Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 20 May 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

form hypothesis question

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

form hypothesis question

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, what is a hypothesis and how do i write one.

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

author image

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Follow us on Facebook (icon)

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”
  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Research Hypothesis: Good & Bad Examples

form hypothesis question

What is a research hypothesis?

A research hypothesis is an attempt at explaining a phenomenon or the relationships between phenomena/variables in the real world. Hypotheses are sometimes called “educated guesses”, but they are in fact (or let’s say they should be) based on previous observations, existing theories, scientific evidence, and logic. A research hypothesis is also not a prediction—rather, predictions are ( should be) based on clearly formulated hypotheses. For example, “We tested the hypothesis that KLF2 knockout mice would show deficiencies in heart development” is an assumption or prediction, not a hypothesis. 

The research hypothesis at the basis of this prediction is “the product of the KLF2 gene is involved in the development of the cardiovascular system in mice”—and this hypothesis is probably (hopefully) based on a clear observation, such as that mice with low levels of Kruppel-like factor 2 (which KLF2 codes for) seem to have heart problems. From this hypothesis, you can derive the idea that a mouse in which this particular gene does not function cannot develop a normal cardiovascular system, and then make the prediction that we started with. 

What is the difference between a hypothesis and a prediction?

You might think that these are very subtle differences, and you will certainly come across many publications that do not contain an actual hypothesis or do not make these distinctions correctly. But considering that the formulation and testing of hypotheses is an integral part of the scientific method, it is good to be aware of the concepts underlying this approach. The two hallmarks of a scientific hypothesis are falsifiability (an evaluation standard that was introduced by the philosopher of science Karl Popper in 1934) and testability —if you cannot use experiments or data to decide whether an idea is true or false, then it is not a hypothesis (or at least a very bad one).

So, in a nutshell, you (1) look at existing evidence/theories, (2) come up with a hypothesis, (3) make a prediction that allows you to (4) design an experiment or data analysis to test it, and (5) come to a conclusion. Of course, not all studies have hypotheses (there is also exploratory or hypothesis-generating research), and you do not necessarily have to state your hypothesis as such in your paper. 

But for the sake of understanding the principles of the scientific method, let’s first take a closer look at the different types of hypotheses that research articles refer to and then give you a step-by-step guide for how to formulate a strong hypothesis for your own paper.

Types of Research Hypotheses

Hypotheses can be simple , which means they describe the relationship between one single independent variable (the one you observe variations in or plan to manipulate) and one single dependent variable (the one you expect to be affected by the variations/manipulation). If there are more variables on either side, you are dealing with a complex hypothesis. You can also distinguish hypotheses according to the kind of relationship between the variables you are interested in (e.g., causal or associative ). But apart from these variations, we are usually interested in what is called the “alternative hypothesis” and, in contrast to that, the “null hypothesis”. If you think these two should be listed the other way round, then you are right, logically speaking—the alternative should surely come second. However, since this is the hypothesis we (as researchers) are usually interested in, let’s start from there.

Alternative Hypothesis

If you predict a relationship between two variables in your study, then the research hypothesis that you formulate to describe that relationship is your alternative hypothesis (usually H1 in statistical terms). The goal of your hypothesis testing is thus to demonstrate that there is sufficient evidence that supports the alternative hypothesis, rather than evidence for the possibility that there is no such relationship. The alternative hypothesis is usually the research hypothesis of a study and is based on the literature, previous observations, and widely known theories. 

Null Hypothesis

The hypothesis that describes the other possible outcome, that is, that your variables are not related, is the null hypothesis ( H0 ). Based on your findings, you choose between the two hypotheses—usually that means that if your prediction was correct, you reject the null hypothesis and accept the alternative. Make sure, however, that you are not getting lost at this step of the thinking process: If your prediction is that there will be no difference or change, then you are trying to find support for the null hypothesis and reject H1. 

Directional Hypothesis

While the null hypothesis is obviously “static”, the alternative hypothesis can specify a direction for the observed relationship between variables—for example, that mice with higher expression levels of a certain protein are more active than those with lower levels. This is then called a one-tailed hypothesis. 

Another example for a directional one-tailed alternative hypothesis would be that 

H1: Attending private classes before important exams has a positive effect on performance. 

Your null hypothesis would then be that

H0: Attending private classes before important exams has no/a negative effect on performance.

Nondirectional Hypothesis

A nondirectional hypothesis does not specify the direction of the potentially observed effect, only that there is a relationship between the studied variables—this is called a two-tailed hypothesis. For instance, if you are studying a new drug that has shown some effects on pathways involved in a certain condition (e.g., anxiety) in vitro in the lab, but you can’t say for sure whether it will have the same effects in an animal model or maybe induce other/side effects that you can’t predict and potentially increase anxiety levels instead, you could state the two hypotheses like this:

H1: The only lab-tested drug (somehow) affects anxiety levels in an anxiety mouse model.

You then test this nondirectional alternative hypothesis against the null hypothesis:

H0: The only lab-tested drug has no effect on anxiety levels in an anxiety mouse model.

hypothesis in a research paper

How to Write a Hypothesis for a Research Paper

Now that we understand the important distinctions between different kinds of research hypotheses, let’s look at a simple process of how to write a hypothesis.

Writing a Hypothesis Step:1

Ask a question, based on earlier research. Research always starts with a question, but one that takes into account what is already known about a topic or phenomenon. For example, if you are interested in whether people who have pets are happier than those who don’t, do a literature search and find out what has already been demonstrated. You will probably realize that yes, there is quite a bit of research that shows a relationship between happiness and owning a pet—and even studies that show that owning a dog is more beneficial than owning a cat ! Let’s say you are so intrigued by this finding that you wonder: 

What is it that makes dog owners even happier than cat owners? 

Let’s move on to Step 2 and find an answer to that question.

Writing a Hypothesis Step 2:

Formulate a strong hypothesis by answering your own question. Again, you don’t want to make things up, take unicorns into account, or repeat/ignore what has already been done. Looking at the dog-vs-cat papers your literature search returned, you see that most studies are based on self-report questionnaires on personality traits, mental health, and life satisfaction. What you don’t find is any data on actual (mental or physical) health measures, and no experiments. You therefore decide to make a bold claim come up with the carefully thought-through hypothesis that it’s maybe the lifestyle of the dog owners, which includes walking their dog several times per day, engaging in fun and healthy activities such as agility competitions, and taking them on trips, that gives them that extra boost in happiness. You could therefore answer your question in the following way:

Dog owners are happier than cat owners because of the dog-related activities they engage in.

Now you have to verify that your hypothesis fulfills the two requirements we introduced at the beginning of this resource article: falsifiability and testability . If it can’t be wrong and can’t be tested, it’s not a hypothesis. We are lucky, however, because yes, we can test whether owning a dog but not engaging in any of those activities leads to lower levels of happiness or well-being than owning a dog and playing and running around with them or taking them on trips.  

Writing a Hypothesis Step 3:

Make your predictions and define your variables. We have verified that we can test our hypothesis, but now we have to define all the relevant variables, design our experiment or data analysis, and make precise predictions. You could, for example, decide to study dog owners (not surprising at this point), let them fill in questionnaires about their lifestyle as well as their life satisfaction (as other studies did), and then compare two groups of active and inactive dog owners. Alternatively, if you want to go beyond the data that earlier studies produced and analyzed and directly manipulate the activity level of your dog owners to study the effect of that manipulation, you could invite them to your lab, select groups of participants with similar lifestyles, make them change their lifestyle (e.g., couch potato dog owners start agility classes, very active ones have to refrain from any fun activities for a certain period of time) and assess their happiness levels before and after the intervention. In both cases, your independent variable would be “ level of engagement in fun activities with dog” and your dependent variable would be happiness or well-being . 

