CAVITIES AND INTERCONNECTS FOR OPTICAL PARAMETRIC OSCILLATORS AND QUANTUM EMITTERS ( 2024 ) Perez, Edgar ; Srinivasan, Kartik ; Hafezi, Mohammad ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Integrated photonic devices like photonic crystals, microring resonators, and quantum emitters produce useful states of light, like solitons or single photons, through carefully engineered light-matter interactions. However, practical devices demand advanced integration techniques to meet the needs of cutting-edge technologies. High performance nanophotonic cavities and interconnects present opportunities to solve outstanding issues in the integration of nanophotonic devices. In this dissertation I develop three core tools required for the comprehensive integration of quantum emitters: wavelength-flexible excitation sources with sufficient pump power to drive down stream systems, photonic interconnects to spatially link the excitation sources to emitters, and cavities that can Purcell enhance quantum emitters without sacrificing other performance metrics. To create wavelength-flexible excitation sources, a high-performance χ(3)microring Optical Parametric Oscillator (OPO) is realized in silicon nitride. Microring OPOs are nonlinear frequency conversion devices that can extend the range of a high-quality on-chip (or off-chip) laser source to new wavelengths. However, parasitic effects normally limit the output power and conversion efficiency of χ(3)microring OPOs. This issue is resolved by using a microring geometry with strongly normal dispersion to suppress parasitic processes and multiple spatial mode families to satisfy the phase and frequency matching conditions. Our OPO achieves world-class performance with a conversion efficiency of up to 29% and an on-chip output power of over 18 mW. To create photonic interconnects, Direct Laser Writing (DLW) is used to fabricate 3-dimensional (3D) nanophotonic devices that can couple light into and out of photonic chips. In particular, polymer microlenses of 20 μm diameter are fabricated on the facet of photonic chips that increase the tolerance of the chips to misaligned input fibers by a factor of approximately 4. To do so, we develop the on-axis DLW method for photonic chips, which avoids the so-called "shadowing" effect and uses barcodes for automated alignment with machine vision. DLW is also used to fabricate Polymer Nanowires (PNWs) with diameters smaller than 1 μm that can directly couple photons from quantum emitters into Gaussian-like optical modes. Comparing the same quantum emitter system before and after the fabrication of a PNW, a (3 ± 0.7)× increase in the fiber-coupled collection efficiency is measured in the system with the PNW. To refine the design of quantum emitter cavities, a toy model is used to understand the underlying mechanisms that shape the emission profiles of Circular Bragg Gratings (CBGs). Insights from the toy model are used to guide the Bayesian optimization of high-performance CBG cavities suitable for coupling to single-mode fibers. I also demonstrate cavity designs with quality factors (Q) greater than 100000, which can be used in future experiments in cavity quantum electrodynamics or nonlinear optics. Finally, I show that these cavities can be optimized for extraction to a cladded PNW while producing a Purcell enhancement factor of 100 with efficient extraction into the fundamental PNW mode. The tools developed in this dissertation can be used to integrate individual quantum emitter systems or to build more complex systems, like quantum networks, that require the integration of multiple quantum emitters with multiple photonic devices. Show more
  • No Thumbnail Available Item TRAPPED IONS: FROM ERROR CORRECTION TO SIMULATION OF QUANTUM FIELD THEORIES ( 2024 ) Nguyen, Hong Nhung ; Linke, Norbert M ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Trapped ions stand out as a leading platform for quantum computing due to their long coherence times, high-fidelity quantum gates, and the ability to precisely control individual qubits, enabling scalable and precise quantum computations. This dissertation reports advances in quantum computing with trapped ions, focusing on robust and high-fidelity entanglement generation, logical qubit encoding, and applications in quantum simulations of high-energy physics. In particular, we report the implementation of a novel pulse optimization scheme forachieving high-fidelity entangling gates in our setup. The scheme enables a balanced trade- off between robustness to experimental drift, laser power, and gate duration, without the need for expensive optimization. We also demonstrate the implementation of the Shor code with different code distances on our trapped-ion quantum computer, highlighting the fault-tolerant preparation of a logical qubit with high fidelity and showcasing the potential for reliable quantum computing. Finally, we detail an experimental quantum simulation of the Schwinger model, a quantum electrodynamics theory in 1+1 dimensions, using two, four, and six qubits, demonstrating non-perturbative effects such as pair creation over extended periods of time. We study the gate requirement for two formulations of the model using a quantum simulation algorithm, considering the trade-offs between Hamiltonian term ordering, the number of time steps, and experimental errors. We employ a symmetry-protection protocol with random unitaries and a symmetry based post-selection technique to minimize errors. This work emphasizes the importance of the integrated approach between theory, algorithms, and experiments for efficient simulation of complex physical systems like lattice gauge theories. Show more
  • No Thumbnail Available Item Optimized simulations of fermionic systems on a quantum computer ( 2024 ) Wang, Qingfeng ; Monroe, Christopher ; Chemical Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Quantum computing holds promise for simulating microscopic phenomena, offering profound implications across disciplines such as chemistry, condensed matter physics, and high-energy physics, particularly in the accurate simulation of fermions. However, practical implementation requires the optimization of quantum programs to mitigate quantum noise and decoherence effects. Given the constraints of near-term quantum computers, the Variational Quantum Eigensolver (VQE) emerges as a key approach for estimating molecular ground state energies, crucial for determining chemical properties. This work aims to present advancements in optimizing VQE simulations to minimize quantum computational resources. Specifically, this work explores various optimization strategies, including the utilization of second-order perturbation correction to recover additional energy beyond VQE estimates and select critical ansatz terms. Additionally, circuit optimization techniques are investigated, focusing on achieving shorter equivalent ansatz circuits, particularly for physically-inspired VQE ansatz, through methods such as generalized fermion-to-qubit transformations and Pauli string orderings. Furthermore, this work demonstrates the advantage of a better initial state on a trapped-ion quantum computer. Show more
  • No Thumbnail Available Item THE ROLE OF THE PROTEIN-LIPID BOUNDARY IN THE GATING OF THE MECHANOSENSITIVE CHANNEL MSCS, AND THE THERMODYNAMICS OF ARGININE-PHOSPHATE INTERACTIONS ( 2024 ) Britt, Madolyn ; Sukharev, Sergei ; Biophysics (BIPH) ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Bacteria are exceptionally adaptive to a wide range of conditions. The E. coli mechanosensitive channel MscS is a low-threshold osmolyte release valve that provides environmental stability by regulating turgor pressure to prevent cell swelling and lysis in response to hypoosmotic shock. MscS is an adaptive multi-state channel that gates directly in response to tension in the surrounding lipid bilayer. Although MscS has three functional states (closed, open, inactivated), there are only two classes of structures: (1) nonconductive, characterized by splayed lipid-facing helices, kinked pore-lining helices, and lipid perturbations at the cytoplasmic interface and (2) semi-open conductive, characterized by an expanded pore that does not fully satisfy the experimental conductance. Currently, there is no consensus on how to relate these structural states to functional states. By default, the nonconductive structure is regularly assumed closed in the literature. In this thesis, I contribute to the body of existing experimental evidence that strongly suggests that the nonconductive structure corresponds to the inactivated state, rather than the closed state. Specifically, I focus on the channel as a membrane-embedded physical object and look to examine how lipids mediate tension-driven conformational dynamics. I use mutagenesis and patch-clamp electrophysiology to determine how MscS mutants with different protein-lipid interactions alter functional state distributions and transition rates. I then leverage these data to inform structure interpretation. Correctly identifying the structures of MscS that correspond to each functional state and the physical factors that stabilize them is critical towards understanding the underlying mechanism for MscS mechanosensitivity and its adaptive functional cycle. Chapter 2 explores how mutations of conserved anchor residues R46 and R74, interacting with lipid phosphates, affect gating transitions. We find that mutations at these positions predominantly alter the kinetics and voltage dependence of slow inactivation transitions, suggesting that extensive lipid rearrangement around these residues is a structural feature of inactivation. We also identify membrane potential as a factor regulating MscS state distribution. Chapter 3 investigates the role of protein-lipid interactions at both cytoplasmic and periplasmic interfaces in MscS functional behavior. Results indicate that MscS requires TM helix mobility at the periplasmic interface, but helix stability at the cytoplasmic interface for proper state transitions. We also find an interesting mutant, R46L/R74L, that is highly predisposed toward the inactivated state in giant spheroplasts, but apparently distributed normally into the closed state in actively metabolizing bacteria, providing evidence that the MscS population is under metabolic control. Finally, Chapter 4 aims to improve methods for examining these interactions in silico. The thermodynamics of arginine small peptide interactions with POPC, POPA, and POPG phospholipids is determined using ITC, and the affinity is found to depend on the accessibility of the lipid phosphate group. I also identify the ensemble of peptide-membrane bound states by constructing Markov state models from clustered trajectory data, revealing discrepancies between experimental and simulation results. These data are the first steps toward improving FF descriptions of arginine-phosphate interactions within membranes. Show more
  • No Thumbnail Available Item How Non-Hermitian Superfluids are Special? Theory and Experiments ( 2024 ) Tao, Junheng ; Spielman, Ian Bairstow ; Chemical Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Ultracold atoms emerge as a promising advanced platform for researching the principles of quantum mechanics. Its development of scientific understanding and technology enriches the toolbox for quantum simulations and quantum computations. In this dissertation work, we describe the methods we applied to build our new high-resolution 87Rb Bose-Einstein condensate (BEC) machine integrated with versatile quantum control and measurement tools. Then we describe the applications of these tools to the research of novel superfluidity and non-Hermitian physics. Superfluids and normal fluids were often studied in the context of Landau’s two-fluid model, where the normal fluid stemmed from thermally excited atoms in a superfluid background. But can there be normal fluids in the ground state of a pure BEC, at near zero temperature? Our work addressed the understanding of this scenario, and then measured the anisotropic superfluid density in a density-modulated BEC, where the result matched the prediction of the Leggett formula proposed for supersolids. We further considered and measured this BEC in rotation and found a non-classical moment of inertia that sometimes turns negative. We distinguished the roles of superfluid and normal fluid flows, and linked some features to the dipolar and spin-orbit coupled supersolids. As a second direction, we describe our capability to create non-Hermiticity with Raman lasers, digital-micromirror device (DMD), and microwave, and present our work in engineering the real space non-Hermitian skin effect with a spin-orbit coupled BEC. By use of a spin-dependent dissipative channel, we realized an imaginary gauge potential which led to nonreciprocal transport in the flat box trap. We studied the system dynamics by quenching the dissipation, and further prepared stationary edge states. We link our discoveries to a non-Hermitian topological class characterized by a quantized winding number. Finally, we discuss the exciting promises of using these tools to study many-body physics open quantum systems. Show more
  • No Thumbnail Available Item Machine Learning For Predicting Non-Stationary Dynamical Systems, and Global Subseasonal-to-Seasonal Weather Phenomena ( 2024 ) Patel, Dhruvit Paresh ; Ott, Edward ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more In this thesis, we are interested in modeling (1) the long-term statistical behavior of non-stationary dynamical systems, and (2) global weather patterns on the Subseasonal-to-Seasonal (S2S) time scale (2 weeks - 6 months). The first part of this thesis is primarily concerned with the situation where we have available to us measured time series data of the past states of the system of interest, and in some cases, a (perhaps inaccurate) scientific-knowledge-based model of the system. The central problem here lies in predicting a future behavior of the system that may be fundamentally different than that observed in the measured time series of its past. We develop machine learning -based methods for accomplishing this task and test it in various challenging scenarios (e.g., predicting future abrupt changes in dynamics mediated by bifurcations encountered that were not included in the training data). We also investigate the effects of dynamical noise in the training data on the predictability of such systems. For the second part of this thesis, we modify a machine learning -based global climate model to predict various weather phenomena on the S2S time scale. The model is a hybrid between a purely data-driven machine learning component and an atmospheric general circulation model. We begin by formulating a purely machine learning approach that utilizes the measured time series of the past states of the target non-stationary system, as well as knowledge of the time-dependence of the non-stationarity inducing time-dependent system parameter. We demonstrate that this method can enable the prediction of the future behavior of the non-stationary system even in situations where the future behavior is qualitatively and quantitatively different from the behavior in the training data. For situations where the training data contains dynamical noise, we develop a scheme to enable the trained machine learning model to predict trajectories which mimic the effects of dynamical noise on typical trajectories of the target system. We test our methods on the discrete time logistic map, the continuous time Lorenz system, and the spatiotemporal Kuramoto-Sivashinsky system, and for a variety of non-stationary scenarios. Next, we study the ability of our approach to not only extrapolate to previously unseen dynamics, but also to regions previously unexplored by the training data of the target system's state space. We find that while machine learning models can exhibit some capabilities to extrapolate in state space, they fail quickly as the amount of extrapolation required increases (as expected of any purely data-driven extrapolation method). We explore ways in which such failures can be mitigated. For instance, we show that a hybrid model which combines machine learning with a knowledge-based component can provide substantial improvements in extrapolation. We test our methods on the Ikeda map, the Lorenz system, and the Kuramoto-Sivashinsky system, under challenging scenarios (e.g., predicting future hysteretic transitions in dynamical behavior). Finally, we modify a machine learning -based hybrid global climate model to forecast global weather patterns on the S2S time scale. Predicting on this time scale is crucial for many domains (e.g., land, water, and energy management), yet it remains a difficult period to obtain useful predictions for. We demonstrate that our model has useful skill in predicting a number of phenomena including global precipitation anomalies, the El Nino Southern Oscillation and its related teleconnections, and various equatorial waves. Show more
  • No Thumbnail Available Item Understanding Allosteric Communication in Biological Systems using Molecular Dynamics Simulations ( 2024 ) Samanta, Riya ; Matysiak, Silvina ; Biophysics (BIPH) ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Allostery is critical to survival in living organisms due to its biological relevance in signal transduction, metabolism, and drug discovery. However, the molecular details of this phenomenon remain unclear. In this thesis, I present my work on two allosteric protein systems, each representative of structure-based (E. coli Biotin Protein Ligase) and dynamics-based (B. taurus S100B) allostery. I examined the structural and dynamic features of the proteins and associated variants subjected to various allosteric triggers (ligand/salt/mutations) to study how external/internal perturbations transmit across large distances using Molecular Dyanmic simulations in conjunction with the experiments carried out by our collaborators. Additionally, I carried out Network analyses on the two systems to characterize communication pathways on the protein/ protein family levels. Together, the structural and dynamic features would help us elucidate the underlying mechanism of allostery. The first chapter introduces the two systems with a brief dive into the history of allostery. In the second chapter, my work on E. coli Biotin Protein Ligase and its variants reveal one possible mechanism by which disorder-to-order transitions at the functional surfaces transmit via local changes around the critical residues in the allosteric network. The third chapter explores how the protein network reconfigures to adopt a new allosteric function by studying the allosteric and non-allosteric Biotin Protein Ligases. The fourth chapter elucidates the structural and dynamical markers in bovine S100B, which help to relay information about an allosteric signal by varying two allosteric triggers - ionic strength and target peptide. The final chapter sums up my conclusions, where I propose additional experiments and computational analyses that could be carried out to further our understanding of allostery. Show more
  • No Thumbnail Available Item Mathematical Modeling of Cellular Exhaustion to Guide Future Immunotherapy Research ( 2024 ) Simmons, Tyler ; Levy, Doron ; Biophysics (BIPH) ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Cellular exhaustion is a dysfunction found in various adaptive immune cells. In chronic settings, like cancer, antigen persistence and prolonged stimulation initiates the development of T cell exhaustion. The exhausted T cell population is a distinct lineage consisting of progenitor exhausted CD8+ T cells and terminally exhausted CD8+ T cells and is characterized by an upregulation of inhibitory receptor frequencies and diminished effector functions. The hypofunctionality of exhausted T cells prevents proper immunity and fails to eradicate the tumor. Recent years have shown a growing interest in targeting T cell exhaustion, attempting to reinvigorate effector functions, as a form of immunotherapy. Though beneficial responses have been reported in clinical settings, patient responses are inconsistent. Complementing the current biological understanding of T cell exhaustion and to advance immunotherapeutic efforts, novel research using mathematical modeling offers valuable insight. Constructing a foundational framework of an exhausted immune response to cancer provides an alternative approach to understanding the tumor-immune system. Presented here is the construction of a mathematical model detailing the development of progenitor and terminally exhausted CD8+ T cell populations in response to a growing tumor. Parameterization and simulation of this model captures biological dynamics observed in experimental and clinical settings. Analysis and conclusions of this model suggest population size and maintenance of progenitor exhausted CD8+ T cells should be a pillar of immunotherapy efforts. Stemming from these conclusions, it was theorized that targeting exhausted CD4+ helper T cells, which, under normal non-chronic conditions, contribute heavily to CD8+ T cell responses, would be a new and effective approach for immunotherapy. To test this hypothesis, the previously constructed model of CD8+ T cell exhaustion was expanded to incorporate CD4+ helper 1 T cells as well as immunosuppressive regulatory T cells. Simulation and analysis of this expanded model further emphasize the need to maintain progenitor exhausted CD8+ T cell numbers. Additionally, model analysis also indicated that the functionality of CD4+ T cells, both regulatory and exhausted CD4+ helper 1 T cells, played a crucial role in tumor persistence. From this work, research regarding CD4+ T cell exhaustion is strongly encouraged. With a better understanding of this dysfunction, CD4+ T cells may be a potentially effective target for future immunotherapy strategies. Show more
  • No Thumbnail Available Item Photon-Mediated Interactions in Lattices of Coplanar Waveguide Resonators ( 2024 ) Amouzegar, Maya ; Kollár, Alicia ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Circuit quantum electrodynamics (circuit QED) has become one of the main platforms for quantum simulation and computation. One of its notable advantages is its ability to facilitate the study of new regimes of light-matter interactions. This is achieved due to the native strong coupling between superconducting qubits and microwave resonators, and the ability to lithographically define a large variety of resonant microwave structures, for example, photonic crystals. Such geometries allow the implementation of novel forms of photon-mediated qubit-qubit interaction, cross-Kerr qubit-mediated interactions, and studies of many-body physics. In this dissertation, I will show how coplanar waveguide (CPW) lattices can be used to create engineered photon-mediated interactions between superconducting qubits. I will discuss the design and fabrication of a quasi one-dimensional lattice of CPW resonators with unconventional bands, such as gapped and ungapped flat bands. I will then present experimental data characterizing photon-mediated interactions between tunable transmon qubits and qubit-mediated non-linear photon-photon interactions in the said lattice. Our results indicate the realization of unconventional photon-photon interactions and qubit-qubit interactions, therefore, demonstrating the utility of this platform for probing novel interactions between qubits and photons. In future design iterations, one can extend the study of these interactions to two-dimensional flat and hyperbolic lattices. Show more
