What is the 'Gold Foil Experiment'? The Geiger-Marsden experiments explained

Physicists got their first look at the structure of the atomic nucleus.

The gold foil experiments gave physicists their first view of the structure of the atomic nucleus and the physics underlying the everyday world.

J.J. Thomson model of the atom

Gold foil experiments, rutherford model of the atom.

  • The real atomic model

Additional Resources

Bibliography.

The Geiger-Marsden experiment, also called the gold foil experiment or the α-particle scattering experiments, refers to a series of early-20th-century experiments that gave physicists their first view of the structure of the atomic nucleus and the physics underlying the everyday world. It was first proposed by Nobel Prize -winning physicist Ernest Rutherford.

As familiar as terms like electron, proton and neutron are to us now, in the early 1900s, scientists had very little concept of the fundamental particles that made up atoms . 

In fact, until 1897, scientists believed that atoms had no internal structure and believed that they were an indivisible unit of matter. Even the label "atom" gives this impression, given that it's derived from the Greek word "atomos," meaning "indivisible." 

In J.J. Thomson’s

But that year, University of Cambridge physicist Joseph John Thomson discovered the electron and disproved the concept of the atom being unsplittable, according to Britannica . Thomson found that metals emitted negatively charged particles when illuminated with high-frequency light. 

His discovery of electrons also suggested that there were more elements to atomic structure. That's because matter is usually electrically neutral; so if atoms contain negatively charged particles, they must also contain a source of equivalent positive charge to balance out the negative charge.

By 1904, Thomson had suggested a "plum pudding model" of the atom in which an atom comprises a number of negatively charged electrons in a sphere of uniform positive charge,  distributed like blueberries in a muffin. 

The model had serious shortcomings, however — primarily the mysterious nature of this positively charged sphere. One scientist who was skeptical of this model of atoms was Rutherford, who won the Nobel Prize in chemistry for his 1899 discovery of a form of radioactive decay via α-particles — two protons and two neutrons bound together and identical to a helium -4 nucleus, even if the researchers of the time didn't know this.

Rutherford's Nobel-winning discovery of α particles formed the basis of the gold foil experiment, which cast doubt on the plum pudding model. His experiment would probe atomic structure with high-velocity α-particles emitted by a radioactive source. He initially handed off his investigation to two of his protégés, Ernest Marsden and Hans Geiger, according to Britannica . 

Rutherford reasoned that if Thomson's plum pudding model was correct, then when an α-particle hit a thin foil of gold, the particle should pass through with only the tiniest of deflections. This is because α-particles are 7,000 times more massive than the electrons that presumably made up the interior of the atom.

Here, an illustration of Rutherford's particle scattering device used in his gold foil experiment.

Marsden and Geiger conducted the experiments primarily at the Physical Laboratories of the University of Manchester in the U.K. between 1908 and 1913. 

The duo used a radioactive source of α-particles facing a thin sheet of gold or platinum surrounded by fluorescent screens that glowed when struck by the deflected particles, thus allowing the scientists to measure the angle of deflection. 

The research team calculated that if Thomson's model was correct, the maximum deflection should occur when the α-particle grazed an atom it encountered and thus experienced the maximum transverse electrostatic force. Even in this case, the plum pudding model predicted a maximum deflection angle of just 0.06 degrees. 

Of course, an α-particle passing through an extremely thin gold foil would still encounter about 1,000 atoms, and thus its deflections would be essentially random. Even with this random scattering, the maximum angle of refraction if Thomson's model was correct would be just over half a degree. The chance of an α-particle being reflected back was just 1 in 10^1,000 (1 followed by a thousand zeroes). 

Yet, when Geiger and Marsden conducted their eponymous experiment, they found that in about 2% of cases, the α-particle underwent large deflections. Even more shocking, around 1 in 10,000 α-particles were reflected directly back from the gold foil.

Rutherford explained just how extraordinary this result was, likening it to firing a 15-inch (38 centimeters) shell (projectile) at a sheet of tissue paper and having it bounce back at you, according to Britannica  

Extraordinary though they were, the results of the Geiger-Marsden experiments did not immediately cause a sensation in the physics community. Initially, the data were unnoticed or even ignored, according to the book "Quantum Physics: An Introduction" by J. Manners.

The results did have a profound effect on Rutherford, however, who in 1910 set about determining a model of atomic structure that would supersede Thomson's plum pudding model, Manners wrote in his book.

The Rutherford model of the atom, put forward in 1911, proposed a nucleus, where the majority of the particle's mass was concentrated, according to Britannica . Surrounding this tiny central core were electrons, and the distance at which they orbited determined the size of the atom. The model suggested that most of the atom was empty space.

When the α-particle approaches within 10^-13 meters of the compact nucleus of Rutherford's atomic model, it experiences a repulsive force around a million times more powerful than it would experience in the plum pudding model. This explains the large-angle scatterings seen in the Geiger-Marsden experiments.

Later Geiger-Marsden experiments were also instrumental; the 1913 tests helped determine the upper limits of the size of an atomic nucleus. These experiments revealed that the angle of scattering of the α-particle was proportional to the square of the charge of the atomic nucleus, or Z, according to the book "Quantum Physics of Matter," published in 2000 and edited by Alan Durrant.  

In 1920, James Chadwick used a similar experimental setup to determine the Z value for a number of metals. The British physicist went on to discover the neutron in 1932, delineating it as a separate particle from the proton, the American Physical Society said . 

What did the Rutherford model get right and wrong?

Yet the Rutherford model shared a critical problem with the earlier plum pudding model of the atom: The orbiting electrons in both models should be continuously emitting electromagnetic energy, which would cause them to lose energy and eventually spiral into the nucleus. In fact, the electrons in Rutherford's model should have lasted less than 10^-5 seconds. 

Another problem presented by Rutherford's model is that it doesn't account for the sizes of atoms. 

Despite these failings, the Rutherford model derived from the Geiger-Marsden experiments would become the inspiration for Niels Bohr 's atomic model of hydrogen , for which he won a Nobel Prize in Physics .

Bohr united Rutherford's atomic model with the quantum theories of Max Planck to determine that electrons in an atom can only take discrete energy values, thereby explaining why they remain stable around a nucleus unless emitting or absorbing a photon, or light particle.

Thus, the work of Rutherford, Geiger  (who later became famous for his invention of a radiation detector)  and Marsden helped to form the foundations of both quantum mechanics and particle physics. 

Rutherford's idea of firing a beam at a target was adapted to particle accelerators during the 20th century. Perhaps the ultimate example of this type of experiment is the Large Hadron Collider near Geneva, which accelerates beams of particles to near light speed and slams them together. 

  • See a modern reconstruction of the Geiger-Marsden gold foil experiment conducted by BackstageScience and explained by particle physicist Bruce Kennedy . 
  • Find out more about the Bohr model of the atom which would eventually replace the Rutherford atomic model. 
  • Rutherford's protege Hans Gieger would eventually become famous for the invention of a radioactive detector, the Gieger counter. SciShow explains how they work .

Thomson's Atomic Model , Lumens Chemistry for Non-Majors,.

Rutherford Model, Britannica, https://www.britannica.com/science/Rutherford-model

Alpha particle, U.S NRC, https://www.nrc.gov/reading-rm/basic-ref/glossary/alpha-particle.html

Manners. J., et al, 'Quantum Physics: An Introduction,' Open University, 2008. 

Durrant, A., et al, 'Quantum Physics of Matter,' Open University, 2008

Ernest Rutherford, Britannica , https://www.britannica.com/biography/Ernest-Rutherford

Niels Bohr, The Nobel Prize, https://www.nobelprize.org/prizes/physics/1922/bohr/facts/

House. J. E., 'Origins of Quantum Theory,' Fundamentals of Quantum Mechanics (Third Edition) , 2018

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Robert Lea

Robert Lea is a science journalist in the U.K. who specializes in science, space, physics, astronomy, astrophysics, cosmology, quantum mechanics and technology. Rob's articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University

Giant 'rogue waves' of invisible matter might be disrupting the orbits of stars, new study hints

Can mirrors facing each other create infinite reflections?