Examples of a Good and Bad Hypothesis

Let’s look at a few examples of good and bad hypotheses to get you started.

Good Hypothesis Examples

Bad hypothesis examples, tips for writing a research hypothesis.

If you understood the distinction between a hypothesis and a prediction we made at the beginning of this article, then you will have no problem formulating your hypotheses and predictions correctly. To refresh your memory: We have to (1) look at existing evidence, (2) come up with a hypothesis, (3) make a prediction, and (4) design an experiment. For example, you could summarize your dog/happiness study like this:

(1) While research suggests that dog owners are happier than cat owners, there are no reports on what factors drive this difference. (2) We hypothesized that it is the fun activities that many dog owners (but very few cat owners) engage in with their pets that increases their happiness levels. (3) We thus predicted that preventing very active dog owners from engaging in such activities for some time and making very inactive dog owners take up such activities would lead to an increase and decrease in their overall self-ratings of happiness, respectively. (4) To test this, we invited dog owners into our lab, assessed their mental and emotional well-being through questionnaires, and then assigned them to an “active” and an “inactive” group, depending on… 

Note that you use “we hypothesize” only for your hypothesis, not for your experimental prediction, and “would” or “if – then” only for your prediction, not your hypothesis. A hypothesis that states that something “would” affect something else sounds as if you don’t have enough confidence to make a clear statement—in which case you can’t expect your readers to believe in your research either. Write in the present tense, don’t use modal verbs that express varying degrees of certainty (such as may, might, or could ), and remember that you are not drawing a conclusion while trying not to exaggerate but making a clear statement that you then, in a way, try to disprove . And if that happens, that is not something to fear but an important part of the scientific process.

Similarly, don’t use “we hypothesize” when you explain the implications of your research or make predictions in the conclusion section of your manuscript, since these are clearly not hypotheses in the true sense of the word. As we said earlier, you will find that many authors of academic articles do not seem to care too much about these rather subtle distinctions, but thinking very clearly about your own research will not only help you write better but also ensure that even that infamous Reviewer 2 will find fewer reasons to nitpick about your manuscript. 

Perfect Your Manuscript With Professional Editing

Now that you know how to write a strong research hypothesis for your research paper, you might be interested in our free AI proofreader , Wordvice AI, which finds and fixes errors in grammar, punctuation, and word choice in academic texts. Or if you are interested in human proofreading , check out our English editing services , including research paper editing and manuscript editing .

On the Wordvice academic resources website , you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

Elsevier QRcode Wechat

  • Manuscript Preparation

What is and How to Write a Good Hypothesis in Research?

  • 4 minute read
  • 315.2K views

Table of Contents

One of the most important aspects of conducting research is constructing a strong hypothesis. But what makes a hypothesis in research effective? In this article, we’ll look at the difference between a hypothesis and a research question, as well as the elements of a good hypothesis in research. We’ll also include some examples of effective hypotheses, and what pitfalls to avoid.

What is a Hypothesis in Research?

Simply put, a hypothesis is a research question that also includes the predicted or expected result of the research. Without a hypothesis, there can be no basis for a scientific or research experiment. As such, it is critical that you carefully construct your hypothesis by being deliberate and thorough, even before you set pen to paper. Unless your hypothesis is clearly and carefully constructed, any flaw can have an adverse, and even grave, effect on the quality of your experiment and its subsequent results.

Research Question vs Hypothesis

It’s easy to confuse research questions with hypotheses, and vice versa. While they’re both critical to the Scientific Method, they have very specific differences. Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. “The relationship between A and B will be C.”

A hypothesis is generally used if your research topic is fairly well established, and you are relatively certain about the relationship between the variables that will be presented in your research. Since a hypothesis is ideally suited for experimental studies, it will, by its very existence, affect the design of your experiment. The research question is typically used for new topics that have not yet been researched extensively. Here, the relationship between different variables is less known. There is no prediction made, but there may be variables explored. The research question can be casual in nature, simply trying to understand if a relationship even exists, descriptive or comparative.

How to Write Hypothesis in Research

Writing an effective hypothesis starts before you even begin to type. Like any task, preparation is key, so you start first by conducting research yourself, and reading all you can about the topic that you plan to research. From there, you’ll gain the knowledge you need to understand where your focus within the topic will lie.

Remember that a hypothesis is a prediction of the relationship that exists between two or more variables. Your job is to write a hypothesis, and design the research, to “prove” whether or not your prediction is correct. A common pitfall is to use judgments that are subjective and inappropriate for the construction of a hypothesis. It’s important to keep the focus and language of your hypothesis objective.

An effective hypothesis in research is clearly and concisely written, and any terms or definitions clarified and defined. Specific language must also be used to avoid any generalities or assumptions.

Use the following points as a checklist to evaluate the effectiveness of your research hypothesis:

  • Predicts the relationship and outcome
  • Simple and concise – avoid wordiness
  • Clear with no ambiguity or assumptions about the readers’ knowledge
  • Observable and testable results
  • Relevant and specific to the research question or problem

Research Hypothesis Example

Perhaps the best way to evaluate whether or not your hypothesis is effective is to compare it to those of your colleagues in the field. There is no need to reinvent the wheel when it comes to writing a powerful research hypothesis. As you’re reading and preparing your hypothesis, you’ll also read other hypotheses. These can help guide you on what works, and what doesn’t, when it comes to writing a strong research hypothesis.

Here are a few generic examples to get you started.

Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits.

Budget airlines are more likely to receive more customer complaints. A budget airline is defined as an airline that offers lower fares and fewer amenities than a traditional full-service airline. (Note that the term “budget airline” is included in the hypothesis.

Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours.

Each of the above examples are specific, observable and measurable, and the statement of prediction can be verified or shown to be false by utilizing standard experimental practices. It should be noted, however, that often your hypothesis will change as your research progresses.

Language Editing Plus

Elsevier’s Language Editing Plus service can help ensure that your research hypothesis is well-designed, and articulates your research and conclusions. Our most comprehensive editing package, you can count on a thorough language review by native-English speakers who are PhDs or PhD candidates. We’ll check for effective logic and flow of your manuscript, as well as document formatting for your chosen journal, reference checks, and much more.

Systematic Literature Review or Literature Review

  • Research Process

Systematic Literature Review or Literature Review?

What is a Problem Statement

What is a Problem Statement? [with examples]

You may also like.

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Writing an Impactful Paper

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

Input your search keywords and press Enter.

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Rate this article Cancel Reply

Your email address will not be published.

form hypothesis question

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

form hypothesis question

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

form hypothesis question

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

form hypothesis question

As a researcher, what do you consider most when choosing an image manipulation detector?