  • No Thumbnail Available Item TURBULENCE AND SUPERFLUIDITY IN THE ATOMIC BOSE-EINSTEIN CONDENSATE ( 2024 ) Zhao, Mingshu ; Spielman, Ian ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more In this dissertation I investigate turbulence in atomic Bose-Einstein condensates (BECs), focusing on the challenge of quantifying velocity field measurements in quantum fluids. Turbulence, a universal phenomenon observed across various scales and mediums – from classical systems like Earth's oceans and atmosphere to quantum fluids including neutron stars, superfluid helium, and atomic BECs – exhibits complex fluid motion patterns spanning a wide range of length scales. While classical turbulence has been extensively studied, quantum systems present many open questions, particularly regarding the existence of an inertial scale and the applicability of Kolmogorov scaling laws. I introduce a novel velocimetry technique, analogous to particle image velocimetry (PIV), using spinor impurities as tracer particles. This method enables the direct measurement of the velocity field and thereby the velocity structure functions (VSFs) in turbulent atomic BECs. The technique overcomes limitations of existing experimental approaches that rely on time of flight (TOF) measurements, offering a clearer connection to VSFs and enabling a more direct comparison of turbulence in atomic gases with other fluids. The cold-atom PIV technique enables directly measuring the velocity field, leading to a detailed analysis of both VSFs and the velocity increment probability density functions (VI-PDF). Key findings include the observation of superfluid turbulence conforming to Kolmogorov theory from VSFs, and intermittency from high order of VSFs and the non-Gaussian fat tail in the VI-PDF. Show more
  • No Thumbnail Available Item Quantum Computing and Machine Learning Approaches to Quantum Many-Body Physics ( 2024 ) Sheng, Shiyi ; Bedaque, Paulo F. ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Lattice field theory provides a framework for which to explore properties of quantum field theories non-perturbatively. However for certain lattice calculations, for example when considering real-time dynamics or fermionic systems at finite density, sign problems occur which render those calculations intractable. One approach to solving the sign problem is to avoid it altogether by instead considering a simulation of the field theory on a quantum computer. For bosonic field theories, a procedure of qubitizing the bosonic fields is a necessary first step. The infinite-dimensional Hilbert space of the bosonic fields must be properly truncated as to encode those fields on a finite-dimensional Hilbert space spanned by the qubits on the quantum computer. This thesis first discusses various strategies of making such a truncation. Ideally, the truncation yields a discrete spin system that contains a critical point in the same universality class as the untruncated field theory. That way, the physics of the original field theory is reproduced in the continuum limit of the truncated theory without needing to take a second limit of removing the truncation. Simulations of different models arising from various truncation strategies of the (1+1)-dimensional O(3) nonlinear sigma model are performed and different qubitizations for SU(2) gauge fields are considered and proposed. Due to a lack of an efficient method for solving many-body systems in more than one dimension, numerical simulations of these SU(2) qubitizations are unavailable. The second half of the thesis explores the use of machine learning techniques in providing effective ways to solve quantum many-body problems. Neural network structures, such as feed-forward networks and restricted Boltzmann machines are universal approximators for continuous and discrete functions respectively. Therefore, they can be used as flexible wave function ansatze. Gradient descent algorithms can be applied to variationally search the general functional space spanned by neural-network-based ansatze for ground states of interacting, many-body systems. An ansatz is constructed explicitly for a system of indistinguishable bosons in one dimension and tested by comparing numerical results with analytic solutions of several exactly-solvable models. An extension of these neural-network ansatze to systems of identical bosons and fermions and discrete spin systems in higher dimensions would allow for concrete simulations of systems ranging from nuclei and qubitization models. Show more
  • No Thumbnail Available Item THE SEARCH FOR COINCIDENT GAMMA-RAY EMISSION FROM FAST RADIO BURSTS WITH THE HAWC OBSERVATORY ( 2024 ) Willox, Elijah J ; Goodman, Jordan A ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more In 2007 a new class of radio transients was discovered, coming from outside of our galaxy with high fluence emitted in the radio band on millisecond timescales. These bursts of radio waves emitted within an order of magnitude of the power of the least bright gamma- ray bursts. These fast radio bursts (FRBs) have since become the target of many searches across radio observatories and multiwavelength follow-up campaigns, but their origin re- mains unknown. In order to understand more about these fascinating events, continued multiwavelength follow-ups are necessary to provide a more complete picture. The High Altitude Water Cherenkov (HAWC) observatory is a very-high-energy gamma-ray detector covering the range of 100 GeV to 300 TeV that is well suited to the detection of transient phenomena due its high live-time and wide field of view, and in particular for a follow- up search on FRBs to determine possible very high energy gamma-ray coincidences. The search for gamma-ray signals from FRBs consists of two searches: first is a persistent source search to identify if FRB emission ever comes from TeV gamma-ray emitting galax- ies, and a transient search centered on the reported burst time and location. The results of the FRB search within the HAWC data sets the most constraining limits on the widestpopulation of FRBs ever searched in the VHE band. Show more
  • No Thumbnail Available Item Analyzing and Enhancing Molecular Dynamics Through the Synergy of Physics and Artificial Intelligence ( 2024 ) Wang, Dedi ; Tiwary, Pratyush ; Biophysics (BIPH) ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Rapid advances in computational power have made all-atom molecular dynamics (MD) a powerful tool for studying systems in biophysics, chemical physics and beyond. By solving Newton's equations of motion in silico, MD simulations allow us to track the time evolution of complex molecular systems in an all-atom, femtosecond resolution, enabling the evaluation of both their thermodynamic and kinetic properties. Though MD simulations are powerful, their effectiveness is often hampered by the large amount of data they produce. For instance, a standard microsecond-long simulation of a protein can easily generate hundreds of gigabytes of data, which can be difficult to analyze. Moreover, the time required to conduct these simulations can be prohibitively long. Microsecond-long simulations often take weeks to complete, whereas the processes of interest may occur on the timescale of milliseconds or even hundreds of seconds. These factors collectively pose significant challenges in leveraging MD simulations for comprehensive analysis and exploration of chemical and biological systems. In this thesis, I address these challenges by leveraging physics-inspired insights to learn unique, useful, and also meaningful low-dimensional representations of complex molecular systems. These representations enable effective analysis and interpretation of the vast amount of data generated from experiments and simulations. These representations have proven to be valuable in providing mechanistic insights into some fundamental problems within theoretical chemistry and biophysics, such as understanding the interplay between long-range and short-range forces in ion pair dissociation and the transformation of proteins from unstable random coils to structured forms. Furthermore, these physics-informed representations play a crucial role in enhancing MD simulations. They facilitate the construction of simplified kinetic models, enabling the generation of dynamical trajectories spanning significantly longer time scales than those accessible by conventional MD simulations. Additionally, they can serve as blueprints to guide the sampling process in combination with existing enhanced sampling methods. Through this thesis, I showcase how the synergy between physics and AI can advance our understanding of molecular systems and facilitate more efficient and insightful analysis in the fields of computational chemistry and biophysics. Show more
  • No Thumbnail Available Item Feedback experiments using entangled photons for polarization control in future quantum networks ( 2024 ) Dowling, Evan ; Murphy, Thomas E ; Roy, Rajarshi ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Control of the measurement frames that project on polarization entangled photons is an important experimental task for near term fiber-based quantum networks. Because of the changing birefringence in optical fiber arising from temperature fluctuations or external vibrations, the polarization projection direction at the end of a fiber channel is unpredictable and varies with time. This polarization drift can cause errors in quantum information protocols, like quantum key distribution, that rely on the alignment of measurement bases between users sharing a quantum state. Polarization control within fiber is typically accomplished using feedback measurements from classical power alignment signals, multiplexed in time or wavelength with the quantum signal that coexist in the same fiber. This thesis explores ways to use only measurements on the entangled photons for polarization control and perform entanglement measures without multiplexing alignment signals. This approach is experimentally less complex and can reduce the noise within the quantum channel arising from the alignment signals. In the first part of this dissertation, we study how to use distributed measurements on polarization entangled photons for polarization drift correction in a 7.1 km deployed fiber between the University of Maryland and the Laboratory of Telecommunication Sciences for two individuals sharing a near maximally entangled Bell state, $\hat \rho = |\Psi^-\rangle\langle\Psi^-|$. In the second part of the dissertation, we examine how to use feedback measurements to maximize the violation of a Bell's inequality used as an entanglement measure. Both polarization drift correction and the maximization of a Bell's inequality violation use iterative optimization algorithms to actuate upstream polarization controllers. In the Bell's inequality investigation, three numerical methods: Bayesian optimization, Nelder-Mead simplex optimization, and stochastic gradient descent are implemented and compared against each other. For complete polarization control and Bell's inequality violation experiments, we developed a polarization and time multiplexed detection system that reduced the number of photon detectors needed and mitigated the demand on the coincidence counting electronics for real-time feedback and control. Show more
  • No Thumbnail Available Item NONLINEAR PROPAGATION OF ORBITAL ANGULAR MOMENTUM LIGHT IN TURBULENCE AND FIBER ( 2024 ) Elder, Henry ; Sprangle, Phillip ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Light that carries orbital angular momentum (OAM), also referred to as optical vortices or twisted light, is characterized by a helical or twisted wavefront ∝exp[imφ]. In contrast to spin angular momentum (SAM), where photons are limited to two states, OAM allows for, in principle, an infinite set of spatially orthogonal states. OAM-carrying light has found applications ranging from quantum key distribution in free space and guided-wave communication systems, particle trapping and optical tweezers, nanoscopy, and remote sensing. Understanding how OAM light propagates through complex environments, and how to efficiently generate particular OAM states, is critical for any such application. In the first part of this dissertation, we describe how OAM light propagates through a turbulent atmosphere. We build analytic models which describe (1) the OAM mode mixing caused by turbulence, (2) the evolution of short, high-power OAM pulses undergoing the effects of self-phase modulation (SPM) and group velocity dispersion (GVD), and (3) the evolution of high-power Gaussian pulses including SPM, GVD, and turbulence. The models are validated against both experimental data and nonlinear, turbulent pulse propagation simulation programs, the latter of which we have made freely available. We also explore how self-focusing can minimize certain deleterious effects of turbulence for OAM light. The second part of this dissertation considers nonlinear effects of OAM light propagating in azimuthally symmetric waveguides. Such waveguides have so-called spin-orbit (SO) modes, which are quantized based on their total angular momentum (TAM). We develop a generalized theory of four wave mixing-based parametric amplification of SO modes and show that these processes conserve TAM, but under certain circumstances can be taken to conserve SAM and OAM independently. Our theory is validated against a nonlinear multimode beam propagation simulation program which we developed and, again, have made freely available. Show more
  • No Thumbnail Available Item Aspects of Unconventional Transport and Quasiparticles in Condensed Matter Systems ( 2023 ) Wu, Huan-Kuang ; Sau, Jay D ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Transport in condensed matter system serve as one of the main properties for characterizing its phases and topological properties. A cornerstone in the theoretical efforts in transport is the Boltzmann transport equation (BTE), which describes the low frequency responses of weakly correlated systems through distribution functions of particle-like carriers. The BTE is extremely successful in describing transports in classical systems where the collision is largely uncorrelated and the quasiparticles wave lengths are significantly less than the mean free path. However, such major assumptions made by the Boltzmann transport does not hold in many aspects of modern condensed matter systems. Examples of such scenarios include quantum ballistic transport on the edge of a quantum Hall system, variable-range hopping in an Anderson localized system, and transport above the Mott-Ioeffe-Regel limit in bad metals. In this thesis, we discuss three example systems that exhibit transport properties beyond the conventional Boltzmann framework. First, we will introduce a new family of systems for Majorana zero mode that does not require an external magnetic field. Our proposal is based on a planar Josephson junction setup with a quasi two dimensional spin-orbit coupled electron gas and the usual role of the magnetic field that breaks the time reversal symmetry is taken by three phase biased superconductors. This idea is then simulated with HgTe as the two dimensional material together with realistic parameters. Our result demonstrates a large parameter regime of Majorana zero mode and a topological gap at the order of the superconducting gap. In the second part, we will discuss the physics of plasmonic mode in a Josephson junction chain in its insulating regime. Utilizing the Luther-Emery point of the sine-Gordon model, the polarizability can then be interpreted by the responses of soliton and anti-soliton pairs. we consider the system in both the clean limit and with disorder. Our theory suggests the existence of coherent phase mode in the insulating regime and provides a natural explanation for the frequency-dependent broadening of such a mode. The results is consistent with the recent experiments on the reflection spectrum of Josephson junction chains. Finally, we will look into the problem of Planckian thermal diffusion bound where a mechanism for sub-Planckian thermal diffusion is introduced. We will study a lattice system with large degrees of freedom per unit cell but has limited channel for heat conduction. In the highly-nonlinear regime, the thermal diffusivity can be solved accurately through applications of fluctuation-dissipation theorem. Through numerical simulations, our proposal demonstrate a modification of the lower bound to $D_P/N$ , where $D_P$ is the Planckian diffusivity and $N$ is the per-unit-cell degrees of freedom. Show more
  • No Thumbnail Available Item SEARCH FOR BOOSTED SEMI-VISIBLE JETS IN ALL-HADRONIC FINAL STATES WITH THE CMS EXPERIMENT ( 2024 ) Nabili, Sara ; Eno, Sarah S.E. ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more This dissertation presents a search for the dark sector beyond the standard model (BSM)to be carried out using the Compact Muon Solenoid (CMS) experiment of the Large Hadron Collider (LHC) at CERN. It is developed and evaluated in this work using simulated Monte Carlo data from CMS in preparation for searching the actual Run2 CMS data. The search is focused on the strongly coupled Hidden Valley models that couple with the standard model (SM) via a leptophobic (fully hadronic) Z′ mediator. The final state of resonant production consists of one large jet composed of both visible and invisible particles. This search focuses on the lower mediator mass range (mZ′ ≤ 550 GeV ) with the boosted topology that recoils against the initial state radiation (ISR) jet such that its decay products are contained within a single large-diameter “semi-visible” jet. The main parameters of our model are the mediator mass, the mass of the dark mesons, and the fraction of invisible stable particles. In the event of no discovery, the exclusion limits for mediator mass of 275 to 550 GeV are expected. Show more
  • No Thumbnail Available Item CHARGE ORDER AND STRUCTURAL TRANSITION IN TOPOLOGICAL SEMIMETAL FAMILY AAL4 ( 2023 ) Saraf, Prathum ; Paglione, Johnpierre ; Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more The BaAl$_4$-type structure hosts a variety of interesting and exotic properties, with descendant crystal structure resulting numerous interesting ground states of matter including magnetic, super-conducting and strongly correlated electron phenomena. BaAl$_4$ itself has recently been shown to host a non-trivial topological band structure, but is otherwise a paramagnetic metal. However, the other members of the 1-4 family, such as SrAl$_4$ and EuAl$_4$, exhibit symmetry-breaking ground states including charge density wave (CDW) and magnetic order, respectively. SrAl$_4$ hosts a second transition at 94K that is hysteretic in temperature and is a structural transition to a monoclinic structure. Here I report on the charge density wave in SrAl$_4$ and the effect of the structural transition on the physical and electronic properties of the material. The structural transition is extremely subtle with deviation of around 0.5 degrees from the tetragonal structure but shows significant changes in resistivity, Hall and magnetic susceptibility measurements. This transition is extremely sensitive to disorder and can be suppressed completely by substituting 1$\%$ Ba nominally or using less pure Sr during crystal growth. Furthermore, magnetoresistance in this material is extremely large, and can be up to 140 times at 2K. A combination of magnetoresistance and Hall measurements are used to fit the data to a two band model to extract carrier density and mobility of the charge carriers at 2K. Finally, work was done on the evolution of the charge-ordered state in high quality single crystals of the solid solution series Ba$_{1-x}$Sr$_x$Al$_4$, using transport, thermodynamic and scattering experiments to track the 243 K CDW order in SrAl$_4$ as it is suppressed with Ba substitution until its demise at x =0.5. Neutron and x-ray diffraction measurements reveal a nearly commensurate CDW state in SrAl$_4$ with ordering vector (0,0,0.097) that evolves with Ba substitution to (0,0,0.18) and (0,0,0.21) for x=0.8 and x=0.55, respectively. DFT calculations show a softening of phonons in SrAl$_4$ hinting at electron phonon coupling strength being the source of the charge order in this material. Similar calculations are done on the Ba substitutions to investigate the nature of the charge density waves. With very little change in the lattice parameters in this series, this evolution raises important questions about the nature of the electronic structure that directs a dramatic change in charge ordering. Show more
  • No Thumbnail Available Item Analyzing Dynamical Processes with Local Molecular Field Theory ( 2023 ) Zhao, Renjie ; Weeks, John D ; Chemical Physics ; Digital Repository at the University of Maryland ; University of Maryland (College Park, Md.) Show more Local molecular field (LMF) theory provides a framework for describing the collective response of a system to long-range interactions in nonuniform liquids. Based on this theory, different roles played by the short and long-range components of the intermolecular interactions can be disentangled in determining relevant structural and thermodynamic properties in equilibrium. Furthermore, in dynamical processes, nonlocal long-range interactions are often associated with long relaxation times, and can contribute significantly to the stability of the system in different phases. In this thesis, LMF theory is utilized to quantify and analyze the dynamical effects arising from long-range Coulomb interactions in aqueous solutions, while elucidating how they are connected to strong local forces and fluctuations. The first half of the work concerns ionic and dipolar solvation dynamics, which plays an essential role in many solution phase chemical reactions. The physical models of Gaussian-smoothed charge and dipole distributions are conceptualized from LMF theory to investigate the molecular origins of linear and nonlinear effects in solvation dynamics. The long-range component of the solute-solvent electrostatic interaction is shown to underlie the linear response behavior of the system, while the short-range interactions introduce additional nonlinear effects. The LMF-based solvation models further demonstrate their functionality in probing the intrinsic dielectric dispersion of solvent water. The second half of the work is focused on the nucleation processes in the aqueous environment. Simulating crystal nucleation from solutions requires efficient treatments for intermolecular interactions to drive the transitions on time scales affordable to molecular dynamics simulations. For this purpose, a LMF-based molecular model is employed to capture the renormalized long-range interactions, and well-tempered metadynamics is adopted to enhance the fluctuations arising from short-range interactions. By comparing to a short-range reference model, the necessity of long-range interactions in explaining metastability is revealed. Temporal fluctuations and direct evidence for the two-step nucleation mechanism are observed through the analysis using a deep learning-based approach. The results about these two types of dynamical processes contribute to a deeper understanding of the roles of short and long-ranges interactions in the aqueous systems. Show more