MIT gives AI the power to 'reason like humans' by creating hybrid architecture

Most Popular

  • 2 Cave of Crystals: The deadly cavern in Mexico dubbed 'the Sistine Chapel of crystals'
  • 3 'The most critically harmful fungi to humans': How the rise of C. auris was inevitable
  • 4 2,500-year-old Illyrian helmet found in burial mound likely caused 'awe in the enemy'
  • 5 James Webb telescope measures the starlight around the universe's biggest, oldest black holes for 1st time ever
  • 2 Space photo of the week: 'God's Hand' leaves astronomers scratching their heads
  • 3 Why can't we see the far side of the moon?
  • 4 Papua New Guineans, genetically isolated for 50,000 years, carry Denisovan genes that help their immune system, study suggests
  • 5 Massive study of 8,000 cats reveals which breeds live longest

what are two conclusions of the gold foil experiment

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅

About Rutherford's Gold Foil Experiment

Gold foil.

Five Types of Atomic Models

Ernest Rutherford, originally from New Zealand, is credited as being the father of nuclear physics for his discoveries in atomic structure, even though Hantaro Nagaoka, a physicist from the Imperial University of Tokyo, first proposed the theory of the nucleus as it is known today. Rutherford's "gold foil experiment" led to the discovery that most of an atom's mass is located in a dense region now called the nucleus. Prior to the groundbreaking gold foil experiment, Rutherford was granted the Nobel Prize for other key contributions in the field of chemistry.

The popular theory of atomic structure at the time of Rutherford's experiment was the "plum pudding model." This model was developed in 1904 by J.J. Thompson, the scientist who discovered the electron. This theory held that the negatively charged electrons in an atom were floating in a sea of positive charge--the electrons being akin to plums in a bowl of pudding. Although Dr. Nagaoka had published his competing theory that electrons orbit a positive nucleus, akin to the way the planet Saturn is orbited by its rings, in 1904, the plum pudding model was the prevailing theory on the structure of the atom until it was disproved by Ernest Rutherford in 1911.

The gold foil experiment was conducted under the supervision of Rutherford at the University of Manchester in 1909 by scientist Hans Geiger (whose work eventually led to the development of the Geiger counter) and undergraduate student Ernest Marsden. Rutherford, chair of the Manchester physics department at the time of the experiment, is given primary credit for the experiment, as the theories that resulted are primarily his work. Rutherford's gold foil experiment is also sometimes referred to as the Geiger-Marsden experiment.

The gold foil experiment consisted of a series of tests in which a positively charged helium particle was shot at a very thin layer of gold foil. The expected result was that the positive particles would be moved just a few degrees from their path as they passed through the sea of positive charge proposed in the plum pudding model. The result, however, was that the positive particles were repelled off of the gold foil by nearly 180 degrees in a very small region of the atom, while most of the remaining particles were not deflected at all but rather passed right through the atom.

Significance

The data generated from the gold foil experiment demonstrated that the plum pudding model of the atom was incorrect. The way in which the positive particles bounced off the thin foil indicated that the majority of the mass of an atom was concentrated in one small region. Because the majority of the positive particles continued on their original path unmoved, Rutherford correctly deducted that most of the remainder of the atom was empty space. Rutherford termed his discovery "the central charge," a region later named the nucleus.

Rutherford's discovery of the nucleus and proposed atomic structure was later refined by physicist Niels Bohr in 1913. Bohr's model of the atom, also referred to as the Rutherford Bohr model, is the basic atomic model used today. Rutherford's description of the atom set the foundation for all future atomic models and the development of nuclear physics.

Related Articles

What are the 4 atomic models, what are the different kinds of models of atoms, what contributions did j.j. thomson make to the atom, james chadwick atomic theory, list of the atomic theories, who discovered iodine 131, who discovered the particle theory, cern plans to search for mysterious fifth force particle, who was the african american nuclear scientist who..., how to make a gold atom model, atomic structure of gold, what are an atom, electron, neutron and proton, the locations of protons, neutrons and electrons within..., how to know if an element has a positive or negative..., what are the properties of protons, six elements named after scientists.

Photo Credits

iSailorr/iStock/Getty Images

Find Your Next Great Science Fair Project! GO

  • Anatomy & Physiology
  • Astrophysics
  • Earth Science
  • Environmental Science
  • Organic Chemistry
  • Precalculus
  • Trigonometry
  • English Grammar
  • U.S. History
  • World History

... and beyond

  • Socratic Meta
  • Featured Answers

Search icon

  • Rutherford's Gold Foil Experiment

Key Questions

Rutherford's experiment showed that the atom does not contain a uniform distribution of charge.

Explanation:

Thomson's plum pudding model viewed the atom as a massive blob of positive charge dotted with negative charges.

A plum pudding was a Christmas cake studded with raisins ("plums"). So think of the model as a spherical Christmas cake.

When Rutherford shot α particles through gold foil, he found that most of the particles went through. Some scattered in various directions, and a few were even deflected back towards the source.

He argued that the plum pudding model was incorrect. The symmetrical distribution of charge would allow all the α particles to pass through with no deflection.

Rutherford proposed that the atom is mostly empty space. The electrons revolve in circular orbits about a massive positive charge at the centre.

His model explained why most of the α particles passed straight through the foil. The small positive nucleus would deflect the few particles that came close.

The nuclear model replaced the plum pudding model. The atom now consisted of a positive nucleus with negative electrons in circular orbits around it .

what are two conclusions of the gold foil experiment

  • Why Does Water Expand When It Freezes

Gold Foil Experiment

  • Faraday Cage
  • Oil Drop Experiment
  • Magnetic Monopole
  • Why Do Fireflies Light Up
  • Types of Blood Cells With Their Structure, and Functions
  • The Main Parts of a Plant With Their Functions
  • Parts of a Flower With Their Structure and Functions
  • Parts of a Leaf With Their Structure and Functions
  • Why Does Ice Float on Water
  • Why Does Oil Float on Water
  • How Do Clouds Form
  • What Causes Lightning
  • How are Diamonds Made
  • Types of Meteorites
  • Types of Volcanoes
  • Types of Rocks

Who did the Gold Foil Experiment?

The gold foil experiment was a pathbreaking work conducted by scientists Hans Geiger and Ernest Marsden under the supervision of Nobel laureate physicist Ernest Rutherford that led to the discovery of the proper structure of an atom . Known as the Geiger-Marsden experiment, it was performed at the Physical Laboratories of the University of Manchester between 1908 and 1913.

Gold Foil Experiment

The prevalent atomic theory at the time of the research was the plum pudding model that was developed by Lord Kelvin and further improved by J.J. Thomson. According to the theory, an atom was a positively charged sphere with the electrons embedded in it like plums in a Christmas pudding.

The Plum Pudding Model

With neutrons and protons yet to be discovered, the theory was derived following the classical Newtonian Physics. However, in the absence of experimental proof, this approach lacked proper acceptance by the scientific community.

What is the Gold Foil Experiment?

Description.

The method used by scientists included the following experimental steps and procedure. They bombarded a thin gold foil of thickness approximately 8.6 x 10 -6 cm with a beam of alpha particles in a vacuum. Alpha particles are positively charged particles with a mass of about four times that of a hydrogen atom and are found in radioactive natural substances. They used gold since it is highly malleable, producing sheets that can be only a few atoms thick, thereby ensuring smooth passage of the alpha particles. A circular screen coated with zinc sulfide surrounded the foil. Since the positively charged alpha particles possess mass and move very fast, it was hypothesized that they would penetrate the thin gold foil and land themselves on the screen, producing fluorescence in the part they struck.

Like the plum pudding model, since the positive charge of atoms was evenly distributed and too small as compared to that of the alpha particles, the deflection of the particulate matter was predicted to be less than a small fraction of a degree.

Observation

Though most of the alpha particles behaved as expected, there was a noticeable fraction of particles that got scattered by angles greater than 90 degrees. There were about 1 in every 2000 particles that got scattered by a full 180 degree, i.e., they retraced their path after hitting the gold foil.