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Mardigian Library Text Logo

  • Mardigian Library
  • Subject Guides

S.U.R.E. Program

  • Develop A Research Question/Hypothesis
  • Online Library Access
  • Identify Research Gaps
  • Start Finding Sources
  • Read & Analyze Your Articles
  • Use Your Sources
  • Cite Your Sources
  • Behavioral Sciences
  • Business and Economics
  • Engineering and Technology
  • Health and Medicine
  • Humanities and Social Sciences
  • Interdisciplinary
  • Math and Physics
  • Natural Sciences
  • Using charts effectively This link opens in a new window

Strong Research Questions

A strong research question covers a well-defined and well-studied area of research. Strong research topics/questions are:

  • clear and simple
  • consistent with assignment requirements
  • of interest to you

Developing Your Research Question and Hypothesis

A broad topic has literally thousands of articles on it, and you won't be able to adequately cover it in your literature review. It will be far easier for you to research and write your literature review if you develop a strong, focused research question:

Do some exploratory research  on your topic idea, in your course textbook and class notes to identify specific issues, arguments, and analytical approaches in your research area and then identify possible relationships between them. 

Ask yourself questions about your research topic : What interests me about this topic? What have people said about it? What gaps, contradictions, or concerns arise as you learn more about it? What relationships are there between different aspects of the topic?

Write a research question that your hypothesis answers : Use the information from your exploratory research and your answers to questions about your broad topic and the area you've decided to explore to build a focused, clear, simple research question

Identify the key concepts of your research question : what concepts will you need to define and measure in a study to answer your research question? How will you operationally define these concepts into numbers that you can analyze?

Identify your variables:  Use your operational definitions to identify and list the independent and dependent variables for your research question. Identify possible confounding variables and the variables you would use to control for them.

Choose a current topic:  Develop a hypothesis for a research area about which articles are continuing to be published. Avoid defunct or little-known areas of research. 

Write about what interests you:  Professors want students to develop experiments in areas that they care about. If you're interested in the topic, it will be more fun for you to do your experiment and write up your research paper, and probably more fun for your professor to read it, too.

Ask your professor  for feedback on whether the hypothesis you develop is a good hypothesis, one that can be tested.

Picking Your Topic IS Research

Once you've picked a research topic for your paper, it isn't set in stone. It's just an idea that you will test and develop through exploratory research. This exploratory research may guide you into modifying your original idea for a research topic. Watch this video for more info:

  • << Previous: Identify Research Gaps
  • Next: Start Finding Sources >>
  • Last Updated: Mar 10, 2024 2:54 PM
  • URL: https://guides.umd.umich.edu/sure

Call us at 313-593-5559

Chat with us

Text us: 313-486-5399

Email us your question

University of Michigan - Dearborn Logo

  • 4901 Evergreen Road Dearborn, MI 48128, USA
  • Phone: 313-593-5000
  • Maps & Directions
  • M+Google Mail
  • Emergency Information
  • UM-Dearborn Connect
  • Wolverine Access

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

5.2 - writing hypotheses.

The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\(H_0\)) and an alternative hypothesis (\(H_a\)).

When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

  • At this point we can write hypotheses for a single mean (\(\mu\)), paired means(\(\mu_d\)), a single proportion (\(p\)), the difference between two independent means (\(\mu_1-\mu_2\)), the difference between two proportions (\(p_1-p_2\)), a simple linear regression slope (\(\beta\)), and a correlation (\(\rho\)). 
  • The research question will give us the information necessary to determine if the test is two-tailed (e.g., "different from," "not equal to"), right-tailed (e.g., "greater than," "more than"), or left-tailed (e.g., "less than," "fewer than").
  • The research question will also give us the hypothesized parameter value. This is the number that goes in the hypothesis statements (i.e., \(\mu_0\) and \(p_0\)). For the difference between two groups, regression, and correlation, this value is typically 0.

Hypotheses are always written in terms of population parameters (e.g., \(p\) and \(\mu\)).  The tables below display all of the possible hypotheses for the parameters that we have learned thus far. Note that the null hypothesis always includes the equality (i.e., =).

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology library

Course: biology library   >   unit 1, the scientific method.

  • Controlled experiments
  • The scientific method and experimental design

form hypothesis question

Introduction

  • Make an observation.
  • Ask a question.
  • Form a hypothesis , or testable explanation.
  • Make a prediction based on the hypothesis.
  • Test the prediction.
  • Iterate: use the results to make new hypotheses or predictions.

Scientific method example: Failure to toast

1. make an observation..

  • Observation: the toaster won't toast.

2. Ask a question.

  • Question: Why won't my toaster toast?

3. Propose a hypothesis.

  • Hypothesis: Maybe the outlet is broken.

4. Make predictions.

  • Prediction: If I plug the toaster into a different outlet, then it will toast the bread.

5. Test the predictions.

  • Test of prediction: Plug the toaster into a different outlet and try again.
  • If the toaster does toast, then the hypothesis is supported—likely correct.
  • If the toaster doesn't toast, then the hypothesis is not supported—likely wrong.

Logical possibility

Practical possibility, building a body of evidence, 6. iterate..

  • Iteration time!
  • If the hypothesis was supported, we might do additional tests to confirm it, or revise it to be more specific. For instance, we might investigate why the outlet is broken.
  • If the hypothesis was not supported, we would come up with a new hypothesis. For instance, the next hypothesis might be that there's a broken wire in the toaster.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Incredible Answer

help for assessment

  • Customer Reviews
  • Extended Essays
  • IB Internal Assessment
  • Theory of Knowledge
  • Literature Review
  • Dissertations
  • Essay Writing
  • Research Writing
  • Assignment Help
  • Capstone Projects
  • College Application
  • Online Class

Research Questions vs Hypothesis: Understanding the Difference Between Them

Author Image

by  Antony W

August 20, 2021

research questions vs hypothesis

You’ll need to come up with a research question or a hypothesis to guide your next research project. But what is a hypothesis in the first place? What is the perfect definition for a research question? And, what’s the difference between the two?

In this guide to research questions vs hypothesis, we’ll look at the definition of each component and the difference between the two.

We’ll also look at when a research question and a hypothesis may be useful and provide you with some tips that you can use to come up with hypothesis and research questions that will suit your research topic . 

Let’s get to it.

What’s a Research Question?

We define a research question as the exact question you want to answer on a given topic or research project. Good research questions should be clear and easy to understand, allow for the collection of necessary data, and be specific and relevant to your field of study.

Research questions are part of heuristic research methods, where researchers use personal experiences and observations to understand a research subject. By using such approaches to explore the question, you should be able to provide an analytical justification of why and how you should respond to the question. 

While it’s common for researchers to focus on one question at a time, more complex topics may require two or more questions to cover in-depth.

When is a Research Question Useful? 

A research question may be useful when and if: 

  • There isn’t enough previous research on the topic
  • You want to report a wider range out of outcome when doing your research project
  • You want to conduct a more open ended inquiries 

Perhaps the biggest drawback with research questions is that they tend to researchers in a position to “fish expectations” or excessively manipulate their findings.

Again, research questions sometimes tend to be less specific, and the reason is that there often no sufficient previous research on the questions.

What’s a Hypothesis? 

A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement.

Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption.

Researchers use the null approach for statements they can disapprove. They take a hypothesis and add a “not” to it to make it a working null hypothesis.

A null hypothesis is quite common in scientific methods. In this case, you have to formulate a hypothesis, and then conduct an investigation to disapprove the statement.

If you can disapprove the statement, you develop another hypothesis and then repeat the process until you can’t disapprove the statement.

In other words, if a hypothesis is true, then it must have been repeatedly tested and verified.

The consensus among researchers is that, like research questions, a hypothesis should not only be clear and easy to understand but also have a definite focus, answerable, and relevant to your field of study. 

When is a Hypothesis Useful?