Thumbnail Image

  • 1 (current)
  • Diversity & Inclusion
  • Community Values
  • Visiting MIT Physics
  • People Directory
  • Faculty Awards
  • History of MIT Physics
  • Policies and Procedures
  • Departmental Committees
  • Academic Programs Team
  • Finance Team
  • Meet the Academic Programs Team
  • Prospective Students
  • Requirements
  • Employment Opportunities
  • Research Opportunities
  • Graduate Admissions
  • Doctoral Guidelines
  • Financial Support
  • Graduate Student Resources
  • PhD in Physics, Statistics, and Data Science
  • MIT LEAPS Program
  • for Undergraduate Students
  • for Graduate Students
  • Mentoring Programs Info for Faculty
  • Non-degree Programs
  • Student Awards & Honors
  • Astrophysics Observation, Instrumentation, and Experiment
  • Astrophysics Theory
  • Atomic Physics
  • Condensed Matter Experiment
  • Condensed Matter Theory
  • High Energy and Particle Theory
  • Nuclear Physics Experiment
  • Particle Physics Experiment
  • Quantum Gravity and Field Theory
  • Quantum Information Science
  • Strong Interactions and Nuclear Theory
  • Center for Theoretical Physics
  • Affiliated Labs & Centers
  • Program Founder
  • Competition
  • Donor Profiles
  • Patrons of Physics Fellows Society
  • Giving Opportunties
  • physics@mit Journal: Fall 2023 Edition
  • Events Calendar
  • Physics Colloquia
  • Search for: Search

Thesis Information

Upcoming thesis defenses.

If you are defending this term and do not see your information listed, please contact Sydney Miller in the APO.

Localist Online Calendar Software

Forming a Thesis Committee

When : Doctoral Students – After completing the written and oral exams and generally by the beginning of their third Year of study. Forming their committees at this stage will allow students to consult with all members of the committee during their studies and can provide additional advice and mentorship for them.

How : Register for thesis research under subject number 8.ThG, form a thesis committee, meet with full committee, and submit a formal thesis proposal to the department.

Thesis Committee Formation

Student should consult with their Research Supervisor to discuss the Doctoral Thesis Committee Proposal Form which will name the 3 required members of the Physics Doctoral Committee and a descriptive preliminary thesis title. 

Doctoral Committee must include 3 members with MIT Physics faculty appointments:

  • Committee Chair: Research Supervisor from MIT Physics Faculty or Research Supervisor from outside MIT Physics + Co-Supervisor/Chair from MIT Physics Faculty
  • Selected Reader: from MIT Physics Faculty (in the same/similar research area, selected by student and supervisor)
  • Assigned Reader: from MIT Physics Faculty (in different research area, selected by the Department’s faculty Graduate Coordinator.)

The Form should include the names of the Student, Chair, and Selected Reader and a Thesis Title, when it is forwarded to the Academic Programs Office via email to [email protected] and Sydney will work with Faculty Graduate Coordinator Will Detmold , who will identify the Assigned Reader.