Simulation of Rutherford’s Gold Foil Experiment Courtesy: University of Colorado Boulder

The unexpected outcome could have only one explanation – a highly concentrated positive charge at the center of an atom that caused an electrostatic repulsion of the particles strong enough to bounce them back to their source. The particles that got deflected by huge angles passed close to the said concentrated mass. Most of the particles moved undeviated as there was no obstruction to their path, proving that the majority of an atom is empty.

In addition to the above, Rutherford concluded that since the central core could deflect the dense alpha particles, it shows that almost the entire mass of the atom is concentrated there. Rutherford named it the “nucleus” after experimenting with various gases. He also used materials other than gold for the foil, though the gold foil version gained the most popularity.

He further went on to reject the plum pudding model and developed a new atomic structure called the planetary model. In this model, a vastly empty atom holds a tiny nucleus at the center surrounded by a cloud of electrons. As a result of his gold foil experiment, Rutherford’s atomic theory holds good even today.

Rutherford’s Atomic Model

Rutherford’s Atomic Model

Rutherford’s Gold Foil Experiment Animation

  • Rutherford demonstrated his experiment on bombarding thin gold foil with alpha particles contributed immensely to the atomic theory by proposing his nuclear atomic model.
  • The nuclear model of the atom consists of a small and dense positively charged interior surrounded by a cloud of electrons.
  • The significance and purpose of the gold foil experiment are still prevalent today. The discovery of the nucleus paved the way for further research, unraveling a list of unknown fundamental particles.
  • Chemed.chem.purdue.edu
  • Chem.libretexts.org
  • Large.stanford.edu
  • Radioa ctivity.eu.com

Article was last reviewed on Friday, February 3, 2023

Related articles

Meissner Effect

5 responses to “Gold Foil Experiment”

Super very much helpful to me,clear explanation about every act done by our Rutherford that is under different sub headings ,which is very much clear to ,to study .very much thanks to the science facts.com.thank u so much.

Good explanation,very helpful ,thank u ,so much

very clear and helpful, perfect for my science project!

Thank you for sharing the interactive program on the effects of the type of atom on the experiment! Looking forward to sharing this with my ninth graders!

Rutherford spearheaded with a team of scientist in his experiment of gold foil to capture the particles of the year 1911. It’s the beginning of explaining particles that float and are compacted . Rutherford discovered this atom through countless experiments which was the revolutionary discovery of the atomic nuclear . Rutherford name the atom as a positive charge and the the center is the nucleus.

Barack Hussein Obama

Mrs. Danize Obama

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Popular Articles

what are two conclusions of the gold foil experiment

Join our Newsletter

Fill your E-mail Address

Related Worksheets

  • Privacy Policy

© 2024 ( Science Facts ). All rights reserved. Reproduction in whole or in part without permission is prohibited.

Experimental Evidence for the Structure of the Atom

George sivulka march 23, 2017, submitted as coursework for ph241 , stanford university, winter 2017, introduction.

The Rutherford Gold Foil Experiment offered the first experimental evidence that led to the discovery of the nucleus of the atom as a small, dense, and positively charged atomic core. Also known as the Geiger-Marsden Experiments, the discovery actually involved a series of experiments performed by Hans Geiger and Ernest Marsden under Ernest Rutherford. With Geiger and Marsden's experimental evidence, Rutherford deduced a model of the atom, discovering the atomic nucleus. His "Rutherford Model", outlining a tiny positively charged atomic center surrounded by orbiting electrons, was a pivotal scientific discovery revealing the structure of the atoms that comprise all the matter in the universe.

The experimental evidence behind the discovery involved the scattering of a particle beam after passing through a thin gold foil obstruction. The particles used for the experiment - alpha particles - are positive, dense, and can be emitted by a radioactive source. Ernest Rutherford discovered the alpha particle as a positive radioactive emission in 1899, and deduced its charge and mass properties in 1913 by analyzing the charge it induced in the air around it. [1] As these alpha particles have a significant positive charge, any significant potential interference would have to be caused by a large concentration of electrostatic force somewhere in the structure of the atom. [2]

Previous Model of the Atom

The scattering of an alpha particle beam should have been impossible according to the accepted model of the atom at the time. This model, outlined by Lord Kelvin and expanded upon by J. J. Thompson following his discovery of the electron, held that atoms were comprised of a sphere of positive electric charge dotted by the presence of negatively charged electrons. [3] Describing an atomic model similar to "plum pudding," it was assumed that electrons were distributed throughout this positive charge field, like plums distributed in the dessert. However, this plum pudding model lacked the presence of any significant concentration of electromagnetic force that could tangibly affect any alpha particles passing through atoms. As such, alpha particles should show no signs of scattering when passing through thin matter. [4] (see Fig. 2)

The Geiger Marsden Experiments

Testing this accepted theory, Hans Geiger and Ernest Marsden discovered that atoms indeed scattered alpha particles, a experimental result completely contrary to Thompson's model of the atom. In 1908, the first paper of the series of experiments was published, outlining the apparatus used to determine this scattering and the scattering results at small angles. Geiger constructed a two meter long glass tube, capped off on one end by radium source of alpha particles and on the other end by a phosphorescent screen that emitted light when hit by a particle. (see Fig. 3) Alpha particles traveled down the length of the tube, through a slit in the middle and hit the screen detector, producing scintillations of light that marked their point of incidence. Geiger noted that "in a good vacuum, hardly and scintillations were observed outside of the geometric image of the slit, "while when the slit was covered by gold leaf, the area of the observed scintillations was much broader and "the difference in distribution could be noted with the naked eye." [5]

On Rutherford's request, Geiger and Marsden continued to test for scattering at larger angles and under different experimental parameters, collecting the data that enabled Rutherford to further his own conclusions about the nature of the nucleus. By 1909, Geiger and Marsden showed the reflection of alpha particles at angles greater than 90 degrees by angling the alpha particle source towards a foil sheet reflector that then would theoretically reflect incident particles at the detection screen. Separating the particle source and the detector screen by a lead barrier to reduce stray emission, they noted that 1 in every 8000 alpha particles indeed reflected at the obtuse angles required by the reflection of metal sheet and onto the screen on the other side. [6] Moreover, in 1910, Geiger improved the design of his first vacuum tube experiment, making it easier to measure deflection distance, vary foil types and thicknesses, and adjust the alpha particle stream' velocity with mica and aluminum obstructions. Here he discovered that both thicker foil and foils made of elements of increased atomic weight resulted in an increased most probable scattering angle. Additionally, he confirmed that the probability for an angle of reflection greater than 90 degrees was "vanishingly small" and noted that increased particle velocity decreased the most probably scattering angle. [7]

Rutherford's Atom

Backed by this experimental evidence, Rutherford outlined his model of the atom's structure, reasoning that as atoms clearly scattered incident alpha particles, the structure contained a much larger electrostatic force than earlier anticipated; as large angle scattering was a rare occurrence, the electrostatic charge source was only contained within a fraction of the total volume of the atom. As he concludes this reasoning with the "simplest explanation" in his 1911 paper, the "atom contains a central charge distributed through a very small volume" and "the large single deflexions are due to the central charge as a whole." In fact, he mathematically modeled the scattering patterns predicted by this model with this small central "nucleus" to be a point charge. Geiger and Marsden later experimentally verified each of the relationships predicted in Rutherford's mathematical model with techniques and scattering apparatuses that improved upon their prior work, confirming Rutherford's atomic structure. [4, 8, 9] (see Fig. 1)

With the experimentally analyzed nature of deflection of alpha rays by thin gold foil, the truth outlining the structure of the atom falls into place. Though later slightly corrected by Quantum Mechanics effects, the understanding of the structure of the the atom today almost entirely follows form Rutherford's conclusions on the Geiger and Marsden experiments. This landmark discovery fundamentally furthered all fields of science, forever changing mankind's understanding of the world around us.

© George Sivulka. The author grants permission to copy, distribute and display this work in unaltered form, with attribution to the author, for noncommercial purposes only. All other rights, including commercial rights, are reserved to the author.

[1] E. Rutherford, "Uranium Radiation and the Electrical Conduction Produced By It," Philos. Mag. 47 , 109 (1899).

[2] E. Rutherford, "The Structure of the Atom," Philos. Mag. 27 , 488 (1914).