A hypothesis may be useful when or if:

  • There’s enough previous research on the topic
  • You want to test a specific model or a particular theory
  • You anticipate a likely outcome in advance 

The drawback to hypothesis as a scientific method is that it can hinder flexibility, or possibly blind a researcher not to see unanticipated results.

Research Question vs Hypothesis: Which One Should Come First 

Researchers use scientific methods to hone on different theories. So if the purpose of the research project were to analyze a concept, a scientific method would be necessary.

Such a case requires coming up with a research question first, followed by a scientific method.

Since a hypothesis is part of a research method, it will come after the research question.

Research Question vs Hypothesis: What’s the Difference? 

The following are the differences between a research question and a hypothesis.

We look at the differences in purpose and structure, writing, as well as conclusion. 

Research Questions vs Hypothesis: Some Useful Advice 

As much as there are differences between hypothesis and research questions, you have to state either one in the introduction and then repeat the same in the conclusion of your research paper.

Whichever element you opt to use, you should clearly demonstrate that you understand your topic, have achieved the goal of your research project, and not swayed a bit in your research process.

If it helps, start and conclude every chapter of your research project by providing additional information on how you’ve or will address the hypothesis or research question.

You should also include the aims and objectives of coming up with the research question or formulating the hypothesis. Doing so will go a long way to demonstrate that you have a strong focus on the research issue at hand. 

Research Questions vs Hypothesis: Conclusion 

If you need help with coming up with research questions, formulating a hypothesis, and completing your research paper writing , feel free to talk to us. 

About the author 

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

Tethys Logo: Environmental Effects of Wind and Marine Renewable Energy

Answering the key stakeholder questions about the impact of offshore wind farms on marine life using hypothesis testing to inform targeted monitoring

Stakeholders need scientific advice on the environmental impacts of offshore wind (OW) before the facilities are installed. The utility of conventional environmental monitoring methods as a basis for forecasting OW impacts is limited because they do not explain the causes of the observed effects. We propose a multistep approach, based on process-oriented hypothesis testing, targeted monitoring and numerical modeling, to answer key stakeholder questions about planning an OW facility:  Q1 — Where do we place future OW farms so that impacts on the ecosystem are minimized?    Q2 — Which species and ecosystem processes will be impacted and to what degree?    Q3 — Can we mitigate impacts and, if so, how?  and  Q4 — What are the risks of placing an OW facility in one location vs. another?  Hypothesis testing can be used to assess impacts of OW facilities on target species-ecological process. This knowledge is transferable and is broadly applicable,  a priori , to assess suitable locations for OW (Q1). Hypothesis testing can be combined with monitoring methods to guide targeted monitoring. The knowledge generated can identify the species/habitats at risk (Q2), help selecting/developing mitigation measures (Q3), and be used as input parameters for models to forecast OW impacts at a large spatial scale (Q1; Q4).

Early iterations of the AI applications we interact with most today were built on traditional machine learning models. These models rely on learning algorithms that are developed and maintained by data scientists. In other words, traditional machine learning models need human intervention to process new information and perform any new task that falls outside their initial training.

For example, Apple made Siri a feature of its iOS in 2011. This early version of Siri was trained to understand a set of highly specific statements and requests. Human intervention was required to expand Siri’s knowledge base and functionality.

However, AI capabilities have been evolving steadily since the breakthrough development of  artificial neural networks  in 2012, which allow machines to engage in reinforcement learning and simulate how the human brain processes information.

Unlike basic machine learning models, deep learning models allow AI applications to learn how to perform new tasks that need human intelligence, engage in new behaviors and make decisions without human intervention. As a result, deep learning has enabled task automation, content generation, predictive maintenance and other capabilities across  industries .

Due to deep learning and other advancements, the field of AI remains in a constant and fast-paced state of flux. Our collective understanding of realized AI and theoretical AI continues to shift, meaning AI categories and AI terminology may differ (and overlap) from one source to the next. However, the types of AI can be largely understood by examining two encompassing categories: AI capabilities and AI functionalities.

1. Artificial Narrow AI

Artificial Narrow Intelligence, also known as Weak AI (what we refer to as Narrow AI), is the only type of AI that exists today. Any other form of AI is theoretical. It can be trained to perform a single or narrow task, often far faster and better than a human mind can.

However, it can’t perform outside of its defined task. Instead, it targets a single subset of cognitive abilities and advances in that spectrum. Siri, Amazon’s Alexa and IBM Watson are examples of Narrow AI. Even OpenAI’s ChatGPT is considered a form of Narrow AI because it’s limited to the single task of text-based chat.

2. General AI

Artificial General Intelligence (AGI), also known as  Strong AI , is today nothing more than a theoretical concept. AGI can use previous learnings and skills to accomplish new tasks in a different context without the need for human beings to train the underlying models. This ability allows AGI to learn and perform any intellectual task that a human being can.

3. Super AI

Super AI is commonly referred to as artificial superintelligence and, like AGI, is strictly theoretical. If ever realized, Super AI would think, reason, learn, make judgements and possess cognitive abilities that surpass those of human beings.

The applications possessing Super AI capabilities will have evolved beyond the point of understanding human sentiments and experiences to feel emotions, have needs and possess beliefs and desires of their own.

Underneath Narrow AI, one of the three types based on capabilities, there are two functional AI categories:

1. Reactive Machine AI

Reactive machines are AI systems with no memory and are designed to perform a very specific task. Since they can’t recollect previous outcomes or decisions, they only work with presently available data. Reactive AI stems from statistical math and can analyze vast amounts of data to produce a seemingly intelligent output.

Examples of Reactive Machine AI  

  • IBM Deep Blue: IBM’s chess-playing supercomputer AI beat chess grandmaster Garry Kasparov in the late 1990s by analyzing the pieces on the board and predicting the probable outcomes of each move.
  • The Netflix Recommendation Engine: Netflix’s viewing recommendations are powered by models that process data sets collected from viewing history to provide customers with content they’re most likely to enjoy.

2. Limited Memory AI

Unlike Reactive Machine AI, this form of AI can recall past events and outcomes and monitor specific objects or situations over time. Limited Memory AI can use past- and present-moment data to decide on a course of action most likely to help achieve a desired outcome.

However, while Limited Memory AI can use past data for a specific amount of time, it can’t retain that data in a library of past experiences to use over a long-term period. As it’s trained on more data over time, Limited Memory AI can improve in performance.

Examples of Limited Memory AI  

  • Generative AI: Generative AI tools such as ChatGPT, Bard and DeepAI rely on limited memory AI capabilities to predict the next word, phrase or visual element within the content it’s generating.
  • Virtual assistants and chatbots: Siri, Alexa, Google Assistant, Cortana and IBM Watson Assistant combine natural language processing (NLP) and Limited Memory AI to understand questions and requests, take appropriate actions and compose responses.
  • Self-driving cars: Autonomous vehicles use Limited Memory AI to understand the world around them in real-time and make informed decisions on when to apply speed, brake, make a turn, etc.

3. Theory of Mind AI

Theory of Mind AI is a functional class of AI that falls underneath the General AI. Though an unrealized form of AI today, AI with Theory of Mind functionality would understand the thoughts and emotions of other entities. This understanding can affect how the AI interacts with those around them. In theory, this would allow the AI to simulate human-like relationships.

Because Theory of Mind AI could infer human motives and reasoning, it would personalize its interactions with individuals based on their unique emotional needs and intentions. Theory of Mind AI would also be able to understand and contextualize artwork and essays, which today’s generative AI tools are unable to do.