Following the consultation with their supervisor, the student should reach out to the proposed Selected Reader to secure an electronic signature or email confirmation in lieu of signature to serve on this committee. (Form should include either signature or date of email agreement.) It will take approximately 2-3 weeks before an Assigned Reader will be added and Sydney will provide an introduction to this final member of your Doctoral Committee. Please note: you may not form your committee and defend your thesis in the same semester.

Thesis Committee Meeting and Proposal

Once the Thesis Committee is established, the student should send all members a draft description of the proposed thesis topic and set up the first committee meeting with all members attending together in real time. A formal 2-page written Thesis Proposal should result from this important meeting and be sent to Sydney for the student’s academic record.  

Thesis Proposal

You should discuss your thesis research with your committee members all together in real time at your first committee meeting. Following this full discussion about your thesis topic, please write up your formal Thesis Proposal to reflect the mutually-agreed thesis plans and forward the Proposal to the graduate program at the APO using [email protected] for Sydney to document in the department’s academic records.

Thesis Research

Following the formation of the doctoral committee and submission of the thesis proposal, the student will continue to work on their thesis research in consultation with their Research Supervisor and other members of their Committee. This important communication paves the way for the thesis defense and degree completion.

When students are ready to defend, they should complete an ‘ Application for Advanced Degree ’ with the Registrar and schedule a thesis defense with all committee members attending in real time, whether in person or by video. Announcements for the defense will be coordinated by the Academic Programs Office and students should be in close contact with Sydney Miller during their final term or study.

Further details about this last stage of your studies will be available separately.

Thesis Defense

If there is even a slight possibility that you may finish this term, please complete an Application for Advanced Degree at the Registrar’s website at the beginning of the term. It is easy to remove your name if your plans change, but this timely step will avoid late fees!

Once you have scheduled your defense, please send this information to Sydney at [email protected] :

  • Thesis Title:
  • Committee Members:
  • Meeting Details: (can be sent in the final week before the defense)

She will create the email notifications for our physics community and the MIT Events and Physics Calendar listings. This information you provide her is also used to generate the defense grade sheet for your defense.

Please send your committee members a thesis draft to help them prepare for your defense and plan to spend around two weeks making thesis revisions after your successful defense. The date you submit your thesis document to the department will determine whether it is for a Fall, Spring, or Summer degree.

Thesis Formatting

Archival copies of all theses must adhere carefully to principles specified by the MIT Libraries for formatting and submission. For complete information about how to format your thesis, refer to the  Specifications for Thesis Preparation .

Graduate Program Coordinator Sydney Miller can review your title page and abstract for accuracy before you submit the thesis. You may send these to her at  [email protected].

Required Signatures and Documentation

  • Signatures:  The MIT Archives require an electronic PDF document and the Department needs a separate additional stand-alone title page with electronic/scanned signatures of   the student, research supervisor, and co-supervisor (if applicable). Theses are accepted by Associate Department Head, Professor  Lindley Winslow . Please send your documents to  [email protected]  and the APO staff will forward your thesis submitted to the MIT Library Archives.
  • Thesis defense grade sheets:  Before accepting a PhD thesis, the Academic Programs Office must have a signed thesis defense grade sheet from the research supervisor indicating a “Pass” on the thesis defense.
  • Thesis letter grade:  Before accepting an SM thesis, Academic Programs must have received a letter or email from the research supervisor, assigning a final thesis grade of A, B, or C.

Finalizing and Submitting your Thesis to MIT

Departments collect the thesis documents on behalf of the MIT Thesis Library Archives and Physics graduate students will submit their thesis to Sydney Miller.  Review overall information from MIT about  thesis specifications and format .

Please see the attached doctoral title page format for Physics and send your draft of the title/cover page and abstract to Sydney for review and any necessary edits. Once these are approved, please prepare the full document, with pagination appropriate for double-sided printing.

Theses may be completed and signed on any date of the year and the degree requirements are completed when the thesis is submitted. This is the final day of student status and payroll. (International students are eligible for Optional Practical Training starting on the following day.)

MIT awards degrees at the end of each term:

  • Fall Term degree is in February. (Theses due second Friday in January.)
  • Spring Term degree is in May. (Theses due second Friday in May.)
  • Summer Term degree is in September. (Theses due second Friday in August.)

Thesis submissions are electronic files and you will submit the following to Sydney:

  • A complete thesis document, without signatures
  • A title page with electronic signatures from yourself, your supervisor (and co-supervisor, if required). Sydney will work with the Associate Head, Lindley Winslow , whose signature is required for the department and this will be added after you submit your document to the department/Sydney.
  • A separate abstract page

Doctoral students also complete and submit the  Proquest/UMI form  (PDF), with attached title page and abstract (no signatures).

In addition to submitting your thesis to the department for the library archives, you may also  add your thesis to DSpace .

Digital Submission Guidelines

All theses are being accepted by the MIT Libraries in  digital form only . Digital theses are submitted electronically to the Physics Department, along with a separate signed title page. Students on the degree list will receive specific guidance about submission from the Academic Programs Office.

General Thesis Policies

All theses are archived in the MIT Libraries. An archival fee must be paid before a student’s final candidacy for a degree can be officially approved.

After all required materials have been submitted to the Academic Programs Office, a thesis receipt will be sent by email.

Thesis Due Dates

Check the MIT Academic Calendar for deadlines to submit your online degree application.

Thesis submission deadlines Graduating in May: Second Friday in May Graduating in September: Second Friday in August Graduating in February: Second Friday in January We strongly recommend that your defense be scheduled at least three weeks prior to the submission date. Consult with Academic Administrator Shannon Larkin to determine your thesis submission timeline.

Thesis FAQs

The information on this page is applicable for both PhD and Masters (with the exception of an Oral defense) degree candidates.

How do I submit a Thesis Proposal? When is it due?

Students register for thesis research units and assemble a thesis committee in the term following passing the Oral Exam.

The first step is for the student and research supervisor to agree on a thesis topic. An initial Graduate Thesis Proposal Cover Sheet (PDF) (Master’s Degree candidates should see process in section below) must be submitted to Academic Programs by the second week of the term.

The form requires

  • an initial thesis title
  • the name and signature of the research supervisor
  • the name of one additional reader for the thesis committee agreed upon by the student and advisor

A third reader from the MIT Physics faculty, who is not in the same research area but whose background makes him or her an appropriate departmental representative on the committee, will be assigned by the Graduate Program Faculty Coordinator. If a student has a co-supervisor (because the main supervisor is from outside the MIT Physics faculty), the thesis committee will consist of four people: research supervisor, co-supervisor, selected reader, and assigned reader.

After the student is notified of the assigned reader, he or she should convene an initial thesis committee meeting within the same term. The student should also register for 8.THG beginning in this term, and in each term thereafter. 8.THG registration should be for up to 36 units, depending on whether the student is also still taking classes and/or receiving academic credit because of a teaching assistantship. All post-qual students should routinely register for a standard total 36 units.

Master’s degree candidates should complete an SM Thesis Proposal Cover Sheet (PDF). A second reader for the Master’s degree thesis committee is assigned by the Graduate Program Faculty Coordinator. Note that there is no public defense required for an SM degree.

See the Doctoral Guidelines for additional information.

I am going to graduate soon–what do I have to do in terms of paperwork etc.?

Please reference the Registrar’s complete graduation checklist . Students should reference this list at the START of the semester prior to graduation. Your research area’s administrative office and the Physics APO will also help you manage the final stage of your degree.

How do I get on/off the Degree List?

Fill out the Degree Application through the student section of WebSIS . Petitioning to be on the degree list for a particular commencement is required. Note that it is easier to be removed from the degree list to be added, so students are encouraged to apply for the degree list if there is any reasonable chance they will complete the PhD in the coming term.

The WebSIS degree list is used to communicate information about thesis defense announcements and grade sheets, thesis formats, and completion dates, so it is important to file a degree application to be on the list in a timely way. The standard deadline for filing a degree application without being assessed a late fee is the Friday of the first week of the term in which a student anticipates graduating. Removing oneself from the degree list requires an email to Academic Programs .

When is my thesis due? Can I get an extension?

Students can defend and submit their thesis on any dates that work for their committees, but MIT confers degrees only 3 times each year: in May, September and February. Thesis submission deadlines Graduating in May: Second Friday in May Graduating in September: Second Friday in August Graduating in February: Second Friday in January We strongly recommend that your defense be scheduled at least three weeks prior to the submission date. Consult with Academic Administrator Shannon Larkin to determine your thesis submission timeline.

Note that these deadlines are already more generous that the Institute thesis deadline. Students desiring extensions should contact the Academic Administrator, Shannon Larkin .

How do I find a room for my Thesis Defense?

Many Divisions have conference and/or seminar rooms which can be used for oral exams and defenses. These locations are recommended to keep your Thesis Defense comfortable and in familiar territory. Students who cannot book a room in their research area should contact Sydney Miller in the Physics APO to check availability of a Physics departmental conference room (often difficult to schedule due to heavy demand) or to help schedule a classroom through the Registrar’s Office.

When I submit my thesis to Physics Academic Programs, what do I need to bring?

Please refer to the Graduate Thesis Submission Guidelines .

Department of Physics

Home

PhD. Theses

Fpo pictures 2024.

Nicholas Quirk - FPO; Committee: Professors Phuan Ong, Biao Lian, and Lyman Page

Nicholas Quirk - FPO; Committee: Professors Phuan Ong, Biao Lian, and Lyman Page

Leander Thiele - FPO; Committee: Professors David Spergel, Jo Dunkley, and Lyman Page

Leander Thiele - FPO; Committee: Professors David Spergel, Jo Dunkley, and Lyman Page

Jingyao Wang- FPO; Committee: Professors Michael Romalis, Waseem Bakr, and (not pictured) Mariangela Lisanti

Jingyao Wang- FPO; Committee: Professors Michael Romalis, Waseem Bakr, and (not pictured) Mariangela Lisanti

Remy Delva- FPO; Committee: Professors Jason Petta, David Huse, and Chris Tully

Remy Delva- FPO; Committee: Professors Jason Petta, David Huse, and Chris Tully

Saumya Shivam - FPO; Committee: Professors Shivaji Sondhi, Biao Lian and Frans Pretorius

Saumya Shivam - FPO; Committee: Professors Shivaji Sondhi, Biao Lian and Frans Pretorius

Cheng-Li Chiu - FPO; Committee: Professors Ali Yazdani, Lawrence Cheuk, Sanfeng Wu, and Biao Lian

Cheng-Li Chiu - FPO; Committee: Professors Ali Yazdani, Lawrence Cheuk, Sanfeng Wu, and Biao Lian

Charlie Guinn - FPO; Committee: Professors Andrew Houck, Lawrence Cheuk, and Sarang Gopalakrishnan

Charlie Guinn - FPO; Committee: Professors Andrew Houck, Lawrence Cheuk, and Sarang Gopalakrishnan

Kaiwen Zheng - FPO; Committee: Professors Suzanne Staggs, Jo Dunkley and Chris Tully

Kaiwen Zheng - FPO; Committee: Professors Suzanne Staggs, Jo Dunkley and Chris Tully

Stephanie Kwan - FPO; Committee: Professors Isobel Ojalvo, Mariangela Lisanti and Jim Olsen

Stephanie Kwan - FPO; Committee: Professors Isobel Ojalvo, Mariangela Lisanti and Jim Olsen

Nicholas Haubrich - FPO; Committee: Professors Jim Olsen, Isobel Ojalvo, Mariangela Lisanti

Nicholas Haubrich - FPO; Committee: Professors Jim Olsen, Isobel Ojalvo, Mariangela Lisanti

Roman Kolevatov - FPO; Committee: Professors Lyman Page, Paul Steinhardt, Frans Pretorius, and Saptarshi Chaudhuri

Roman Kolevatov - FPO; Committee: Professors Lyman Page, Paul Steinhardt, Frans Pretorius, and Saptarshi Chaudhuri

Gillian Kopp - FPO; Committee: Professors Chris Tully, Isobel Ojalvo, Mariangela Lisanti, and Andrew Leifer

Gillian Kopp - FPO; Committee: Professors Chris Tully, Isobel Ojalvo, Mariangela Lisanti, and Andrew Leifer

Zheyi Zhu - FPO; Committee: Professors Phuan Ong, Sanfeng Wu, and Silviu Pufu

Zheyi Zhu - FPO; Committee: Professors Phuan Ong, Sanfeng Wu, and Silviu Pufu

Yuhan Wang- FPO; Committee: Professors Suzanne Staggs, Jo Dunkley, Isobel Ojalvo, and Lyman Page

Yuhan Wang- FPO; Committee: Professors Suzanne Staggs, Jo Dunkley, Isobel Ojalvo, and Lyman Page

Benjamin Spar - FPO; Committee: Professors Waseem Bakr, Lawrence Cheuk, and David Huse

Benjamin Spar - FPO; Committee: Professors Waseem Bakr, Lawrence Cheuk, and David Huse

Shuo Ma - FPO; Committee: Professors Jeffrey Thompson, Waseem Bakr, Lawrence Cheuk, and David Huse

Shuo Ma - FPO; Committee: Professors Jeffrey Thompson, Waseem Bakr, Lawrence Cheuk, and David Huse

PhD. Theses 2024

View past theses (2011 to present) in the Dataspace Catalog of Ph.D Theses in the Department of Physics

View past theses (1996 to present) in the ProQuest Database

Physics Forums Insights

How to Write a Master Degree Thesis As a Physics Major

Table of Contents

Your First Scientific Paper Ought to be good!

Structure and contents of a master degree thesis.