[3] J. J. Thomson, "On the Structure of the Atom: an Investigation of the Stability and Periods of Oscillation of a Number of Corpuscles Arranged at Equal Intervals Around the Circumference of a Circle; with Application of the Results to the Theory of Atomic Structure," Philos. Mag. 7 , 237 (1904).

[4] E. Rutherford, "The Scattering of α and β Particles by Matter and the Structure of the Atom," Philos. Mag. 21 , 669 (1911).

[5] H. Geiger, "On the Scattering of the α Particles by Matter," Proc. R. Soc. A 81 , 174 (1908).

[6] H. Geiger and E. Marsden, "On a Diffuse Reflection of the α-Particles," Proc. R. Soc. A 82 , 495 (1909).

[7] H. Geiger, "The Scattering of the α Particles by Matter," Proc. R. Soc. A 83 , 492 (1910).

[8] E. Rutherford, "The Origin of α and β Rays From Radioactive Substances," Philos. Mag. 24 , 453 (1912).

[9] H. Geiger and E. Marsden, "The Laws of Deflexion of α Particles Through Large Angles," Philos. Mag. 25 , 604 (1913).

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Chemistry library

Course: chemistry library   >   unit 5.

  • The history of atomic chemistry
  • Dalton's atomic theory
  • Discovery of the electron and nucleus

Rutherford’s gold foil experiment

  • Bohr's model of hydrogen

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Great Answer

Video transcript

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

3.4: Rutherford's Experiment- The Nuclear Model of the Atom

  • Last updated
  • Save as PDF
  • Page ID 152150

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Describe Thomson's "plum pudding" model of the atom and the evidence for it.
  • Describe Rutherford's gold foil experiment and explain how this experiment altered the "plum pudding" model.

The electron was discovered by J.J. Thomson in 1897. The existence of protons was also known, as was the fact that atoms were neutral in charge. Since the intact atom had no net charge and the electron and proton had opposite charges, the next step after the discovery of subatomic particles was to figure out how these particles were arranged in the atom. This is a difficult task because of the incredibly small size of the atom. Therefore, scientists set out to design a model of what they believed the atom could look like. The goal of each atomic model was to accurately represent all of the experimental evidence about atoms in the simplest way possible.

Following the discovery of the electron, J.J. Thomson developed what became known as the " plum pudding " model (Figure \(\PageIndex{1}\) ) in 1904. Plum pudding is an English dessert similar to a blueberry muffin. In Thomson's plum pudding model of the atom, the electrons were embedded in a uniform sphere of positive charge like blueberries stuck into a muffin. The positive matter was thought to be jelly-like or a thick soup. The electrons were somewhat mobile. As they got closer to the outer portion of the atom, the positive charge in the region was greater than the neighboring negative charges and the electron would be pulled back more toward the center region of the atom.

In the plum pudding model, electrons are uniformly spread in a sphere of positive charge

However, this model of the atom soon gave way to a new model developed by New Zealander Ernest Rutherford (1871 - 1937) about five years later. Thomson did still receive many honors during his lifetime, including being awarded the Nobel Prize in Physics in 1906 and a knighthood in 1908.

Atoms and Gold

In 1911, Rutherford and coworkers Hans Geiger and Ernest Marsden initiated a series of groundbreaking experiments that would completely change the accepted model of the atom. They bombarded very thin sheets of gold foil with fast moving alpha particles.

According to the accepted atomic model, in which an atom's mass and charge are uniformly distributed throughout the atom, the scientists expected that all of the alpha particles would pass through the gold foil with only a slight deflection or none at all. Surprisingly, as shown in Figure \(\PageIndex{2}\) ( while most of the alpha particles were indeed undeflected, a very small percentage (about 1 in 8000 particles) bounced off the gold foil at very large angles. Some were even redirected back toward the source. No prior knowledge had prepared them for this discovery. In a famous quote, Rutherford exclaimed that it was "as if you had fired a 15-inch [artillery] shell at a piece of tissue and it came back and hit you."

Rutherford needed to come up with an entirely new model of the atom in order to explain his results. Because the vast majority of the alpha particles had passed through the gold, he reasoned that most of the atom was empty space. In contrast, the particles that were highly deflected must have experienced a tremendously powerful force within the atom. He concluded that all of the positive charge and the majority of the mass of the atom must be concentrated in a very small space in the atom's interior, which he called the nucleus. The nucleus is the tiny, dense, central core of the atom and is composed of protons and neutrons.

Rutherford's atomic model became known as the nuclear model . In the nuclear atom, the protons and neutrons, which comprise nearly all of the mass of the atom, are located in the nucleus at the center of the atom. The electrons are distributed around the nucleus and occupy most of the volume of the atom. It is worth emphasizing just how small the nucleus is compared to the rest of the atom. If we could blow up an atom to be the size of a large professional football stadium, the nucleus would be about the size of a marble.

Rutherford's model proved to be an important step towards a full understanding of the atom. However, it did not completely address the nature of the electrons and the way in which they occupied the vast space around the nucleus. For this and other insights, Rutherford was awarded the Nobel Prize in Chemistry in 1908. Unfortunately, Rutherford would have preferred to receive the Nobel Prize in Physics because he considered physics superior to chemistry. In his opinion, “All science is either physics or stamp collecting.”

  • The plum pudding model is an early attempt to show what an atom looks like.
  • Bombardment of gold foil with alpha particles showed that some particles were deflected.
  • The nuclear model of the atom consists of a small and dense positively charged interior surrounded by a cloud of electrons.

Contributors and Attributions

Marisa Alviar-Agnew  ( Sacramento City College )

Henry Agnew (UC Davis)

  • TextMap: Chemistry - The Central Science
  • Core Concepts
  • Core Concepts: Introduction
  • Astro/Atomic Symmetry
  • Nuclei and Star Systems
  • Electrons and Star Satellites
  • Gravity and Electronic Charge
  • Common Misconceptions
  • The Hydrogen Atom
  • Spectrography
  • Electromagnetism
  • Electrostatics
  • Electric Current
  • Electrical Induction
  • Electromagnetic Waves
  • Discoveries and Phenomena
  • Gold Foil Experiment
  • Cathode Rays
  • Photoelectric Effect
  • Oil Drop Experiment
  • Double Slit Experiment
  • Star System Evolution
  • Globular Clusters
  • Star Systems
  • Single Star Systems
  • Binary Systems
  • Double Binary Systems
  • User Account
  • Registration

Rutherford's gold foil experiment was a major milestone in the determination of the size and proportions of the different constituents of the atom. It was successful in determining that the majority of the mass of an atom lies within the nucleus, just as the majority of the mass of a planetary system lies within the stellar system of that planetary system.

Rutherford measured the amount and frequency of deflection of alpha particles as they were shot through a very thin gold foil. Ruthford, How I did the experiment This helped to determine that the nucleus of the atom is contained to a very small portion of the atom, at it's center. The deflection of the alpha particles was incorrectly reasoned to be due to the like charges of the alpha particle and the nucleus of the gold atoms. This incorrect reasoning was no fault of Rutherford, however, as by that time in history, the concept of electric charges within the atom had already been incorrectly established as the reason for attraction and repulsion of the atomic constituents. So, it was obvious that the alpha particles were being deflected by the nucleus, but the reason for the deflection was misconstrued, no fault of Rutherford's.

In the AAM, there is no concept of electric charge. All matter is attracted to other matter, by the same force which is responsible for gravity. Thus, the alpha particles which pass through the gold foil and pass close enough to the nucleus of a gold atom are attracted to the nucleus, which causes the alpha particle trajectory to bend towards the nucleus, not away from it, as shown in figure 2 below.

The experimental results of either case above will be very much the same. There would be small differences, however, which may be able to determine which case is actually correct. In the conventional explanation, as shown in Figure 1 above, it's possible for an alpha particle to be deflected 180%, and return strait back to the source in which it came. In the second case, this would not be possible, since the alpha particle would collide with the gold nucleus.

Modification of the gold foil experiment may also help to determine which case is valid. If the alpha particles were to be show slowly in the gold foil, the patterns of deflections may be calculated to be different for each case, since the repulsive force in the first case would cause a different amount of deflection than the attractive forces in the second case. So, this experiment would be very good to revive, with this new concept in mind, and with keeping an open mind to the possibility that it is an attractive force causing the deflections of the alpha particles.