Emotion AI is a theory of mind AI currently in development. AI researchers hope it will have the ability to analyze voices, images and other kinds of data to recognize, simulate, monitor and respond appropriately to humans on an emotional level. To date, Emotion AI is unable to understand and respond to human feelings.  

4. Self-Aware AI

Self-Aware AI is a kind of functional AI class for applications that would possess super AI capabilities. Like theory of mind AI, Self-Aware AI is strictly theoretical. If ever achieved, it would have the ability to understand its own internal conditions and traits along with human emotions and thoughts. It would also have its own set of emotions, needs and beliefs.

Emotion AI is a Theory of Mind AI currently in development. Researchers hope it will have the ability to analyze voices, images and other kinds of data to recognize, simulate, monitor and respond appropriately to humans on an emotional level. To date, Emotion AI is unable to understand and respond to human feelings.

Computer vision

Narrow AI applications with  computer vision  can be trained to interpret and analyze the visual world. This allows intelligent machines to identify and classify objects within images and video footage.

Applications of computer vision include:

  • Image recognition and classification
  • Object detection
  • Object tracking
  • Facial recognition
  • Content-based image retrieval

Computer vision is critical for use cases that involve AI machines interacting and traversing the physical world around them. Examples include self-driving cars and machines navigating warehouses and other environments.

Robots in industrial settings can use Narrow AI to perform routine, repetitive tasks that involve materials handling, assembly and quality inspections. In healthcare, robots equipped with Narrow AI can assist surgeons in monitoring vitals and detecting potential issues during procedures.

Agricultural machines can engage in autonomous pruning, moving, thinning, seeding and spraying. And smart home devices such as the iRobot Roomba can navigate a home’s interior using computer vision and use data stored in memory to understand its progress.

Expert systems

Expert systems equipped with Narrow AI capabilities can be trained on a corpus to emulate the human decision-making process and apply expertise to solve complex problems. These systems can evaluate vast amounts of data to uncover trends and patterns to make decisions. They can also help businesses predict future events and understand why past events occurred.

IBM has pioneered AI from the very beginning, contributing breakthrough after breakthrough to the field. IBM most recently released a big upgrade to its cloud-based, generative AI platform known as watsonx.  IBM watsonx.ai  brings together new generative AI capabilities, powered by foundation models and traditional machine learning into a powerful studio spanning the entire AI lifecycle. With watsonx.ai, data scientists can build, train and deploy machine learning models in a single collaborative studio environment.

Get email updates about AI advancements, strategies, how-tos, expert perspectives and more.

Explore watsonx.ai today

Get our newsletters and topic updates that deliver the latest thought leadership and insights on emerging trends.

U.S. flag

A .gov website belongs to an official government organization in the United States.

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Handwashing
  • Hand Hygiene as a Family Activity
  • Hand Hygiene FAQs
  • Handwashing Facts
  • Publications, Data, & Statistics
  • Health Promotion Materials
  • Global Handwashing Day
  • Life is Better with Clean Hands Campaign
  • Clinical Safety
  • Healthcare Training
  • Clean Hands Count Materials

Hand Hygiene Frequently Asked Questions

  • Keeping hands clean is one of the best ways to remove germs, avoid getting sick, and prevent the spread of germs to others.
  • Get answers to frequently asked questions about washing your hands and using hand sanitizer in community settings.

question mark graphic

General handwashing questions

Do i really need to wash my hands for 20 seconds.

Scientific studies show that you need to scrub for 20 seconds to remove harmful germs and chemicals from your hands. If you wash for a shorter time, you will not remove as many germs. Make sure to scrub all areas of your hands, including your palms, backs of your hands, between your fingers, and under your fingernails.

How does handwashing with soap and water remove germs and chemicals?

Soap and water, worked into a lather, trap and remove germs and chemicals from hands. Wetting your hands with clean water before applying soap helps you get a better lather than applying soap to dry hands. A good lather forms pockets called micelles that trap and remove germs, harmful chemicals, and dirt from your hands.

Lathering with soap and scrubbing your hands for 20 seconds is important to this process because these actions physically destroy germs and remove germs and chemicals from your skin. When you rinse your hands, you wash the germs and chemicals down the drain.

Should I use a paper towel to turn off the faucet after washing my hands?

CDC recommends turning off the faucet after wetting your hands to reduce water use. Then, turn it on again after you have washed them for 20 seconds, to rinse off the soap. If you are concerned about getting germs on your hands after you wash them, you can use a paper towel, your elbow, or another hands-free way to turn off the faucet.

What supplies do I need for handwashing?

Ensure you have easily accessible sinks; clean, running water; soap; and a way to dry hands, such as paper towels or a hand dryer.

How can I encourage handwashing among my employees?

Remind employees to wash their hands often with soap and water and provide accessible sinks, soap, water, and a way to dry their hands (e.g., paper towels, hand dryer). Put visual reminders, like signs or posters , in bathrooms or kitchen areas to remind employees to wash their hands. Provide other hygiene supplies such as tissues, no-touch/foot pedal trash cans, and hand sanitizer with at least 60% alcohol to keep your employees healthy.

Does CDC regulate handwashing in community settings?

No. CDC is not a regulatory agency, and therefore does not enforce compliance with handwashing recommendations. CDC has developed guidance on when and how to properly wash hands in community settings and when and how to clean hands in healthcare settings .

Your state or local health department may have handwashing requirements included in their health codes.

Will touching bathroom door handles make my hands dirty again after I wash them?

Scientists don't know if you would get a significant number of germs on your hands from touching a bathroom door handle. That's because it has not been specifically studied. If you're concerned about getting germs on your hands after you wash them, you can use a paper towel, your elbow, shirt, or another hands-free way to open the door.

Should I wash my hands after using the bathroom at home?

CDC recommends always washing your hands after you use the toilet, whether it is in your home or somewhere else. Germs in feces (poop) can make you sick. These germs can get on your hands after you use the toilet or change a diaper. If you don't wash them off, you can pass them from person to person and make people sick. Make a habit of washing your hands after you use the toilet every time to reduce your chance of getting sick and spreading germs.

Should I dry my hands using a paper towel or an air dryer?

There is currently not enough scientific evidence to determine if using a clean towel or an air hand dryer to dry your hands is more effective at reducing germs on your hands. Both are effective ways to dry your hands. Germs spread more easily when hands are wet, so make sure to dry your hands completely, whatever method you use.

Should I reuse a towel to dry my hands at home?

CDC recommends using a clean towel if you are using a towel to dry your hands. Reusable towels are a practical option at home. They should be changed when visibly dirty and before they develop mildew from remaining damp.

Using soap and water

Is antibacterial soap better than plain soap.

Use plain soap and water to wash your hands. Studies have not found any added health benefit from using antibacterial soap, other than for professionals in healthcare settings . In 2016, FDA banned over-the-counter sale of antibacterial soaps that contain certain ingredients because these soaps are no better than plain soap at preventing people from getting sick and their ingredients may not be safe for long-term, daily use. Some studies have shown that using antibacterial soap may contribute to antibiotic resistance .

Is bar soap better than liquid soap?

Both bar and liquid soap work well to remove germs. Use plain soap in either bar or liquid form to wash your hands.

What if I have water but no soap to wash my hands?

If you don't have soap and water, use a hand sanitizer with at least 60% alcohol . If you don't have hand sanitizer or soap, but do have water, rub your hands together under the water and dry them with a clean towel or air dry. Rubbing your hands under water will rinse some germs from your hands, even though it's not as effective as washing with soap.