This guide was written some years ago as a guideline for students at the Physics Master level at the University of Oslo. I had at that time been the final censor for about 30 students, and I was getting very frustrated of struggling with the thesis trying to find the main points in it. Somebody has already observed that it is Scandinavian-centric – of course, it is!

A Master Degree Thesis is a Project

Before starting a Master’s Degree Thesis, you need to consider several things. The most important being:

  • A Master Degree is very similar to a research project. What you learn when writing your thesis you will find useful when you join a research project and have to write project reports.
  • You are the one that states the premises for the thesis. You are the one that solves all problems related to the thesis. At the outset, nobody else knows what you expected to do.
  • You are judged by your thesis, not by the amount of work you may have done during your Master’s Degree. You cannot expect the censor to judge you from what your supervisor tells him about your efforts.

This means that you have to do a great deal of effort in structuring the thesis if your goal is to get a good result. This is not wasted effort; the writing process can be an important aid to help you realize what you should do and in what sequence the individual parts should be done.

A thesis should have a rigorous structure

A thesis is in a way the complete documentation of a project. This means that a certain amount of information has to be included and preferably in a certain sequence. If you feel that such a structure is hindering you in designing your thesis in the way you want to present it, it is up to you to use a different structure. Just try to include all the necessary information and make it easy to find.

Chapter 1: What I want to do and why

This chapter is the most important chapter in the thesis, and in my experience, the chapter students spend the least amount of time writing. The purpose of this chapter is to

  • Polish the problem statement and present it to the reader
  • Create a believable reason for this problem to be the subject for a master thesis

This chapter is not supposed to be long and boring – 2 pages may be enough, 4 pages is probably too much – but it normally needs to be rewritten about 5 times before it is good enough. What you really do in this chapter is to create a requirement specification for your own master’s degree project. This also helps clarify to yourself what you really want to do. If your arguments are clear enough, it also tells the censor what you were trying to do.

  • Do not mix problem statement and solution proposals
  • Create verifiable requirements. That way it is possible to see whether you have solved the problem or not.
  • Others may have worked with similar problems – have you checked available publications?

This is what is known as the “selling phase” of the thesis. Spend some efforts in presenting convincing arguments as to the importance of taking a close look at the problem you intend to work on.

  • Treating a proposal for a solution as if it were a problem statement (this is a very common mistake).
  • Thinking that the problem proposed by your supervisor is known to everybody including the censor (also a very common mistake).
  • Starting out with a proposal for a solution and trying to derive a fitting problem statement.

Chapter 2: How I intend to attack the problem

This chapter is a transitional chapter, where you are supposed to present a solution to the problem statement in chapter 1. It is solution time! But do not be satisfied with just one – with some brainstorming and a bit of fantasy I am sure that you can come up with at least five. Some of the solutions may look promising, some may look hopeless – analyze! Can you combine two or more solutions?

  • Presenting only one solution

Chapter 3: Technical details pertaining to the chosen solution

This chapter is always easy to find, it is present in every thesis. The important task is to set limits and only include what is necessary in order to follow the progress of the project. Thus a brutal editing process is usually necessary. Do you think it is too hard to cut interesting stuff? Put it in an appendix!

  • What is interesting to you may very well be peripheral (and even boring) to others.
  • Known technology does not belong in this chapter. Use references or write a short summary (which should be put in an appendix and referred to).
  • Leaving out reasoning or references because “they are obvious”. The thesis is not written for you, but for others that do not have your background.

Chapter 4: What was the result of the project?

This chapter is a concentrate of what you have discovered during the project. This is where you write down what experiences you have gained that can be of use for others, interesting side tracks that you did not have time to explore, in short: Everything that can be useful for others to know. Try to structure the information in a way that makes it possible to navigate.

  • A part of this chapter should be reserved for evaluation. Have you realized your own requirements from chapter 1? If not, what do you think is the reason?
  • Copying the lab journal into this chapter (you have created a lab journal, I hope). The lab journal is written for you by you, this chapter is written for others by

Chapter 5: The conclusion

Now it is time to take a breath and think about what you are doing. The conclusion should not be an extract of the lab journal, but a message to the reader. Imagine that a busy reader is supposed to find the essence of your thesis in 5 minutes. What is he going to read?

  • The problem statement (chapter 1)
  • The conclusion (this chapter)

This means that you have to extract the essence of what you want to say in this chapter. How well would you say the project went? Was the requirement specification realized? Are there any promising possibilities for further work? Include it, while doing the best you can in order to “sell” the results to the reader. This is your Grand Finale, your result depends a lot on how you are able to collect loose threads and finish in style.

  • To compare your results with the requirement specification. If you do not, the censor will. You can explain deviations better than he can (or will).
  • Making too long a conclusion. Do it in one page (or less).

Written last and inserted first: The concentrate

Having produced an acceptable conclusion, there is only one small detail left. The essence of the complete thesis must be shrunk down to about half a page. This means that you have to squeeze in the requirement specification and the conclusion in an even smaller space than you did before – and (very important) it must tempt the reader into reading the rest of the thesis!

When you have finally squeezed in everything you want to say in half a page, put this page in front of the rest. This means: After the cover, but before the table of contents. This is your big “sell”, so make it look good!

Details you must remember

  • Table of contents
  • List of figures

Put some efforts into the language

  • Do not use overlong sentences. A full stop gives the reader room to breathe.
  • Remove empty sentences and ditto expressions.
  • Do not write too impersonally. It will only put the reader to sleep

Create correct reference lists

Creating an acceptable reference list is an important part of every report, and therefore also an important part of your thesis. You have several possibilities for placing references:

  • As part of the text
  • At the bottom of the page (as a footnote)
  • At the end of the thesis (as a reference list)

A reference list at the end of the thesis is probably less disturbing than references on each page.

A reference shall contain:

The surname of the author, the given name (or initials), the title, the ISBN (if possible), the edition, the place of publication, the publisher, and the publishing date.

ISO has two recommendations, R 77 [i ] and R 690 [ii ] that specifies what a reference list should contain.

An example of a reference list

[i] .          International Organization for Standardization. Bibliographical References; essential elements. Geneve 1958. (ISO recommendation R 77)

[ii].        International Organization for Standardization. Bibliographical References; essential and supplementary elements. Geneve 1968. (ISO recommendation R 690)

Master’s in Mathematics, Norway. Interested in Network-based time synchronisation.

You might also like

physics grad school

Note this appears to be geared towards the Scandinavian education system

Leave a Reply

Leave a reply cancel reply.

You must be logged in to post a comment.

arrowoftime

Digital Commons @ Michigan Tech

Home > Sciences and Arts > Dept. of Physics > Dissertations, Master's Theses and Master's Reports

Department of Physics

Dept. of Physics Dissertations, Master's Theses and Master's Reports

Explore our collection of dissertations, master's theses and master's reports from the Department of Physics below.

Theses/Dissertations/Reports from 2024 2024

APPLICATIONS OF INDEPENDENT AND IDENTICALLY DISTRIBUTED (IID) RANDOM PROCESSES IN POLARIMETRY AND CLIMATOLOGY , Dan Kestner

DEPENDENCE OF ENERGY TRANSFER ON CURVATURE SIMILARITY IN COLLISIONS INVOLVING CURVED SHOCK FRONTS , Justin Cassell

Study of Particle Accelerators in the Universe with the HAWC Observatory , Rishi Babu

Theses/Dissertations/Reports from 2023 2023

An exploration of cloud droplet growth by condensation and collision-coalescence in a convection-cloud chamber , Jacob T. Kuntzleman

A Search for Compact Object Dark Matter in the Universe Utilizing Gravitational Millilensing of Gamma-ray Bursts , Oindabi Mukherjee

Fabrication and Optical Properties of Two-Dimensional Transition Metal Dichalcogenides , Manpreet Boora

Large cloud droplets and the initiation of ice by pressure fluctuations: Molecular simulations and airborne in-situ observations , Elise Rosky

On Examining Solvation and Dielectric Constants of Polar and Ionic Liquids using the Stockmayer Fluid Model , Cameron J. Shock

PHYSICAL, OPTICAL, AND CHEMICAL PROPERTIES OF LIGHT ABSORBING AEROSOLS AND THEIR CLIMATIC IMPACTS , Susan Mathai

STUDY OF ELECTRONIC AND MAGNETIC PROPERTIES OF BILAYER GRAPHENE NANOFLAKES AND BIMETALLIC CHALCOGENIDES USING FIRST-PRINCIPLES DENSITY FUNCTIONAL THEORY AND MACHINE LEARNING , Dharmendra Pant

SURFACE RECONSTRUCTION IN IRON GARNETS , Sushree Dash

Tracing the Most Powerful Galactic Cosmic-ray Accelerators with the HAWC Observatory , Dezhi Huang

Theses/Dissertations/Reports from 2022 2022

A Combined Spectral and Energy Morphology Analysis of Gamma Ray Source HAWC J2031+415 in the Cygnus Constellation , Ian Herzog

APPLICATION OF ARGON PRESSURE BROADENED RUBIDIUM VAPOR CELLS AS ULTRA-NARROW NOTCH FILTERS , Sam Groetsch

A SURROGATE MODEL OF MOLECULAR DYNAMICS SIMULATIONS FOR POLAR FLUIDS: SUPERVISED LEARNING METHODS FOR MOLECULAR POLARIZATION AND UNSUPERVISED METHODS FOR PHASE CLASSIFICATION , Zackerie W. Hjorth

BORON NITRIDE NANOSTRUCTURES: SYNTHESIS, CHARACTERIZATION, AND APPLICATION IN PHOTOVOLTAICS AND BIOMEDICINE , Sambhawana Sharma

Machine Learning-Driven Surrogate Models for Electrolytes , Tong Gao

OPTICAL AND SINGLE PARTICLE PROPERTIES OF NORTH ATLANTIC FREE TROPOSPHERIC AEROSOLS AND IMPLICATIONS FOR AEROSOL DIRECT RADIATIVE FORCING , Megan Morgenstern

PRELIMINARY STUDIES OF BACKGROUND REJECTION CAPABILITIES FOR THE SOUTHERN WIDE−FIELD GAMMA−RAY OBSERVATORY , Sonali Mohan

SEARCHING FOR ANOMALOUS EXTENSIVE AIR SHOWERS USING THE PIERRE AUGER OBSERVATORY FLUORESCENCE DETECTOR , Andrew Puyleart

THEORETICAL INVESTIGATION ON OPTICAL PROPERTIES OF 2D MATERIALS AND MECHANICAL PROPERTIES OF POLYMER COMPOSITES AT MOLECULAR LEVEL , Geeta Sachdeva

THE VARIABILITY OF THE SATURATION RATIO IN CLOUDS , Jesse C. Anderson

TOWARD DEEP LEARNING EMULATORS FOR MODELING THE LARGE-SCALE STRUCTURE OF THE UNIVERSE , Neerav Kaushal

Theses/Dissertations/Reports from 2021 2021

A COMPUTATIONAL STUDY OF PROPERTIES OF CORE-SHELL NANOWIRE HETEROSTRUCTURES USING DENSITY FUNCTIONAL THEORY , Sandip Aryal

ACTIVATION SCAVENGING OF AEROSOL : EFFECT OF TURBULENCE AND AEROSOL-COMPOSITION , Abu Sayeed Md Shawon

APPLICATION OF GRAPHENE-BASED 2D MATERIALS AND EXPLORATION OF LITHIUM POLYSULFIDES SOLID PHASES – FIRST-PRINCIPLES STUDY BASED ON DENSITY FUNCTIONAL THEORY , Qing Guo

Control of spontaneous emission dynamics in microcavities with chiral exceptional surfaces , Amin Hashemi

Investigating ice nucleation at negative pressures using molecular dynamics: A first order approximation of the dependence of ice nucleation rate on pressure , Elise Rosky

Modeling and Numerical Simulations Of The Michigan Tech Convection Cloud Chamber , Subin Thomas

PHYSICOCHEMICAL PROPERTIES OF ATMOSPHERIC AEROSOLS AND THEIR EFFECT ON ICE CLOUD FORMATION , Nurun Nahar Lata

RADIAL BASIS FUNCTION METHOD FOR COMPUTATIONAL PHOTONICS , Seyed Mostafa Rezaei

UNDERSTANDING THE EFFECTS OF WATER VAPOR AND TEMPERATURE ON AEROSOL USING NOVEL MEASUREMENT METHODS , Tyler Jacob Capek

Van der Waals Quantum Dots: Synthesis, Characterization, and Applications , Amit Acharya

Theses/Dissertations/Reports from 2020 2020

Cosmic-Ray Acceleration in the Cygnus OB2 Stellar Association , Binita Hona

OPTICAL DISPERSION RELATIONS FROM THREE-DIMENSIONAL CHIRAL GOLD NANOCUBES IN PERIODIC ARRAYS , Manpreet Boora

Phase Resolved Analysis of Pulsar PSR J2032.2+4126 , Aishwarya Satyawan Dahiwale

Theses/Dissertations/Reports from 2019 2019

Aerosol-Cloud Interactions in Turbulent Clouds: A Combined Cloud Chamber and Theoretical Study , Kamal Kant Chandrakar

Energy Transfer Between Eu2+ and Mn2+ for Na(Sr,Ba)PO4 and Ba2Mg(BO3)2 , Kevin Bertschinger

INVESTIGATION OF LIGHT TRANSPORT AND SCATTERING IN TURBULENT CLOUDS: SIMULATIONS AND LABORATORY MEASUREMENTS , Corey D. Packard

Laser Induced Phase Transformations and Fluorescence Measurements from Nanodiamond Particles , Nick Videtich