For the discussion on why the alpha particles are attracted to the nucleus, please see Gravity and Electric Charge .

  • Discussions

Submit Comment

Guest comment question.

test discussion

Gold Foil Experiment — Overview & Importance - Expii

Gold foil experiment — overview & importance, explanations (4), gold foil experiment.

  • Otherwise known as the Rutherford Gold Foil Experiment

What was the Experiment?

The experiment studied the effects of shooting an alpha ray (which is composed of particles with a much greater mass than protons ) at a thin sheet of gold foil.

  • Some of the alpha rays went straight through the foil while other alpha rays were deflected by the foil.

The angles of the alpha rays' deflections were extremely interesting and caused Rutherford and his colleagues to realize that it must be due to a large positively charged particle. They deduced that atoms must contain an atomic nucleus!

Rutherfords Gold Foil Experiment Apparatus

Image source: By Caroline Monahan

Importance of the Experiment

This experiment determined that each atom contains an atomic nucleus which is where all of the atom's mass is contained

Rutherford's experiment paved the way for the discovery of neutrons

Neutrons were discovered by one of Rutherford's students, James Chadwick . He started by shooting alpha particles at the alkaline-earth metal , beryllium. When hit, beryllium becomes carbon-12 and a neutron by nuclear fusion . He took the generated neutron and launched them at paraffin wax. When the paraffin wax was hit by the neutron, it lost a proton. He calculated that the new particle had to be neutral and have a similar mass as a proton.

Related Lessons

(video) rutherford's gold foil experiment - quick and simple.

by The Organic Chemistry Tutor

what are two conclusions of the gold foil experiment

This famous experiment by Rutherford showed that an atom is made of mostly empty space, but it has a dense, positively charged area in the middle. This area would later be known as the nucleus. Watch the video above to find out more about how this experiment was conducted.

The Gold Foil Experiment

Gold foil overview

The Gold Foil Experiment was conducted to prove the existence of the positively charged atomic nucleus and the "nuclear" model , where electrons orbit around the nucleus as planets orbit the sun.

There are a few key components to this experimental setup:

Alpha Emitter - Alpha particles are large positively charged particles with two protons and two neutrons. They are essentially helium atoms stripped of their electrons. These are important since they will readily react to external positive charges, like the nucleus of another atom. For this experiment, a strong alpha emitter was contained in a lead box, with a small slit, so a concentrated beam could be pointed directly at the gold foil.

Gold Foil - The importance of gold foil was that Rutherford and Geiger could use a very thin strip of material for the alpha particles to interact with. Gold is also a very dense material with a large nucleus, increasing the probability of alpha interactions.

Zinc-Sulfur Detector - The detector was placed at a constant radius around the center of the gold foil. A flash would occur when alpha particles struck the detector; this even is called a scintillation . This made it easy for Rutherford and Geiger to confirm where alpha particles would end up after striking the gold foil, and when the interaction would occur (visually).

gold foil experiment setup

Lead Up to the Gold Foil Experiment

In the early 1800s, John Dalton presented his atomic theory . He proposed that all matter consists of atoms. He considered the atom to be the smallest indivisible building block of matter. So, an element consists of the same atoms. Compounds are combinations of various atoms. He was mostly right. But it turns out that atoms have smaller components!

The first subatomic particle got discovered in 1897. Do you remember what it was? It was the electron! JJ Thomson performed his famous cathode ray tube experiment . A cathode ray tube is a unique instrument. It consists of a glass tube with a metal electrode at each end. The tube gets evacuated and filled with a low- pressure gas . The most common gas is hydrogen . Why? Because it maintains the correct pressure and voltage . When the electrodes are connected, the current flows through the tube.

Today, we know the current occurs because the hydrogen gas gets ionized . At the time, it was unclear what particle flowed through the tube. Thomson tested the particles' properties by applying external electric and magnetic fields. He noticed that the fields pushed the particle beam. That indicated the particle had a charge! From his experiments, he deduced the mass-to-charge ratio. What did he discover? The mass was way smaller than any known atom! He even used different metals for the electrode. The results were the same! He concluded that he had discovered a negatively charged subatomic particle.

Modeling of the Atom

Before the electron's discovery, we assumed that the atom was indivisible. It was the foundational unit. So, it didn't have smaller units. We didn't need any atomic models. With Thomson's findings, we had to consider the atom's construction. We had two pieces of information. Atoms have a neutral charge. But they have a smaller negatively charged particle. He also knew that electrons were much smaller than atoms. To account for these, Thomson proposed his plum-pudding model . In it, the electrons get embedded within a positively charged sphere. He imagined the sphere as a thick jelly. The electrons distribute within the jelly to minimize their electrostatic repulsion . But the jelly isn't matter! Instead, it's just a charge.

Today, the plum-pudding model seems far-fetched. Maybe you're thinking, "That's what he came up with?!" But based on the available information, it makes sense. It even creates a fascinating geometry problem. What's the best configuration for the electrons? You have to distribute the electrons to minimize the repulsion. But, they need to reside on the surface of a sphere. It's actually very similar to molecular geometry problems. For example, four electrons would form a tetrahedron. That's the same as a central atom bonded to four external atoms. But it predates the VSEPR model .

In 1908, Ernest Rutherford wanted to prove the plum-pudding model. So, he set his graduate students to work. They fired helium nuclei (alpha particles) at thin sheets of gold foil. Based on Thomson's model, the helium nuclei should pass through the gold atoms. The deflection would be minimal. Why? The atom is a sphere of positive charge. It is not solid matter. So, they would pass through one another. Also, the electrons are so small that their effect should be negligible. What about the charges? Shouldn't they repel? Not for high-velocity alpha particles. Thomson's model predicted that the electrostatic repulsion was too weak to influence them.

So, what did they discover? Most of the alpha particles went through the gold foil. Initially, it seemed to confirm the plum pudding model. But soon, they realized a few were getting deflected backward. They quickly realized that the gold atoms must have a dense center of mass. Furthermore, the center of mass must have a positive charge. They called it the nucleus. What about the electrons? They orbit around the positive nucleus. There is empty space between the nucleus and the electrons. That's why some particles passed through the gold foil. But, the ones that collided with the nucleus got deflected. They had developed the nuclear model of the atom!

CameraIcon

What are the conclusions of the Gold foil Experiment?

Gold-foil experiment: gold-foil experiment was given by rutherford. in his experiment, the α - particles were made to come down on a thin gold foil. many of the α - particles passed linearly through the gold foil. some of the particles deviated at small angles. one out of every 12000 particles appeared to bounce. conclusion of rutherford's model of an atom: the space inside an atom is almost empty as most of the α - particles passed without deflection through the gold foil. the positive charge occupies a minimum space which indicates that very few particles were diverted from their path. a very small proportion of α - particles were diverted by 180 o , indicating that all the positive charge and mass of the gold atom were concentrated in a very small volume within the atom..

flag

What were the Conclusions drawn from Rutherford's experiment of α -Particles scattering by a gold foil ?

can we use aluminium foil insted of gold foil?

then what would be happened?

is there any difference in the experiment if we take aluminium foil instead of gold foil ?

thumbnail

what are two conclusions of the gold foil experiment

Rutherford Atomic Model

Definition of the rutherford model.

The Rutherford atomic model has 2 main parts: the nucleus, and the atom’s remaining space, occupied by electrons.

According to the model, the nucleus is a very small portion of the atom’s volume. It occupies a small space in the very center of the atom. Protons and neutrons make up the nucleus and define the atom’s chemical properties.

Rutherford also claimed in his model that electrons revolved around the nucleus in set orbits, like planets revolving around the Sun. This part of the theory was inaccurate, as explained in the last section.