Is it better to use warm water or cold water?

Use your preferred water temperature – cold or warm – to wash your hands. Warm and cold water remove the same number of germs from your hands. The water helps create soap lather that removes germs from your skin when you wash your hands. Water itself does not usually kill germs; to kill germs, water would need to be hot enough to scald your hands.

What if the water is dirty or contaminated?

Your hands can get germs on them if you place them in water that looks dirty, is contaminated (for example, during an emergency), or has germs in it from previous use, such as a basin with water used for bathing. That's why CDC recommends using clean, running water to wash your hands. If you don't have access to clean, running water, use hand sanitizer containing at least 60% alcohol to get rid of germs.

If you don't have clean, running water or hand sanitizer, you can still remove germs from your hands by washing with clear water. You can also make water safe to use by boiling, adding the proper amount of disinfectant such as a mild bleach solution, or filtering it. Use the cleanest water possible to wash your hands. Avoid using cloudy water or water that may be contaminated with harmful chemicals or toxins, such as toxins made by harmful algal blooms .

If my utility has issued a Boil Water Advisory, can I still use tap water to wash my hands?

In most cases, it is safe to wash your hands with soap and tap water during a Boil Water Advisory . Follow the guidance from your local public health officials or water utility. If soap and water are not available, use an alcohol-based hand sanitizer containing at least 60% alcohol.

Hand sanitizer and wipes

Which is better, hand sanitizer or handwashing.

Washing hands with soap and water is the best way to remove all types of germs and chemicals. If soap and water are not available, use an alcohol-based hand sanitizer with at least 60% alcohol.

How do hand sanitizers work differently than handwashing?

Alcohol-based hand sanitizers work by killing germs on your hands, while washing your hands with soap and water removes germs from your hands. Handwashing will remove all types of germs from your hands, but hand sanitizers are not able to kill all types of germs or remove harmful chemicals like pesticides and heavy metals.

Do wipes remove germs?

Hand sanitizing wipes with at least 60% alcohol kill germs on your hands.

Baby wipes are not designed to remove germs from your hands, and CDC does not recommend using them to clean your hands. They may make your hands look clean, but baby wipes and similar products that do not have at least 60% alcohol do not reliably remove germs from your hands.

Disinfecting wipes are designed to kill germs on surfaces. Do not use disinfecting wipes to clean your skin because they may cause irritation. Always read and follow the directions on the label to use these products safely.

What if I have a hand sanitizer that has no alcohol?

Hand sanitizers with at least 60% alcohol have been shown to be effective against a wider range of germs than hand sanitizers that do not contain alcohol, including those that contain active ingredients such as benzalkonium chloride (BZK). CDC recommends the use of alcohol-based hand sanitizers when soap and water are not available for handwashing.

What is the difference between CDC guidelines and FDA regulations for hand sanitizer use?

Hand sanitizer is regulated as an over-the-counter drug by the Food and Drug Administration (FDA). FDA regulates the production and manufacturing of hand sanitizing products and determines which ingredients are allowed to be used in them. The CDC develops recommendations about hand hygiene to prevent the spread of diseases in both community and healthcare settings, based on peer-reviewed data and scientific studies.

Should I make my own hand sanitizer?

CDC does not regulate hand sanitizer production. However, CDC does not recommend producing, using, or selling homemade hand sanitizer products because of concerns over the correct use of the ingredients and the need to work under sterile conditions to make the product. Handwashing with soap and water is the best way to get rid of germs in most situations.

FDA reports that if made incorrectly, hand sanitizer can be ineffective or harmful. There have been accounts of skin burns from homemade hand sanitizers and serious health problems caused by hand sanitizers contaminated with methanol. To be effective at killing some types of germs, hand sanitizers need to have a strength of at least 60% alcohol and be used when hands are not visibly dirty or greasy. Do not rely on "do-it-yourself" (or "DIY") hand sanitizer recipes based solely on essential oils or formulated without correct compounding practices.

Hand hygiene and healthcare settings

What method of hand hygiene is recommended for healthcare workers.

CDC recommends the use of alcohol-based hand sanitizers as the primary method for hand hygiene in most healthcare situations. Alcohol-based hand sanitizers effectively reduce the number of germs that may be on the hands of healthcare workers. Healthcare personnel often clean their hands more than 7 times in an hour. Some germs can be difficult to remove with soap and water and scrubbing can damage their skin. Healthcare personnel should wash their hands for at least 20 seconds with soap and water when hands are visibly dirty, before eating, after using the restroom, and after caring for people with infectious diarrhea during outbreaks.

Why are hand hygiene recommendations different in healthcare settings than in community settings?

Hand hygiene recommendations depend on the types of germs on your hands, whether your hands are visibly dirty or greasy, and where you are.

For healthcare settings, CDC recommends using alcohol-based hand sanitizer unless hands are visibly dirty.

In community settings, CDC recommends washing hands with soap and water because handwashing reduces the amounts of all types of germs and chemicals on your hands, including when hands are visibly dirty or greasy. If soap and water are not readily available, hand sanitizers with at least 60% alcohol can help protect you from getting sick from germs.

Hand hygiene and antibiotic resistance

How does hand hygiene fight antibiotic resistance.

Hand hygiene helps stop the spread of germs, including ones that can cause antibiotic-resistant infections. Antibiotic resistance happens when germs like bacteria and fungi develop the ability to defeat the drugs designed to kill them. That means the germs are not killed and continue to grow. Infections caused by antibiotic-resistant germs are difficult, and sometimes impossible, to treat. Keeping your hands clean by washing your hands with soap and water or using alcohol-based hand sanitizer is one of the best ways to prevent germs from spreading and avoid infections.

Do hand sanitizers contribute to antibiotic resistance?

Alcohol-based hand sanitizers do not contribute to antimicrobial resistance . Alcohol-based hand sanitizers kill germs, including antimicrobial-resistant germs, by destroying the proteins and breaking down the protective outer membrane that germs need to survive.

Does washing hands with soap and water contribute to antibiotic resistance?

Plain soap (soap without antibacterial ingredients) does not contribute to antibiotic resistance. Some studies have shown that using antibacterial soap may contribute to antibiotic resistance . In fact, FDA banned over-the-counter sale of antibacterial soaps that contain certain ingredients because these soaps are no better than plain soap at preventing people from getting sick, and their ingredients may not be safe for long-term, daily use. Washing your hands with plain soap and water removes germs, including antibiotic-resistant germs. Keeping your hands clean can prevent the spread of germs, reducing the risk for antimicrobial-resistant infections.

Clean Hands

Having clean hands is one of the best ways to avoid getting sick and prevent the spread of germs to others.

For Everyone

Health care providers.

form hypothesis question

form hypothesis question

Microsoft Learn Q&A needs your feedback! Learn More

May 20, 2024

Microsoft Learn Q&A needs your feedback!

Want to earn $25 for telling us how you feel about the current Microsoft Learn Q&A thread experience? Help our research team understand how to make Q&A great for you.

Find out more!

Outlook Forum Top Contributors: Don Varnau  -  Stefan Blom  -  Hal Hostetler - MVP-Outlook  -  NoOneCan  -  Ron6576   ✅

May 10, 2024

Outlook Forum Top Contributors:

Don Varnau  -  Stefan Blom  -  Hal Hostetler - MVP-Outlook  -  NoOneCan  -  Ron6576   ✅

Contribute to the Outlook forum! Click  here  to learn more  💡

April 9, 2024

Contribute to the Outlook forum!