Light-matter interactions in plasmonic arrays, two dimensional materials and their hybrid nanostructures , Jinlin Zhang

LIGHT PROPAGATION THROUGH A TURBULENT CLOUD: COMPARISON OF MEASURED AND COMPUTED EXTINCTION , Eduardo Rodriguez-feo Bermudez

LOCATION, ORBIT AND ENERGY OF A METEOROID IMPACTING THE MOON DURING THE LUNAR ECLIPSE OF JANUARY 21, 2019 & TESTING THE WEAK EQUIVALENCE PRINCIPLE WITH COSMOLOGICAL GAMMA RAY BURSTS , Matipon Tangmatitham

Physics and applications of exceptional points , Qi Zhong

Synthetic Saturable Absorber , Armin Kalita

The Solvation Energy of Ions in a Stockmayer Fluid , Cameron John Shock

UNDERSTANDING THE VERY HIGH ENERGY γ-RAY EMISSION FROM A FAST SPINNING NEUTRON STAR ENVIRONMENT , Chad A. Brisbois

Theses/Dissertations/Reports from 2018 2018

ANGLE-RESOLVED OPTICAL SPECTROSCOPY OF PLASMONIC RESONANCES , Aeshah Khudaysh M Muqri

Effects of Ionic Liquid on Lithium Dendrite Growth , Ziwei Qian

EFFECTS OF MASS AND DISTANCE UNCERTAINTIES ON CALCULATIONS OF FLUX FROM GIANT MOLECULAR CLOUDS , Matt Coel

Evaluating the Effectiveness of Current Atmospheric Refraction Models in Predicting Sunrise and Sunset Times , Teresa Wilson

FIRST-PRINCIPLES INVESTIGATION OF THE INTERFACIAL PROPERTIES OF BORON NITRIDE , Kevin Waters

Investigation of microphysical properties of laboratory and atmospheric clouds using digital in-line holography , Neel Desai

MAGNETLESS AND TOPOLOGICAL EDGE MODE-BASED ON-CHIP ISOLATORS AND SPIN-ORBIT COUPLING IN MAGNETO-OPTIC MEDIA , Dolendra Karki

MORPHOLOGY AND MIXING STATE OF SOOT AND TAR BALLS: IMPLICATIONS FOR OPTICAL PROPERTIES AND CLIMATE , Janarjan Bhandari

Novel Faraday Rotation Effects Observed In Ultra-Thin Iron Garnet Films , Brandon Blasiola

PROBING QUANTUM TRANSPORT IN THREE-TERMINAL NANOJUNCTIONS , Meghnath Jaishi

STUDY OF THE CYGNUS REGION WITH FERMI AND HAWC , Andrew Robare

Synthesis and Applications of One and Two-Dimensional Boron Nitride Based Nanomaterials , Shiva Bhandari

SYNTHESIS, CHARACTERIZATION, AND APPLICATION OF 2D TRANSITION METAL DICHALCOGENIDES , Mingxiao Ye

Theses/Dissertations/Reports from 2017 2017

CVD SYNTHESIS, PROCESSING, QUANTIFICATION, AND APPLICATIONS OF BORON NITRIDE NANOTUBES , Bishnu Tiwari

Gamma/Hadron Separation for the HAWC Observatory , Michael J. Gerhardt

LABORATORY, COMPUTATIONAL AND THEORETICAL INVESTIGATIONS OF ICE NUCLEATION AND ITS IMPLICATIONS FOR MIXED PHASE CLOUDS , Fan Yang

LABORATORY STUDIES OF THE INTERSTITIAL AEROSOL REMOVAL MECHANISMS IN A CLOUD CHAMBER , Sarita Karki

QUANTUM INSPIRED SYMMETRIES IN LASER ENGINEERING , Mohammad Hosain Teimourpour

Search for High-Energy Gamma Rays in the Northern Fermi Bubble Region with the HAWC Observatory , Hugo Alberto Ayala Solares

Synthetic Saturable Absorber Using Non-Uniform Jx Waveguide Array , Ashfiqur Rahman

The Intrinsic Variability of the Water Vapor Saturation Ratio Due to Mixing , Jesse Anderson

Theses/Dissertations/Reports from 2016 2016

FIRST-PRINCIPLES STUDIES OF GROUP IV AND GROUP V RELATED TWO DIMENSIONAL MATERIALS , Gaoxue Wang

INVESTIGATION OF THE RESISTANCE TO DEMAGNETIZATION IN BULK RARE-EARTH MAGNETS COMPRISED OF CRYSTALLOGRAPHICALLY-ALIGNED, SINGLE-DOMAIN CRYSTALLITES WITH MODIFIED INTERGRANULAR PHASE , Jie Li

LABORATORY MEASUREMENTS OF CONTACT NUCLEATION BY MINERAL DUSTS, BACTERIA, AND SOLUBLE SALTS , Joseph Niehaus

Studies of invisibility cloak based on structured dielectric artificial materials , Ran Duan

Testing Lidar-Radar Derived Drop Sizes Against In Situ Measurements , Mary Amanda Shaw

Reports/Theses/Dissertations from 2015 2015

A METHOD FOR DETERMINING THE MASS COMPOSITION OF ULTRA-HIGH ENERGY COSMIC RAYS BY PREDICTING THE DEPTH OF FIRST INTERACTION OF INDIVIDUAL EXTENSIVE AIR SHOWERS , Tolga Yapici

BARIUM CONCENTRATIONS IN ROCK SALT BY LASER INDUCED BREAKDOWN SPECTROSCOPY , Kiley J. Spirito

FUNCTIONALIZED BORON NITRIDE NANOTUBES FOR ELECTRONIC APPLICATIONS , Boyi Hao

GEOMETRY INDUCED MAGNETO-OPTIC EFFECTS IN LPE GROWN MAGNETIC GARNET FILMS , Ashim Chakravarty

LABORATORY AND FIELD INVESTIGATION OF MIXING, MORPHOLOGY AND OPTICAL PROPERTIES OF SOOT AND SECONDARY ORGANIC AEROSOLS , Noopur Sharma

MULTISCALE EXAMINATION AND MODELING OF ELECTRON TRANSPORT IN NANOSCALE MATERIALS AND DEVICES , Douglas R. Banyai

RELATIVISTIC CONFIGURATION INTERACTION CALCULATIONS OF THE ATOMIC PROPERTIES OF SELECTED TRANSITION METAL POSITIVE IONS; NI II, V II AND W II , Marwa Hefny Abdalmoneam

SEARCH FOR LONG-LIVED WEAKLY INTERACTING PARTICLES USING THE PIERRE AUGER OBSERVATORY , Niraj Dhital

Search for TeV Gamma-Ray Sources in the Galactic Plane with the HAWC Observatory , Hao Zhou

STUDY OF NON-RECIPROCAL DICHROISM IN PHOTONIC STRUCTURES , Anindya Majumdar

UNDERSTANDING ELECTRONIC STRUCTURE AND TRANSPORT PROPERTIES IN NANOSCALE JUNCTIONS , Kamal B. Dhungana

Reports/Theses/Dissertations from 2014 2014

A THEORETICAL STUDY OF INTERACTION OF NANOPARTICLES WITH BIOMOLECULE , Chunhui Liu

INVESTIGATING THE ROLE OF THE CONTACT LINE IN HETEROGENEOUS NUCLEATION WITH HIGH SPEED IMAGING , Colin Gurganus

MORPHOLOGY AND MIXING STATE OF ATMOSPHERIC PARTICLES: LINKS TO OPTICAL PROPERTIES AND CLOUD PROCESSING , Swarup China

QUANTUM CORRELATIONS OF LIGHTS IN MACROSCOPIC ENVIRONMENTS , Yong Meng Sua

THE THREE DIMENSIONAL SHAPE AND ROUGHNESS OF MINERAL DUST , Xinxin Woodward

Reports/Theses/Dissertations from 2013 2013

ADVENTURES IN FRIEDMANN COSMOLOGIES---INTERACTION OF POSITIVE ENERGY DENSITIES WITH NEGATIVE ENERGY DENSITIES AND CURVATURE OF THE UNIVERSE , Ravi Joshi

ELECTRON TRANSPORT IN LOW-DIMENSIONAL NANOSTRUCTURES - THEORETICAL STUDY WITH APPLICATION , Xiaoliang Zhong

Investigations of Cloud Microphysical Response to Mixing Using Digital Holography , Matthew Jacob Beals

MAGNETO-PHOTONIC CRYSTALS FOR OPTICAL SENSING APPLICATIONS , Neluka Dissanayake

NONLINEAR EFFECTS IN MAGNETIC GARNET FILMS AND NONRECIPROCAL OPTICAL BLOCH OSCILLATIONS IN WAVEGUIDE ARRAYS , Pradeep Kumar

OPTIMAL SHAPE IN ELECTROMAGNETIC SCATTERING BY SMALL ASPHERICAL PARTICLES , Ajaree Mongkolsittisilp

QUADRUPOLE LEVITATION OF PARTICLES IN A THERMODYNAMICALLY REALISTIC CLOUD ENVIRONMENT , Nicholas A. Black

STOCHASTIC CHARGE TRANSPORT IN MULTI-ISLAND SINGLE-ELECTRON TUNNELING DEVICES , Madhusudan A. Savaikar

Reports/Theses/Dissertations from 2012 2012

Calibration of the HAWC Gamma-Ray Observatory , Nathan C. Kelley-Hoskins

Charge and spin transport in nanoscale junction from first principles , Subhasish Mandal

Measurements of ice nucleation by mineral dusts in the contact mode , Kristopher W. Bunker

  • The Van Pelt and Opie Library
  • About Digital Commons @ Michigan Tech
  • Collections
  • Disciplines

Advanced Search

  • Notify me via email or RSS

Author Corner

  • Content Policy
  • Department of Physics

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

  • Utility Menu

University Logo

Apply   |   Contact Us   |   Carol Davis Fund   Anonymous Feedback to the Physics Chair

Graduate studies, commencement 2019.

The Harvard Department of Physics offers students innovative educational and research opportunities with renowned faculty in state-of-the-art facilities, exploring fundamental problems involving physics at all scales. Our primary areas of experimental and theoretical research are atomic and molecular physics, astrophysics and cosmology, biophysics, chemical physics, computational physics, condensed-matter physics, materials science, mathematical physics, particle physics, quantum optics, quantum field theory, quantum information, string theory, and relativity.

Our talented and hardworking students participate in exciting discoveries and cutting-edge inventions such as the ATLAS experiment, which discovered the Higgs boson; building the first 51-cubit quantum computer; measuring entanglement entropy; discovering new phases of matter; and peering into the ‘soft hair’ of black holes.

Our students come from all over the world and from varied educational backgrounds. We are committed to fostering an inclusive environment and attracting the widest possible range of talents.

We have a flexible and highly responsive advising structure for our PhD students that shepherds them through every stage of their education, providing assistance and counseling along the way, helping resolve problems and academic impasses, and making sure that everyone has the most enriching experience possible.The graduate advising team also sponsors alumni talks, panels, and advice sessions to help students along their academic and career paths in physics and beyond, such as “Getting Started in Research,” “Applying to Fellowships,” “Preparing for Qualifying Exams,” “Securing a Post-Doc Position,” and other career events (both academic and industry-related).

We offer many resources, services, and on-site facilities to the physics community, including our electronic instrument design lab and our fabrication machine shop. Our historic Jefferson Laboratory, the first physics laboratory of its kind in the nation and the heart of the physics department, has been redesigned and renovated to facilitate study and collaboration among our students.

Members of the Harvard Physics community participate in initiatives that bring together scientists from institutions across the world and from different fields of inquiry. For example, the Harvard-MIT Center for Ultracold Atoms unites a community of scientists from both institutions to pursue research in the new fields opened up by the creation of ultracold atoms and quantum gases. The Center for Integrated Quantum Materials , a collaboration between Harvard University, Howard University, MIT, and the Museum of Science, Boston, is dedicated to the study of extraordinary new quantum materials that hold promise for transforming signal processing and computation. The Harvard Materials Science and Engineering Center is home to an interdisciplinary group of physicists, chemists, and researchers from the School of Engineering and Applied Sciences working on fundamental questions in materials science and applications such as soft robotics and 3D printing.  The Black Hole Initiative , the first center worldwide to focus on the study of black holes, is an interdisciplinary collaboration between principal investigators from the fields of astronomy, physics, mathematics, and philosophy. The quantitative biology initiative https://quantbio.harvard.edu/  aims to bring together physicists, biologists, engineers, and applied mathematicians to understand life itself. And, most recently, the new program in  Quantum Science and Engineering (QSE) , which lies at the interface of physics, chemistry, and engineering, will admit its first cohort of PhD students in Fall 2022.

We support and encourage interdisciplinary research and simultaneous applications to two departments is permissible. Prospective students may thus wish to apply to the following departments and programs in addition to Physics:

  • Department of Astronomy
  • Department of Chemistry
  • Department of Mathematics
  • John A. Paulson School of Engineering and Applied Sciences (SEAS)
  • Biophysics Program
  • Molecules, Cells and Organisms Program (MCO)

If you are a prospective graduate student and have questions for us, or if you’re interested in visiting our department, please contact  [email protected] .

  • GRADUATE STUDIES
  • Admissions & Financial Aid
  • Admissions FAQs
  • Advising Team
  • Advising Portal (Graduate)
  • Course Requirements
  • Other PhD Tracks
  • Griffin Graduate School of Arts and Sciences
  • GSAS Student Council
  • PhD Thesis Help
  • Tax Information

physics education thesis

Physical Chemistry Chemical Physics

Modeling and admittance recursive simulation of anti-reflective coatings for photothermal conversion: synergy between subwavelength structures and gradient refractive index layer.