Ernest Rutherford

Rutherford’s Gold Foil Experiment

The Rutherford gold foil experiment , also known as the scattering experiment, led to the creation of the model and explained the parts of the atom. In 1909, graduate student Ernest Marsden (under Ernest Rutherford’s supervision) fired alpha particles at a gold foil piece. Most of the particles passed directly through the foil, meaning that a majority of the space in each atom was unoccupied. However, a few particles were deflected, and some even backward. This must have been caused by tiny pockets of positive charge in the foil repelling the alpha particles back. Their discovery led to the creation of Rutherford’s model, in which the dense, positively-charged nucleus occupies a very small area in the center of each atom.

rutherford gold foil experiment

Shortcomings of the Rutherford Model

While common models today are based on the Rutherford atomic theory, it does not paint the complete picture:

  • The model is missing parts and does not account for the location or distribution of electrons.
  • Rutherford proposed that electrons orbit around the nucleus in set paths, but according to Maxwell’s theory , this is not possible because the atom would not be stable. Electromagnetic radiation from the electrons in orbit would cause the atom to collapse into the nucleus in 10 -8 seconds.
  • Electrons increase and decrease energy levels randomly due to the acceleration and are not always in a standard circular orbit. They give off electromagnetic radiation due to the circular motion of orbiting; thus they must have some initial energy by the law of conservation of energy. The Rutherford atomic model does not account for the initial energy and subsequent energy level changes.

flaw of rutherford atomic model

Further Reading

  • Dalton’s Atomic Theory
  • Bohr Atomic Model
  • The Structure of an Atom

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

13 2.2 Evolution of Atomic Theory

Learning objectives.

By the end of this section, you will be able to:

  • Outline milestones in the development of modern atomic theory
  • Summarize and interpret the results of the experiments of Thomson, Millikan, and Rutherford
  • Describe the three subatomic particles that compose atoms
  • Define isotopes and give examples for several elements

In the two centuries since Dalton developed his ideas, scientists have made significant progress in furthering our understanding of atomic theory. Much of this came from the results of several seminal experiments that revealed the details of the internal structure of atoms. Here, we will discuss some of those key developments, with an emphasis on application of the scientific method, as well as understanding how the experimental evidence was analyzed. While the historical persons and dates behind these experiments can be quite interesting, it is most important to understand the concepts resulting from their work.

Atomic Theory after the Nineteenth Century

If matter were composed of atoms, what were atoms composed of? Were they the smallest particles, or was there something smaller? In the late 1800s, a number of scientists interested in questions like these investigated the electrical discharges that could be produced in low-pressure gases, with the most significant discovery made by English physicist J. J. Thomson using a cathode ray tube. This apparatus consisted of a sealed glass tube from which almost all the air had been removed; the tube contained two metal electrodes. When high voltage was applied across the electrodes, a visible beam called a cathode ray appeared between them. This beam was deflected toward the positive charge and away from the negative charge, and was produced in the same way with identical properties when different metals were used for the electrodes. In similar experiments, the ray was simultaneously deflected by an applied magnetic field, and measurements of the extent of deflection and the magnetic field strength allowed Thomson to calculate the charge-to-mass ratio of the cathode ray particles. The results of these measurements indicated that these particles were much lighter than atoms ( Figure 1 ).

Figure A shows a photo of J. J. Thomson working at a desk. Figure B shows a photograph of a cathode ray tube. It is a long, glass tube that is narrow at the left end but expands into a large bulb on the right end. The entire cathode tube is sitting on a wooden stand. Figure C shows the parts of the cathode ray tube. The cathode ray tube consists of a cathode and an anode. The cathode, which has a negative charge, is located in a small bulb of glass on the left side of the cathode ray tube. To the left of the cathode it says “High voltage” and indicates a positive and negative charge. The anode, which has a positive charge, is located to the right of the cathode. Two charged plates are located to the right of the anode, and are connected to a battery and two magnets. The magnets are labeled “S” and “N.” A cathode ray is generated from the cathode, travels through the anode and into a wider part of the cathode ray tube, where it travels between a positively charged electrode plate and a negatively charged electrode plate. The ray bends upward and continues to travel until it hits the wide part of the tube on the right. The rightmost end of the tube contains a printed scale that allows one to measure how much the ray was deflected.

Figure 1. (a) J. J. Thomson produced a visible beam in a cathode ray tube. (b) This is an early cathode ray tube, invented in 1897 by Ferdinand Braun. (c) In the cathode ray, the beam (shown in yellow) comes from the cathode and is accelerated past the anode toward a fluorescent scale at the end of the tube. Simultaneous deflections by applied electric and magnetic fields permitted Thomson to calculate the mass-to-charge ratio of the particles composing the cathode ray. (credit a: modification of work by Nobel Foundation; credit b: modification of work by Eugen Nesper; credit c: modification of work by “Kurzon”/Wikimedia Commons)

Based on his observations, here is what Thomson proposed and why: The particles are attracted by positive (+) charges and repelled by negative (−) charges, so they must be negatively charged (like charges repel and unlike charges attract); they are less massive than atoms and indistinguishable, regardless of the source material, so they must be fundamental, subatomic constituents of all atoms. Although controversial at the time, Thomson’s idea was gradually accepted, and his cathode ray particle is what we now call an electron , a negatively charged, subatomic particle with a mass more than one thousand-times less that of an atom. The term “electron” was coined in 1891 by Irish physicist George Stoney, from “ electric ion .”

 width=

Click here to hear Thomson describe his discovery in his own voice.

In 1909, more information about the electron was uncovered by American physicist Robert A. Millikan via his “oil drop” experiments. Millikan created microscopic oil droplets, which could be electrically charged by friction as they formed or by using X-rays. These droplets initially fell due to gravity, but their downward progress could be slowed or even reversed by an electric field lower in the apparatus. By adjusting the electric field strength and making careful measurements and appropriate calculations, Millikan was able to determine the charge on individual drops ( Figure 2 ).

The experimental apparatus consists of an oil atomizer which sprays fine oil droplets into a large, sealed container. The sprayed oil lands on a positively charged brass plate with a pinhole at the center. As the drops fall through the pinhole, they travel through X-rays that are emitted within the container. This gives the oil droplets an electrical charge. The oil droplets land on a brass plate that is negatively charged. A telescopic eyepiece penetrates the inside of the container so that the user can observe how the charged oil droplets respond to the negatively charged brass plate. The table that accompanies this figure gives the charge, in coulombs or C, for 5 oil drops. Oil drop A has a charge of 4.8 times 10 to the negative 19 power. Oil drop B has a charge of 3.2 times 10 to the negative 19 power. Oil drop C has a charge of 6.4 times 10 to the negative 19 power. Oil drop D has a charge of 1.6 times 10 to the negative 19 power. Oil drop E has a charge of 4.8 times 10 to the negative 19 power.

Figure 2. Millikan’s experiment measured the charge of individual oil drops. The tabulated data are examples of a few possible values.

Looking at the charge data that Millikan gathered, you may have recognized that the charge of an oil droplet is always a multiple of a specific charge, 1.6 × 10 −19 C. Millikan concluded that this value must therefore be a fundamental charge—the charge of a single electron—with his measured charges due to an excess of one electron (1 times 1.6 × 10 −19 C), two electrons (2 times 1.6 × 10 −19 C), three electrons (3 times 1.6 × 10 −19 C), and so on, on a given oil droplet. Since the charge of an electron was now known due to Millikan’s research, and the charge-to-mass ratio was already known due to Thomson’s research (1.759 × 10 11 C/kg), it only required a simple calculation to determine the mass of the electron as well.

\text{Mass\;of\;electron} = 1.602 \times 10^{-19} \text{C} \times \frac{1 \text{kg}}{1.759 \times 10^{11} \text{C}} = 9.107 \times 10^{-31} \text{kg}

Scientists had now established that the atom was not indivisible as Dalton had believed, and due to the work of Thomson, Millikan, and others, the charge and mass of the negative, subatomic particles—the electrons—were known. However, the positively charged part of an atom was not yet well understood. In 1904, Thomson proposed the “plum pudding” model of atoms, which described a positively charged mass with an equal amount of negative charge in the form of electrons embedded in it, since all atoms are electrically neutral. A competing model had been proposed in 1903 by Hantaro Nagaoka , who postulated a Saturn-like atom, consisting of a positively charged sphere surrounded by a halo of electrons ( Figure 3 ).