Click  here  to learn more  💡

·         How to recover a hacked or compromised Microsoft account - Microsoft Support

February 27, 2024

Hello! Are you trying to recover or access your Microsoft Account?

  • Search the community and support articles
  • Search Community member

Ask a new question

Need Help Unlocking Microsoft Account – Verification Issues

Hello everyone,

I'm experiencing an issue with my Microsoft account, and I hope someone here can help. My account has been locked due to some suspicious activity that Microsoft detected. When I try to unlock my account, I'm prompted to enter a verification code sent to my phone. However, every time I attempt this, I receive a message saying that this verification method is not available at the moment. I've tried multiple times without success. Additionally, I have reset my password several times, but each time I reconnect, I still find my account locked. I've also looked for alternative verification methods but haven't found any that work. Does anyone know what I can do to resolve this issue and regain access to my account? Any advice or assistance would be greatly appreciated.

Thank you in advance!

***Moved From fr-fr***

  • Subscribe to RSS feed

Report abuse

Reported content has been submitted​

Replies (1) 

  • Microsoft Agent |

Hello rayen.kadri,

Good day! Thank you for the detailed description of your situation, which we have learned about. 

By your description, the cell phone number can't be used as a way to verify the account for some reason, if this is the only security information for your account, then you need to fill out the account recovery form.

The following are the steps and process for filling out an account recovery form: Help with the Microsoft account recovery form - Microsoft Support

Please try to explain your issues in detail during the filling process, providing all possible details, any information you have that proves this is your account.

The Microsoft Account Department may ask you to provide some information to verify your identity, such as previously used passwords, contact information in your account, recent account activities, purchase records.

We hope you find the above steps helpful, if you have any questions or concerns, please feel free to contact us!

Best Regards, 

Lucas Li - MFST | Microsoft Community Support Specialist 

Was this reply helpful? Yes No

Sorry this didn't help.

Great! Thanks for your feedback.

How satisfied are you with this reply?

Thanks for your feedback, it helps us improve the site.

Thanks for your feedback.

Question Info

  • Outlook.com
  • Norsk Bokmål
  • Ελληνικά
  • Русский
  • עברית
  • العربية
  • ไทย
  • 한국어
  • 中文(简体)
  • 中文(繁體)
  • 日本語

form hypothesis question

Color Scheme

  • Use system setting
  • Light theme

A big impact on Spokane’s housing shortage could come in a tiny form

A big impact on the housing shortage could come in a tiny way.

As housing prices have soared in recent years, some lower earners may think the dream of home ownership will remain out of reach.

But the city of Spokane is offering a new option – buyers will just have to think a little smaller.

“Now you could create a development where lot sizes are essentially as small as the house is,” city planning director Spencer Gardner said. “Within the development, you can have houses that are as close together as you want and sell them as their own lot.”

Signed into law at the beginning of this year, the unit lot subdivision ordinance allows a typical single-family residential property to be divided into as many lots as can fit with few limitations.

Small subdivisions are a different attack to the housing crisis than other city provisions.

Building Opportunity for Housing also became law earlier this year and allows developers to build rentals that have up to six units on a typical residential lot.

The provision was preceded by the pilot program, Building Opportunity and Choices for All, or “BOCA.”

“The part that we did not address through BOCA was this homeownership question,” Gardner said. “We don’t want to orient our market only toward rental properties. So our goal with unit lot subdivision is to increase the opportunity for people to start building equity and own their homes.”

Home ownership remains the best way to build generational wealth and has long been the cause of racial wealth gaps, according to the U.S. Department of Treasury.

Spokane’s unit lot subdivision got its name from similar ordinances in other parts of the state like Seattle, which has one in place, Gardner said. But Spokane’s program is different.

“I don’t know that other cities’ unit lot subdivision codes are quite as flexible as ours,” he said.

The new code has been widely supported, according to Gardner.

“We have taken the housing shortage very seriously. We’ve really let our council and mayor lead the way on finding ways to provide housing to the people that need it,” he said, adding this includes the administrations of both Mayor Lisa Brown and the previous mayor, Nadine Woodward.

“The former mayor was definitely involved and supportive of the changes we were making,” he said. “And the current mayor has indicated support for what we’re doing as well.”

During the outreach period when the city heard from builders, Gardner and his team learned that builders wanted to have the freedom to build smaller houses on smaller lots to meet lower price points.

Matt Goodwin is one such developer.

The locally owned franchise, Anchored Tiny Homes, is owned by Goodwin, his wife, Natalie Wright, and a silent partner. Since May 7, the company has been marketing to customers to build them small residences.

“We had about 100 inquiries in our first week,” Goodwin said Monday. “We had six site visits last week, and we have, I think, 15 site visits this week – the calendar seems to be filling up.”

Gardner said the unit lot subdivision code does not discriminate on what kind of structures qualify. They can be “stick-built” homes, meaning they are constructed on-site like a typical home, or “manufactured homes,” which are prebuilt and placed on the property, like a trailer home.

Anchored Tiny Homes specializes in stick-built homes.

Customers can choose between 15 floor plans. The tiniest, a 384-square-foot studio, costs about $75,000. The largest, a roughly 1,200-square-foot home with two bedrooms and two bathrooms, costs about $180,000.

“And that’s the all-in cost. We do permitting, we do the surveying, we do the electrical, we do everything for you,” he said. “It’s a real house with upper to midlevel finishes and fixtures that are very attractive and look very nice.”

So far, Goodwin said customers consist of about 80% of people wishing to build an accessory dwelling unit on their property for a family member – usually an aging parent or a young adult.

The other 20% of customers consist of investors who want to rent out the home or developers wishing to build tiny home communities.

“People either can’t or don’t want to pay $400,000-$500,000 for a home. But a tiny home that’s around $100,000, comes with all the bells and whistles and the quality of a real home.”

This was the mindset of Chase Altig, a resident of Spokane who bought a tiny home for his family.

A company, Tiny Homes of Spokane, placed a 398 square-foot one-bed, one-bath manufactured home on  their small Loon Lake property about two weeks ago.

“It’s 390 square feet, one bed, one bath and a loft,” he said. “That should be totally adequate for my two daughters, my wife and myself.”

Everything included, the home cost the Altiges about $100,000. And spending about $40,000 on the small property, Chase Altig is pleased with his investment.

He learned of the Marysville company through his career as a residential lender. He said he knew of Carriage Houses Northwest and other companies because of the work they’ve done in cities like Seattle and even Spokane under old city codes.

The unit lot subdivision was based on previous codes that go back to 2014, Gardner said.

But the old rules forced developers to offer access to the street for each lot and mandated a minimum lot size – neither of which are applied under the unit lot subdivision ordinance.

Despite giving developers unprecedented flexibility for residential projects, the city has not seen many companies taking advantage of the new code.

“It’s a new ordinance. Nobody knows exactly how it’s going to play out or what the overall process is,” he said. “But somebody’s going to see it as an opportunity, then I’m sure people will follow on their coattails.”

Guy Boudreaux sees potential. He owns another Spokane tiny home company, Space Elevators.

Though he will also work with customers who want an extra dwelling unit on their land like Anchored Tiny Homes, Boudreaux has a different attack. He plans to take matters into his own hands by developing residential lots himself.

Last week his company submitted plans to the city to develop four residential properties in the Chief Garry Park neighborhood.

Boudreaux has submitted plans to the city as part of a planning meeting ahead of the official permit process.