In the field of photothermal conversion, light-absorbing layers face challenges such as low solar energy utilization and excessive surface reflection. This paper proposes a new anti-reflective coating consisting of a gradient-doped fluorescent glass film covering a sub-wavelength structural layer for photothermal conversion. Its transmittance was simulated through equivalent medium theory and admittance recursion method. The subwavelength structure provides a gradient refractive index, and its shape solves the problem of sharp decrease in transmittance at high angles of incidence. Subsequently, we adjust the material parameters of the gradient refractive layers and control the thickness of each layer to minimize interlayer Fresnel reflections. Finally, the efficient light-trapping ability of the model was verified by calculating and comparing the transmittances of the optimized model and bare glass. Notably, within the visible spectrum, our model achieves an average transmittance of over 95% across wavelength and angle ranges, effectively suppressing surface reflections. At a larger light incident angle, the transmittance increases by 29.7%, and the minimum angle transmittance reaches 92.7%. This study proposes an innovative method to enhance the performance of transmission layers in photothermal conversion devices.

Article information

Download citation, permissions.

physics education thesis

Z. Zhu, Y. Bu and X. Wang, Phys. Chem. Chem. Phys. , 2024, Accepted Manuscript , DOI: 10.1039/D4CP01522C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page .

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page .

Read more about how to correctly acknowledge RSC content .

Social activity

Search articles by author.

This article has not yet been cited.

Advertisements

Get the Reddit app

A subreddit for those who enjoy learning about flags, their place in society past and present, and their design characteristics

Flag of Elektrostal, metallurgy and heavy machinery manufacturing city in Moscow Oblast, Russia

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

Elektrostal

Elektrostal

Our editors will review what you’ve submitted and determine whether to revise the article.

physics education thesis

Elektrostal , city, Moscow oblast (province), western Russia . It lies 36 miles (58 km) east of Moscow city. The name, meaning “electric steel,” derives from the high-quality-steel industry established there soon after the October Revolution in 1917. During World War II , parts of the heavy-machine-building industry were relocated there from Ukraine, and Elektrostal is now a centre for the production of metallurgical equipment. Pop. (2006 est.) 146,189.

Facts.net

40 Facts About Elektrostal

Lanette Mayes

Written by Lanette Mayes

Modified & Updated: 01 Jun 2024

Jessica Corbett

Reviewed by Jessica Corbett

40-facts-about-elektrostal

Elektrostal is a vibrant city located in the Moscow Oblast region of Russia. With a rich history, stunning architecture, and a thriving community, Elektrostal is a city that has much to offer. Whether you are a history buff, nature enthusiast, or simply curious about different cultures, Elektrostal is sure to captivate you.

This article will provide you with 40 fascinating facts about Elektrostal, giving you a better understanding of why this city is worth exploring. From its origins as an industrial hub to its modern-day charm, we will delve into the various aspects that make Elektrostal a unique and must-visit destination.

So, join us as we uncover the hidden treasures of Elektrostal and discover what makes this city a true gem in the heart of Russia.

Key Takeaways:

  • Elektrostal, known as the “Motor City of Russia,” is a vibrant and growing city with a rich industrial history, offering diverse cultural experiences and a strong commitment to environmental sustainability.
  • With its convenient location near Moscow, Elektrostal provides a picturesque landscape, vibrant nightlife, and a range of recreational activities, making it an ideal destination for residents and visitors alike.

Known as the “Motor City of Russia.”

Elektrostal, a city located in the Moscow Oblast region of Russia, earned the nickname “Motor City” due to its significant involvement in the automotive industry.

Home to the Elektrostal Metallurgical Plant.

Elektrostal is renowned for its metallurgical plant, which has been producing high-quality steel and alloys since its establishment in 1916.

Boasts a rich industrial heritage.

Elektrostal has a long history of industrial development, contributing to the growth and progress of the region.

Founded in 1916.

The city of Elektrostal was founded in 1916 as a result of the construction of the Elektrostal Metallurgical Plant.

Located approximately 50 kilometers east of Moscow.

Elektrostal is situated in close proximity to the Russian capital, making it easily accessible for both residents and visitors.

Known for its vibrant cultural scene.

Elektrostal is home to several cultural institutions, including museums, theaters, and art galleries that showcase the city’s rich artistic heritage.

A popular destination for nature lovers.

Surrounded by picturesque landscapes and forests, Elektrostal offers ample opportunities for outdoor activities such as hiking, camping, and birdwatching.

Hosts the annual Elektrostal City Day celebrations.

Every year, Elektrostal organizes festive events and activities to celebrate its founding, bringing together residents and visitors in a spirit of unity and joy.

Has a population of approximately 160,000 people.

Elektrostal is home to a diverse and vibrant community of around 160,000 residents, contributing to its dynamic atmosphere.

Boasts excellent education facilities.

The city is known for its well-established educational institutions, providing quality education to students of all ages.

A center for scientific research and innovation.

Elektrostal serves as an important hub for scientific research, particularly in the fields of metallurgy , materials science, and engineering.

Surrounded by picturesque lakes.

The city is blessed with numerous beautiful lakes , offering scenic views and recreational opportunities for locals and visitors alike.

Well-connected transportation system.

Elektrostal benefits from an efficient transportation network, including highways, railways, and public transportation options, ensuring convenient travel within and beyond the city.

Famous for its traditional Russian cuisine.

Food enthusiasts can indulge in authentic Russian dishes at numerous restaurants and cafes scattered throughout Elektrostal.

Home to notable architectural landmarks.

Elektrostal boasts impressive architecture, including the Church of the Transfiguration of the Lord and the Elektrostal Palace of Culture.

Offers a wide range of recreational facilities.

Residents and visitors can enjoy various recreational activities, such as sports complexes, swimming pools, and fitness centers, enhancing the overall quality of life.

Provides a high standard of healthcare.

Elektrostal is equipped with modern medical facilities, ensuring residents have access to quality healthcare services.

Home to the Elektrostal History Museum.

The Elektrostal History Museum showcases the city’s fascinating past through exhibitions and displays.

A hub for sports enthusiasts.

Elektrostal is passionate about sports, with numerous stadiums, arenas, and sports clubs offering opportunities for athletes and spectators.

Celebrates diverse cultural festivals.

Throughout the year, Elektrostal hosts a variety of cultural festivals, celebrating different ethnicities, traditions, and art forms.

Electric power played a significant role in its early development.

Elektrostal owes its name and initial growth to the establishment of electric power stations and the utilization of electricity in the industrial sector.

Boasts a thriving economy.

The city’s strong industrial base, coupled with its strategic location near Moscow, has contributed to Elektrostal’s prosperous economic status.

Houses the Elektrostal Drama Theater.

The Elektrostal Drama Theater is a cultural centerpiece, attracting theater enthusiasts from far and wide.

Popular destination for winter sports.

Elektrostal’s proximity to ski resorts and winter sport facilities makes it a favorite destination for skiing, snowboarding, and other winter activities.

Promotes environmental sustainability.

Elektrostal prioritizes environmental protection and sustainability, implementing initiatives to reduce pollution and preserve natural resources.

Home to renowned educational institutions.

Elektrostal is known for its prestigious schools and universities, offering a wide range of academic programs to students.

Committed to cultural preservation.

The city values its cultural heritage and takes active steps to preserve and promote traditional customs, crafts, and arts.

Hosts an annual International Film Festival.

The Elektrostal International Film Festival attracts filmmakers and cinema enthusiasts from around the world, showcasing a diverse range of films.

Encourages entrepreneurship and innovation.

Elektrostal supports aspiring entrepreneurs and fosters a culture of innovation, providing opportunities for startups and business development .

Offers a range of housing options.

Elektrostal provides diverse housing options, including apartments, houses, and residential complexes, catering to different lifestyles and budgets.

Home to notable sports teams.

Elektrostal is proud of its sports legacy , with several successful sports teams competing at regional and national levels.

Boasts a vibrant nightlife scene.

Residents and visitors can enjoy a lively nightlife in Elektrostal, with numerous bars, clubs, and entertainment venues.

Promotes cultural exchange and international relations.

Elektrostal actively engages in international partnerships, cultural exchanges, and diplomatic collaborations to foster global connections.

Surrounded by beautiful nature reserves.

Nearby nature reserves, such as the Barybino Forest and Luchinskoye Lake, offer opportunities for nature enthusiasts to explore and appreciate the region’s biodiversity.

Commemorates historical events.

The city pays tribute to significant historical events through memorials, monuments, and exhibitions, ensuring the preservation of collective memory.

Promotes sports and youth development.

Elektrostal invests in sports infrastructure and programs to encourage youth participation, health, and physical fitness.

Hosts annual cultural and artistic festivals.

Throughout the year, Elektrostal celebrates its cultural diversity through festivals dedicated to music, dance, art, and theater.

Provides a picturesque landscape for photography enthusiasts.

The city’s scenic beauty, architectural landmarks, and natural surroundings make it a paradise for photographers.

Connects to Moscow via a direct train line.

The convenient train connection between Elektrostal and Moscow makes commuting between the two cities effortless.

A city with a bright future.

Elektrostal continues to grow and develop, aiming to become a model city in terms of infrastructure, sustainability, and quality of life for its residents.

In conclusion, Elektrostal is a fascinating city with a rich history and a vibrant present. From its origins as a center of steel production to its modern-day status as a hub for education and industry, Elektrostal has plenty to offer both residents and visitors. With its beautiful parks, cultural attractions, and proximity to Moscow, there is no shortage of things to see and do in this dynamic city. Whether you’re interested in exploring its historical landmarks, enjoying outdoor activities, or immersing yourself in the local culture, Elektrostal has something for everyone. So, next time you find yourself in the Moscow region, don’t miss the opportunity to discover the hidden gems of Elektrostal.

Q: What is the population of Elektrostal?

A: As of the latest data, the population of Elektrostal is approximately XXXX.

Q: How far is Elektrostal from Moscow?

A: Elektrostal is located approximately XX kilometers away from Moscow.

Q: Are there any famous landmarks in Elektrostal?

A: Yes, Elektrostal is home to several notable landmarks, including XXXX and XXXX.

Q: What industries are prominent in Elektrostal?

A: Elektrostal is known for its steel production industry and is also a center for engineering and manufacturing.

Q: Are there any universities or educational institutions in Elektrostal?

A: Yes, Elektrostal is home to XXXX University and several other educational institutions.

Q: What are some popular outdoor activities in Elektrostal?

A: Elektrostal offers several outdoor activities, such as hiking, cycling, and picnicking in its beautiful parks.

Q: Is Elektrostal well-connected in terms of transportation?

A: Yes, Elektrostal has good transportation links, including trains and buses, making it easily accessible from nearby cities.

Q: Are there any annual events or festivals in Elektrostal?

A: Yes, Elektrostal hosts various events and festivals throughout the year, including XXXX and XXXX.

Elektrostal's fascinating history, vibrant culture, and promising future make it a city worth exploring. For more captivating facts about cities around the world, discover the unique characteristics that define each city . Uncover the hidden gems of Moscow Oblast through our in-depth look at Kolomna. Lastly, dive into the rich industrial heritage of Teesside, a thriving industrial center with its own story to tell.

Was this page helpful?

Our commitment to delivering trustworthy and engaging content is at the heart of what we do. Each fact on our site is contributed by real users like you, bringing a wealth of diverse insights and information. To ensure the highest standards of accuracy and reliability, our dedicated editors meticulously review each submission. This process guarantees that the facts we share are not only fascinating but also credible. Trust in our commitment to quality and authenticity as you explore and learn with us.

Share this Fact:

Knox Named 1st Endowed Chair of Physics and Astronomy

  • by Courtney Tompkins
  • June 25, 2024

Five people stand smiling in front of a "College of Letters and Science" banner. From left: a tall man in a patterned shirt, an older man in a blue polo, a man in a suit and tie, a Black woman in a white top, and an older man in a yellow shirt. Colorful balloons are visible in the background.

The nature of dark energy, the origins of the universe and the afterglow of the Big Bang.

These are just a few of the mind-bending phenomena Professor Lloyd Knox will continue exploring as the first Michael and Ester Vaida Endowed Chair in Cosmology and Astrophysics.  

The Vaida Chair — the first endowed faculty position in the Department of Physics and Astronomy — was established with a $1.5 million estate gift from Michael L. Vaida, Ph.D. ’73, and his wife, Ester Vaida. The Vaidas also pledged $200,000 to support a graduate fellowship and undergraduate scholarships. 

“I am incredibly grateful to Michael and Ester for this remarkable gift,” Knox said. “It will support our missions of research, teaching and service for as long as there is a UC Davis.”

Endowed chairs are prestigious academic positions established through a significant philanthropic gift. Funds are invested in perpetuity, with a portion of generated returns used each year to allow the faculty holder to pursue ambitious research projects, mentor students and contribute to the advancement of knowledge in their field.

At a ceremony held last month to thank the donors and celebrate Knox’s appointment, the cosmologist called it “the highest honor” he has ever received.

“I feel very deeply the responsibility to honor this gift, and the trust of my colleagues, by putting these resources and this title to good use,” he said. “Like the Starship Enterprise, I am now on a five-year mission. I promise I’ll do my best.”

Although the gift was initially included in the Vaidas’ estate plan in 2014, the pair chose to activate it early so they could see benefits of it within their lifetime. 