Figure A shows a photograph of plum pudding, which is a thick, almost spherical cake containing raisins throughout. To the right, an atom model is round and contains negatively charged electrons embedded within a sphere of positively charged matter. Figure B shows a photograph of the planet Saturn, which has rings. To the right, an atom model is a sphere of positively charged matter encircled by a ring of negatively charged electrons.

The next major development in understanding the atom came from Ernest Rutherford , a physicist from New Zealand who largely spent his scientific career in Canada and England. He performed a series of experiments using a beam of high-speed, positively charged alpha particles (α particles) that were produced by the radioactive decay of radium; α particles consist of two protons and two neutrons (you will learn more about radioactive decay in the chapter on nuclear chemistry). Rutherford and his colleagues Hans Geiger (later famous for the Geiger counter) and Ernest Marsden aimed a beam of α particles, the source of which was embedded in a lead block to absorb most of the radiation, at a very thin piece of gold foil and examined the resultant scattering of the α particles using a luminescent screen that glowed briefly where hit by an α particle.

What did they discover? Most particles passed right through the foil without being deflected at all. However, some were diverted slightly, and a very small number were deflected almost straight back toward the source ( Figure 4 ). Rutherford described finding these results: “It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you” [1] (p. 68).

This figure shows a box on the left that contains a radium source of alpha particles which generates a beam of alpha particles. The beam travels through an opening within a ring-shaped luminescent screen which is used to detect scattered alpha particles. A piece of thin gold foil is at the center of the ring formed by the screen. When the beam encounters the gold foil, most of the alpha particles pass straight through it and hit the luminescent screen directly behind the foil. Some of the alpha particles are slightly deflected by the foil and hit the luminescent screen off to the side of the foil. Some alpha particles are significantly deflected and bounce back to hit the front of the screen.

Figure 4. Geiger and Rutherford fired α particles at a piece of gold foil and detected where those particles went, as shown in this schematic diagram of their experiment. Most of the particles passed straight through the foil, but a few were deflected slightly and a very small number were significantly deflected.

Here is what Rutherford deduced: Because most of the fast-moving α particles passed through the gold atoms undeflected, they must have traveled through essentially empty space inside the atom. Alpha particles are positively charged, so deflections arose when they encountered another positive charge (like charges repel each other). Since like charges repel one another, the few positively charged α particles that changed paths abruptly must have hit, or closely approached, another body that also had a highly concentrated, positive charge. Since the deflections occurred a small fraction of the time, this charge only occupied a small amount of the space in the gold foil. Analyzing a series of such experiments in detail, Rutherford drew two conclusions:

  • The volume occupied by an atom must consist of a large amount of empty space.
  • A small, relatively heavy, positively charged body, the nucleus , must be at the center of each atom.

View this simulation of the Rutherford gold foil experiment. Adjust the slit width to produce a narrower or broader beam of α particles to see how that affects the scattering pattern.

This analysis led Rutherford to propose a model in which an atom consists of a very small, positively charged nucleus, in which most of the mass of the atom is concentrated, surrounded by the negatively charged electrons, so that the atom is electrically neutral ( Figure 5 ). After many more experiments, Rutherford also discovered that the nuclei of other elements contain the hydrogen nucleus as a “building block,” and he named this more fundamental particle the proton , the positively charged, subatomic particle found in the nucleus. With one addition, which you will learn next, this nuclear model of the atom, proposed over a century ago, is still used today.

The left diagram shows a green beam of alpha particles hitting a rectangular piece of gold foil. Some of the alpha particles bounce backwards after hitting the foil. However, most of the particles travel through the foil, with some being deflected as they pass through the foil. A callout box shows a magnified cross section of the gold foil. Most of the alpha particles are not deflected, but pass straight through the foil because they travel between the gold atoms. A very small number of alpha particles are significantly deflected when they hit the nucleus of the gold atoms straight on. A few alpha particles are slightly deflected because they glanced off of the nucleus of a gold atom.

Figure 5. The α particles are deflected only when they collide with or pass close to the much heavier, positively charged gold nucleus. Because the nucleus is very small compared to the size of an atom, very few α particles are deflected. Most pass through the relatively large region occupied by electrons, which are too light to deflect the rapidly moving particles.

The Rutherford Scattering simulation allows you to investigate the differences between a “plum pudding” atom and a Rutherford atom by firing α particles at each type of atom.

Another important finding was the discovery of isotopes. During the early 1900s, scientists identified several substances that appeared to be new elements, isolating them from radioactive ores. For example, a “new element” produced by the radioactive decay of thorium was initially given the name mesothorium. However, a more detailed analysis showed that mesothorium was chemically identical to radium (another decay product), despite having a different atomic mass. This result, along with similar findings for other elements, led the English chemist Frederick Soddy to realize that an element could have types of atoms with different masses that were chemically indistinguishable. These different types are called isotopes —atoms of the same element that differ in mass. Soddy was awarded the Nobel Prize in Chemistry in 1921 for this discovery.

One puzzle remained: The nucleus was known to contain almost all of the mass of an atom, with the number of protons only providing half, or less, of that mass. Different proposals were made to explain what constituted the remaining mass, including the existence of neutral particles in the nucleus. As you might expect, detecting uncharged particles is very challenging, and it was not until 1932 that James Chadwick found evidence of neutrons , uncharged, subatomic particles with a mass approximately the same as that of protons. The existence of the neutron also explained isotopes: They differ in mass because they have different numbers of neutrons, but they are chemically identical because they have the same number of protons. This will be explained in more detail later in this chapter.

Key Concepts and Summary

Although no one has actually seen the inside of an atom, experiments have demonstrated much about atomic structure. Thomson’s cathode ray tube showed that atoms contain small, negatively charged particles called electrons. Millikan discovered that there is a fundamental electric charge—the charge of an electron. Rutherford’s gold foil experiment showed that atoms have a small, dense, positively charged nucleus; the positively charged particles within the nucleus are called protons. Chadwick discovered that the nucleus also contains neutral particles called neutrons. Soddy demonstrated that atoms of the same element can differ in mass; these are called isotopes.

Chemistry End of Chapter Exercises

  • The existence of isotopes violates one of the original ideas of Dalton’s atomic theory. Which one?
  • How are electrons and protons similar? How are they different?
  • How are protons and neutrons similar? How are they different?

(a) Predict the paths taken by α particles that are fired at atoms with a Thomson’s plum pudding model structure. Explain why you expect the α particles to take these paths.

(b) If α particles of higher energy than those in (a) are fired at plum pudding atoms, predict how their paths will differ from the lower-energy α particle paths. Explain your reasoning.

(c) Now test your predictions from (a) and (b). Open the Rutherford Scattering simulation and select the “Plum Pudding Atom” tab. Set “Alpha Particles Energy” to “min,” and select “show traces.” Click on the gun to start firing α particles. Does this match your prediction from (a)? If not, explain why the actual path would be that shown in the simulation. Hit the pause button, or “Reset All.” Set “Alpha Particles Energy” to “max,” and start firing α particles. Does this match your prediction from (b)? If not, explain the effect of increased energy on the actual paths as shown in the simulation.

(a) Predict the paths taken by α particles that are fired at atoms with a Rutherford atom model structure. Explain why you expect the α particles to take these paths.

(b) If α particles of higher energy than those in (a) are fired at Rutherford atoms, predict how their paths will differ from the lower-energy α particle paths. Explain your reasoning.

(c) Predict how the paths taken by the α particles will differ if they are fired at Rutherford atoms of elements other than gold. What factor do you expect to cause this difference in paths, and why?

(d) Now test your predictions from (a), (b), and (c). Open the Rutherford Scattering simulation and select the “Rutherford Atom” tab. Due to the scale of the simulation, it is best to start with a small nucleus, so select “20” for both protons and neutrons, “min” for energy, show traces, and then start firing α particles. Does this match your prediction from (a)? If not, explain why the actual path would be that shown in the simulation. Pause or reset, set energy to “max,” and start firing α particles. Does this match your prediction from (b)? If not, explain the effect of increased energy on the actual path as shown in the simulation. Pause or reset, select “40” for both protons and neutrons, “min” for energy, show traces, and fire away. Does this match your prediction from (c)? If not, explain why the actual path would be that shown in the simulation. Repeat this with larger numbers of protons and neutrons. What generalization can you make regarding the type of atom and effect on the path of α particles? Be clear and specific.