If approved, he will divide a 0.16-acre property on East Boone Avenue into three lots. On East Cataldo Avenue, he plans to divide a 0.33-acre lot into nine lots. And at a third site on East Sharpe Avenue, he has plans for two adjacent lots. Both of those 0.16-acre lots would be split, one into five lots and the other into six.

“Our goal is to basically buy up as many lots as possible and be able to, you know, fly under the flag of that unit lot subdivision scenario,” he said. “I feel great about it.”

In 2024, the company’s goal is to erect 30 stick-built, tiny homes. But if the company doesn’t meet its goal, Boudreaux still would be confident in the growth of his company.

“It’s a perfect storm,” he said. “I think after COVID, people started thinking about where they wanted to put their priorities. They didn’t want to put it in a house they really couldn’t afford to keep up with the Joneses, but instead are buying these homes and doing more traveling, for instance.”

Boudreaux predicts a shift in the preferences for homebuyers.

“Ultimately, people want just enough, but they also want the feeling of living in a quality space. I don’t think that’s going to change anytime soon,” he said.

“I think the 5,000- and 7,500 -square-foot homes are a thing of the past for a large percentage of the populace.”

Heart care for life

Feeling chilled to the bone while fishing in January is an endurable compromise for doing something you love.

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    form hypothesis question

  2. PPT

    form hypothesis question

  3. Research Question vs Hypothesis: how to convert research questions into hypotheses

    form hypothesis question

  4. How to Form a Hypothesis

    form hypothesis question

  5. How to Write a Good Research Question (w/ Examples)

    form hypothesis question

  6. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    form hypothesis question

VIDEO

  1. Step 1. Form Null Hypothesis (H_0) and Alternative Hypothesis (H_1)

  2. Proportion Hypothesis Testing, example 2

  3. What is the F-test in Hypothesis Testing

  4. Writing Research Questions and Hypothesis Statements

  5. T test Part 1 Hypothesis Set Up and Formula Discussion MBS First Semester Statistics Solution

  6. PRACTICAL RESEARCH 2

COMMENTS

  1. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  2. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  3. What is a Research Hypothesis: How to Write it, Types, and Examples

    Formulate a clear and testable hypothesis: Based on the research question, use existing knowledge to form a clear and testable hypothesis. The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.

  4. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  5. What Is a Hypothesis and How Do I Write One?

    A hypothesis is all about asking a question. What Is a Hypothesis? Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument." In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  6. How to Write a Good Research Question (w/ Examples)

    It can be difficult to come up with a good research question, but there are a few steps you can follow to make it a bit easier. 1. Start with an interesting and relevant topic. Choose a research topic that is interesting but also relevant and aligned with your own country's culture or your university's capabilities.

  7. Research Hypothesis: Definition, Types, Examples and Quick Tips

    3. Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  8. How to Write a Research Hypothesis: Good & Bad Examples

    Another example for a directional one-tailed alternative hypothesis would be that. H1: Attending private classes before important exams has a positive effect on performance. Your null hypothesis would then be that. H0: Attending private classes before important exams has no/a negative effect on performance.

  9. What is and How to Write a Good Hypothesis in Research?

    Primarily, a research question, just like a hypothesis, is focused and concise. But a hypothesis includes a prediction based on the proposed research, and is designed to forecast the relationship of and between two (or more) variables. Research questions are open-ended, and invite debate and discussion, while hypotheses are closed, e.g. ...

  10. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  11. How to Write a Strong Hypothesis in 6 Simple Steps

    Learning how to write a hypothesis comes down to knowledge and strategy. So where do you start? ... This will come in the form of case studies and academic journals, as well as your own experiments and observations. ... Question. Hypothesis. How long does it take carrots to grow? Good: ...

  12. PDF DEVELOPING HYPOTHESIS AND RESEARCH QUESTIONS

    "A hypothesis is a conjectural statement of the relation between two or more variables". (Kerlinger, 1956) "Hypothesis is a formal statement that presents the expected relationship between an independent and dependent variable."(Creswell, 1994) "A research question is essentially a hypothesis asked in the form of a question."

  13. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  14. Writing Strong Research Questions

    A good research question is essential to guide your research paper, dissertation, or thesis. All research questions should be: Focused on a single problem or issue. Researchable using primary and/or secondary sources. Feasible to answer within the timeframe and practical constraints. Specific enough to answer thoroughly.

  15. Develop A Research Question/Hypothesis

    Developing Your Research Question and Hypothesis A broad topic has literally thousands of articles on it, and you won't be able to adequately cover it in your literature review. It will be far easier for you to research and write your literature review if you develop a strong, focused research question:

  16. 5.2

    5.2 - Writing Hypotheses. The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis ( H 0) and an alternative hypothesis ( H a ). When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the ...

  17. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  18. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  19. Writing a Hypothesis for Your Science Fair Project

    A hypothesis is a tentative, testable answer to a scientific question. Once a scientist has a scientific question she is interested in, the scientist reads up to find out what is already known on the topic. Then she uses that information to form a tentative answer to her scientific question. Sometimes people refer to the tentative answer as "an ...

  20. Steps of the Scientific Method

    The six steps of the scientific method include: 1) asking a question about something you observe, 2) doing background research to learn what is already known about the topic, 3) constructing a hypothesis, 4) experimenting to test the hypothesis, 5) analyzing the data from the experiment and drawing conclusions, and 6) communicating the results ...

  21. Research Questions vs Hypothesis: Understanding the Difference

    A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement. Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption. Researchers use the null approach for ...

  22. Answering the key stakeholder questions about the impact of offshore

    Hypothesis testing can be used to assess impacts of OW facilities on target species-ecological process. This knowledge is transferable and is broadly applicable, a priori, to assess suitable locations for OW (Q1). Hypothesis testing can be combined with monitoring methods to guide targeted monitoring.

  23. Types of Artificial Intelligence

    Siri, Amazon's Alexa and IBM Watson are examples of Narrow AI. Even OpenAI's ChatGPT is considered a form of Narrow AI because it's limited to the single task of text-based chat. 2. General AI. Artificial General Intelligence (AGI), also known as Strong AI, is today nothing more than a theoretical concept.

  24. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  25. Hand Hygiene Frequently Asked Questions

    Purpose. Keeping hands clean is one of the best ways to remove germs, avoid getting sick, and prevent the spread of germs to others. Get answers to frequently asked questions about washing your hands and using hand sanitizer in community settings.

  26. Pre-fill Responses in Your Microsoft Forms

    Before setting pre-filled answers, you need to first activate "Enable pre-filled answers" in the top section of the form. After that, you can proceed to select pre-filled answers. In this case, the prefilled answers would be the session participated in and the lecturer's name. Set prefilled answers. Send out the pre-fill link to different ...

  27. Spokane landlords may soon no longer ban air conditioning units during

    A new law under consideration would make it illegal for landlords to ban tenants from installing air conditioning units in Spokane rentals during dangerously hot weather.

  28. Need Help Unlocking Microsoft Account

    Hello rayen.kadri, Good day! Thank you for the detailed description of your situation, which we have learned about. By your description, the cell phone number can't be used as a way to verify the account for some reason, if this is the only security information for your account, then you need to fill out the account recovery form.

  29. A big impact on Spokane's housing shortage could come in a tiny form

    By Tod Stephens [email protected] (509) 459-5581. A big impact on the housing shortage could come in a tiny way. As housing prices have soared in recent years, some lower earners may think the ...