“I am very happy we did it that way,” said Michael Vaida. “This field studies fundamental questions about our universe – these are things I’ve been curious about for most of my life.” 

Cultivating curiosity

Knox’s immersion in science began as soon as he could read. From regular trips to the library for the latest astronomy books to attending summer science programs as a young boy, Knox found countless ways to fuel his curiosity. 

He earned a bachelor’s degree in physics from the University of Virginia and a doctorate in physics from the University of Chicago.  Knox joined the UC Davis faculty in 2001 , with a research focus on the fundamental laws of nature and origins of the universe.

“The universe is a great, huge mystery,” Knox said. “We’re all a part of this natural system that includes simple rules that seem to apply everywhere, and we have no idea why it’s like that. I feel a great privilege to be part of the conversation.”

His work has been supported by the National Science Foundation, NASA and the Department of Energy. In 2004, Knox was named a UC Davis Chancellor’s Fellow, and in 2012, he was elected as a Fellow of the American Physical Society in recognition of his work. He is also a senior member of the Planck and South Pole Telescope collaborations — international teams of scientists working together to unlock secrets about the cosmos. 

Knox's research with these large collaborations has been highly cited, and he and his team of graduate students have made notable discoveries such as their  detection of a signal from the “cosmic neutrino background” in 2015 . These ghost-like particles, called neutrinos, were released after the birth of the universe more than 13 billion years ago.

Estella Atekwana, dean of the College of Letters and Science, said the gift is a testament to the strength of the physics and astronomy program and the donors’ belief in the college’s impacts on the world.

“With this endowment, Michael and Ester have guaranteed our students continued, transformative personal connection to the most influential scientific minds in the world while simultaneously supporting key research that helps us understand our universe,” Atekwana said.

While discovering knowledge about the universe is a priority for Knox as the Vaida Chair, he is also passionate about using resources to strengthen the department’s culture, mentor more students and support diversity efforts across campus.

"I want this to be a place where more people feel the kind of support I have felt over the years, where we all respect and care for each other, and where we all feel free to take the kinds of risks that support learning and discovery," Knox said.

Donors’ legacy lives on in the cosmos

As a graduate student in the early 1970s, the department’s collaborative and inquisitive environment made a lasting impression on Michael Vaida.

Ester and Michael Vaida

“I saw firsthand the fruitful results you get from a multidisciplinary approach,” said Michael Vaida, who earned a doctorate in computer science and computational physics in 1973. “I used the expertise I learned in my computer science classes to solve physics problems, and that became my thesis.”

His journey to UC Davis began in Soviet-era Romania, where he was raised by his maternal grandparents. He graduated in 1965 with a degree in physics from one of the country’s top public research universities, but he always dreamt of living in the U.S.  

Michael Vaida migrated to New York by way of Yugoslavia, France and Italy, and ultimately landed in Central California in the fall of 1968.

He earned a master’s degree from California State University, Fresno, where he met his beloved wife. A pioneer in the field of data analytics, he founded Vaida Health Data consultants in 1986 and worked with hospitals and hospital associations across the country.

Ester Vaida also built a career in health care, working as a surgery coordinator for Sutter Women’s Health in Sacramento. A native of Guatemala, she often served as a Spanish translator for many migrant workers and their families who sought services there. 

Although Michael Vaida did not pursue a career in physics, he retained a keen interest in the subject, particularly astrophysics. And since Ester Vaida shares his fascination with the stars, they chose to let their legacy live on through the cosmos.

“When I suggested we bequest our estate to charity, Ester was very supportive of the idea,” Michael Vaida said. “If this gift to UC Davis leads to any new discoveries about the universe, we would be delighted.”

Media Resources

Media Contact:

Primary Category

Secondary categories.

Cybo The Global Business Directory

  • Moscow Oblast
  •  » 
  • Elektrostal

State Housing Inspectorate of the Moscow Region

Phone 8 (496) 575-02-20 8 (496) 575-02-20

Phone 8 (496) 511-20-80 8 (496) 511-20-80

Public administration near State Housing Inspectorate of the Moscow Region

IMAGES

  1. 10. physics education research: transforming

    physics education thesis

  2. Physics Education Research and the Transformation of Students

    physics education thesis

  3. Physics Education Thesis Topics

    physics education thesis

  4. 👍 Physics education thesis topics. MIT Department of Physics. 2019-03-02

    physics education thesis

  5. (PDF) On Einstein's Doctoral Thesis

    physics education thesis

  6. (PDF) THE WAYS THE THEORY OF PHYSICS EDUCATION CAN EVOLVE

    physics education thesis

VIDEO

  1. Mahen Jecob

  2. Physics Thesis Proposal Defensed! Congratulations!

  3. No. Zero Physics

  4. No. Zero Physics

  5. physics #physicsresearch #physicsstudent #physics #physical #shortvideo #shots #shortsviral #short

  6. Mahen Jecob

COMMENTS

  1. Dissertations & Theses

    Dec. 3, 2021. ( Link ) While much physics education research focuses on students' learning, this thesis explores physics faculty members' teaching practices. This focus is needed given the role faculty play as an essential link between students and physics content, culture, and practices. Commonly used change strategies in science education ...

  2. The Dissemination and Effective Use of Physics Education Research in

    this thesis, most institutional assessment of instructor's. teaching effectiveness does not support innovation or scholarly. ... Physics Education Research (PER) is a field of study in which one goal is to create and research instructional strategies and tools to improve teaching effectiveness. However, many of these

  3. Physics Education Research

    In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model ...

  4. Physics Education Research Central

    PERC 2024 will be held July 10-11, 2024 in Boston, Massachusetts. The theme will be "Bridging the Institutional Gap: PER at Primarily Undergraduate Four Year Institution, Two-Year College, and K-12 Levels." PER-Central provides information about and links to physics education research and its application to instruction.

  5. Physics education research for 21 st century learning

    Physics education for the twenty-first Century aims to foster high-end reasoning skills and promote deep conceptual understanding. However, many traditional education systems place strong emphasis on only problem solving with the expectation that students obtain deep conceptual understanding through repetitive problem-solving practices, which often doesn't occur (Alonso, 1992).

  6. PDF Physics Education Research

    Abstract. This project focuses on Physics Education Research (PER), and studies both the underlying theory and several practical applications. A summary of relevant pedagogical and PER-specific publications is first presented. Practical applications of the outlined principles are then studied, in the context of the Physics for Life Sciences ...

  7. Designing Effective Multimedia for Physics Education

    Designing Effective Multimedia for Physics Education. This thesis summarizes a series of investigations into how multimedia can be designed to promote the learning of physics. The 'design experiment' methodology was adopted for the study, incorporating different methods of data collection and iterated cycles of design, evaluation, and redesign.

  8. Dissertations / Theses: 'Physics Education'

    This thesis explores the use of complexity theory in Physics Education Research as a way to examine the issue of student retention (a university's ability to retain its students). University physics education is viewed through the concepts of nestedness and networked interactions.

  9. PDF Theses of Dissertation Models in Physics Education

    Physics Education PhD Program . Head of the Program: Dr. Tamás Tél . 2017. THESES . 1. High school application of dimensional analysis ... Publication related to this thesis: [1] 2. From dimensional analysis to similarity modeling . I show by using similarity modelling in practice that this method is an appropriate

  10. Physical Review Physics Education Research

    Editorial: Call for Papers for Focused Collection of Physical Review Physics Education Research: AI Tools in Physics Teaching and PER Charles Henderson Phys. Rev. Phys. Educ. Res. 19, 020003 - Published 14 December 2023

  11. Senior Theses

    Overview. The senior thesis is the capstone of the physics major and an opportunity for intellectual exploration broader than courses can afford. It is an effort that spans the whole academic year. The thesis is a great opportunity to dive into research on an aspect of physics which most engages you. Whether your thesis is on biophysics ...

  12. Physics Theses, Dissertations, and Masters Projects

    Theses/Dissertations from 2020. PDF. A First-Principles Study of the Nature of the Insulating Gap in VO2, Christopher Hendriks. PDF. Competing And Cooperating Orders In The Three-Band Hubbard Model: A Comprehensive Quantum Monte Carlo And Generalized Hartree-Fock Study, Adam Chiciak. PDF.

  13. Physics Theses and Dissertations

    Digital Repository at the University of Maryland. University of Maryland, College Park, MD 20742-7011. (301) 314-1328. [email protected].

  14. Harvard PhD Theses in Physics, 2001-

    ERSHOV, ALEXEY, B.S. (Moscow Institute of Physics & Technology) 1996. Beauty Meson Decays to Charmonium. (Feldman) FOX, DAVID CHARLES, A.B. (Princeton) 1991. (Harvard) 1994. The Structure of Clusters of Galaxies. ... PhD Theses in Physics. PhD Thesis Help; Tax Information; 17 Oxford Street Cambridge, MA 02138 (617) 495-2872 phone (617) 495-0416 fax

  15. Thesis Topics On Physics Education

    Thesis Topics on Physics Education - Free download as PDF File (.pdf), Text File (.txt) or read online for free. This document discusses the challenges students face when writing a thesis on Physics Education. It notes that selecting a suitable topic, conducting extensive research, and crafting a compelling argument are formidable tasks that can leave students feeling overwhelmed.

  16. Thesis Information » MIT Physics

    Thesis Committee Formation. Student should consult with their Research Supervisor to discuss the Doctoral Thesis Committee Proposal Form which will name the 3 required members of the Physics Doctoral Committee and a descriptive preliminary thesis title.. Doctoral Committee must include 3 members with MIT Physics faculty appointments:

  17. PhD. Theses

    Benjamin Spar. Programmable Fermi-Hubbard Physics in Optical Tweezers and Lattices. Shuo Ma. Quantum Computing with Neutral Yb Atom Arrays. View past theses (2011 to present) in the Dataspace Catalog of Ph.D Theses in the Department of Physics. View past theses (1996 to present) in the ProQuest Database. PhD. Theses 2024Nicholas QuirkTransport ...

  18. How to Write a Master Degree Thesis As a Physics Major

    Table of Contents. Your First Scientific Paper Ought to be good! A thesis should have a rigorous structure. Chapter 1: What I want to do and why. Chapter 2: How I intend to attack the problem. Remember: Pitfalls. Chapter 3: Technical details pertaining to the chosen solution.

  19. Department of Physics Dissertations, Master's Theses and Master's

    Physics and applications of exceptional points, Qi Zhong. PDF. Synthetic Saturable Absorber, Armin Kalita. PDF. The Solvation Energy of Ions in a Stockmayer Fluid, Cameron John Shock. PDF. UNDERSTANDING THE VERY HIGH ENERGY γ-RAY EMISSION FROM A FAST SPINNING NEUTRON STAR ENVIRONMENT, Chad A. Brisbois. Theses/Dissertations/Reports from 2018 PDF

  20. PDF Generation of Pulsed Quantum Light a Dissertation Submitted to The

    e ects govern its behavior and the concept of a photon emerges|the branch of physics describing these phenomena is called quantum optics. Throughout the history of quantum optics, experiments and theory focused primarily on understanding the internal dynamics of the matter when interacting with the light eld.

  21. Graduate Studies

    17 Oxford Street Cambridge, MA 02138 (617) 495-2872 phone (617) 495-0416 fax

  22. Queen's Maths and Physics student graduates with first industry-based

    Queen's Maths and Physics student graduates with first industry-based PhD of its kind 2 July, 2024. In 2014, the Maths and Physics department at Queen's introduced its first industry-based Engineering Doctorate (EngD) programme, in partnership with the University of Glasgow, Seagate Technologies. and the Irish Photonic Integration Centre.

  23. Modeling and Admittance Recursive Simulation of Anti-Reflective

    In the field of photothermal conversion, light-absorbing layers face challenges such as low solar energy utilization and excessive surface reflection. This paper proposes a new anti-reflective coating consisting of a gradient-doped fluorescent glass film covering a sub-wavelength structural layer for phototh

  24. Flag of Elektrostal, metallurgy and heavy machinery ...

    Animals and Pets Anime Art Cars and Motor Vehicles Crafts and DIY Culture, Race, and Ethnicity Ethics and Philosophy Fashion Food and Drink History Hobbies Law Learning and Education Military Movies Music Place Podcasts and Streamers Politics Programming Reading, Writing, and Literature Religion and Spirituality Science Tabletop Games ...

  25. Elektrostal

    Elektrostal, city, Moscow oblast (province), western Russia.It lies 36 miles (58 km) east of Moscow city. The name, meaning "electric steel," derives from the high-quality-steel industry established there soon after the October Revolution in 1917. During World War II, parts of the heavy-machine-building industry were relocated there from Ukraine, and Elektrostal is now a centre for the ...

  26. 40 Facts About Elektrostal

    In conclusion, Elektrostal is a fascinating city with a rich history and a vibrant present. From its origins as a center of steel production to its modern-day status as a hub for education and industry, Elektrostal has plenty to offer both residents and visitors. With its beautiful parks, cultural attractions, and proximity to Moscow, there is ...

  27. Knox Named 1st Endowed Chair of Physics and Astronomy

    The Vaida Chair — the first endowed faculty position in the Department of Physics and Astronomy — was established with a $1.5 million estate gift from Michael L. Vaida, Ph.D. '73, and his wife, Ester Vaida. The Vaidas also pledged $200,000 to support a graduate fellowship and undergraduate scholarships.

  28. State Housing Inspectorate of the Moscow Region

    State Housing Inspectorate of the Moscow Region Elektrostal postal code 144009. See Google profile, Hours, Phone, Website and more for this business. 2.0 Cybo Score. Review on Cybo.