Answers to Chemistry End of Chapter Exercises

1. Dalton originally thought that all atoms of a particular element had identical properties, including mass. Thus, the concept of isotopes, in which an element has different masses, was a violation of the original idea. To account for the existence of isotopes, the second postulate of his atomic theory was modified to state that atoms of the same element must have identical chemical properties.

3. Both are subatomic particles that reside in an atom’s nucleus. Both have approximately the same mass. Protons are positively charged, whereas neutrons are uncharged.

5. (a) The Rutherford atom has a small, positively charged nucleus, so most α particles will pass through empty space far from the nucleus and be undeflected. Those α particles that pass near the nucleus will be deflected from their paths due to positive-positive repulsion. The more directly toward the nucleus the α particles are headed, the larger the deflection angle will be. (b) Higher-energy α particles that pass near the nucleus will still undergo deflection, but the faster they travel, the less the expected angle of deflection. (c) If the nucleus is smaller, the positive charge is smaller and the expected deflections are smaller—both in terms of how closely the α particles pass by the nucleus undeflected and the angle of deflection. If the nucleus is larger, the positive charge is larger and the expected deflections are larger—more α particles will be deflected, and the deflection angles will be larger. (d) The paths followed by the α particles match the predictions from (a), (b), and (c).

  • Ernest Rutherford, “The Development of the Theory of Atomic Structure,” ed. J. A. Ratcliffe, in Background to Modern Science , eds. Joseph Needham and Walter Pagel, (Cambridge, UK: Cambridge University Press, 1938), 61–74. Accessed September 22, 2014, https://ia600508.us.archive.org/3/items/backgroundtomode032734mbp/backgroundtomode032734mbp.pdf . ↵

2.2 Evolution of Atomic Theory Copyright © 2016 by Rice University. All Rights Reserved.

Share This Book

All About Metals

Ernest Rutherford Gold Foil Experiment Conclusion

Ernest rutherford gold foil experiment.

In 1909, Ernest Rutherford conducted an experiment that would lead to the discovery of the existence of subatomic particles, which later became known as “Protons.”

He did this by firing alpha particles at thin sheets of gold foil. Rutherford found that about half the time, the alpha particles went straight through the foil, but the other half the time, the alpha particles were deflected at very large angles.

Rutherford originally believed that the alpha particles were coming into contact with a thin layer of gas on the surface of the foil, producing the deflection, but later experiments revealed that the majority of the deflection came from subatomic particles that are slightly smaller than alpha particles.

Rutherford’s experiment with gold foil is considered one of the greatest discoveries of science.

The 1909 Ernest Rutherford experiment was to prove the existence of subatomic particles such as protons and neutrons. Rutherford fired alpha particles at thin sheets of gold foil.

Some of these alpha particles were deflected at large angles, while others passed directly through.

Rutherford originally thought that the alpha particles were coming into contact with a thin layer of gas on the surface of the foil, producing the deflection.

Later experiments, however, showed that most of the deflection came from subatomic particles that are slightly smaller than alpha particles. Rutherford’s experiment with gold foil is now considered one of the greatest discoveries in science.

From this experiment, he concluded that the atom must be mostly empty space, with the nuclear bits being in the center.

This experiment is also an example of a nuclear reaction and is considered to be the first demonstration that all atoms are not indestructible.

In the experiment, a radioactive source is inserted in between two sheets of gold foil, and a thin lead sheet was interposed between the radium source and the foil.

Rutherford Gold Foil Experiment Results

Rutherford experimented by firing a beam of alpha particles into a sheet of gold foil and observed that most of the alpha particles flew through the gold foil with very little scattering.

Similar Posts

Can i change the colour of my aluminium windows.

Can I Change The Colour Of My Aluminium Windows? You can choose to respray your aluminium windows any colour you want.The ideal finish for an aluminium window is a smooth, flat matt. If you choose to change the colour of your aluminium windows, be aware that it is not a permanent finish; without sealing the…

Niels Bohr Atomic Model Theory Experiment

Niels Bohr Atomic Model Theory Experiment

Niels Bohr Atomic Model Theory Experiment Niels Bohr Education & Life Niels Bohr is a well-known Danish physicist that spent the majority of his life studying the atomic model. The atomic model is a theory that holds that the atoms in an element are different from one another and contain protons, electrons, and neutrons. Bohr’s…

Factors Affecting Microstructure of Cast Iron

Factors Affecting Microstructure of Cast Iron  The structure of Cast iron is affected by the following factors: Carbon Content The higher the iron’s carbon content, the greater will be the tendency for it to solidify grey. To ensure that the structure is completely graphitic, the carbon content is kept less than 2 per cent when…

Types of Steel and Cast Iron Test

Types of Steel and Cast Iron Test Tensile Strength Test Tensile strength is the stress required to pull apart a test piece by an axially applied load. It is performed on a machined test piece in which the middle section of the length is reduced in diameter. It is the standard test by which the…

Top 13 Alloying Elements of Steel | Alloying Elements Properties and Effects

Top 13 Alloying Elements of Steel | Alloying Elements Properties and Effects

Alloying Elements of Steel | Alloying Elements Properties and Effects A steel composition is made up of different elements combined to form the final product. In metalwork, these elements are called alloying additions. Each alloy addition element affects steel properties differently. Depending on the desired properties, the proportion of alloying additions is added.   Alloying Elements of…

JJ Thomson Plum Pudding Model Experiment

JJ Thomson Plum Pudding Model Experiment

JJ Thomson Plum Pudding Model Experiment JJ Thomson Plum Pudding Model The plum pudding model of the atom states that the electrons in an atom are arranged around the nucleus in a series of shells. The first shell is closest to the nucleus, with up to two electrons per orbital. Each succeeding shell has more…

Encyclopedia

  • Scholarly Community Encyclopedia
  • Log in/Sign up

what are two conclusions of the gold foil experiment

Video Upload Options

  • MDPI and ACS Style
  • Chicago Style

The Geiger–Marsden experiments (also called the Rutherford gold foil experiment) were a landmark series of experiments by which scientists discovered that every atom has a nucleus where all of its positive charge and most of its mass is concentrated. They deduced this by measuring how an alpha particle beam is scattered when it strikes a thin metal foil. The experiments were performed between 1908 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester.

1.1. Contemporary Theories of Atomic Structure

what are two conclusions of the gold foil experiment

The popular theory of atomic structure at the time of Rutherford's experiment was the "plum pudding model". This model was devised by Lord Kelvin and further developed by J. J. Thomson. Thomson was the scientist who discovered the electron, and that it was a component of every atom. Thomson believed the atom was a sphere of positive charge throughout which the electrons were distributed, a bit like raisins in a Christmas pudding. The existence of protons and neutrons was unknown at this time. They knew atoms were very tiny (Rutherford assumed they were in the order of 10 −8 m in radius [ 1 ] ). This model was based entirely on classical (Newtonian) physics; the current accepted model uses quantum mechanics.

Thomson's model was not universally accepted even before Rutherford's experiments. Thomson himself was never able to develop a complete and stable model of his concept. Japanese scientist Hantaro Nagaoka rejected Thomson's model on the grounds that opposing charges cannot penetrate each other. [ 2 ] He proposed instead that electrons orbit the positive charge like the rings around Saturn. [ 3 ]

1.2. Implications of the Plum Pudding Model

An alpha particle is a sub-microscopic, positively charged particle of matter. According to Thomson's model, if an alpha particle were to collide with an atom, it would just fly straight through, its path being deflected by at most a fraction of a degree. At the atomic scale, the concept of "solid matter" is meaningless, so the alpha particle would not bounce off the atom like a marble. It would be affected only by the atom's electric fields, and Thomson's model predicted that the electric fields in an atom are too weak to affect a passing alpha particle much (alpha particles tend to move very fast). Both the negative and positive charges within the Thomson atom are spread out over the atom's entire volume. According to Coulomb's Law, the less concentrated a sphere of electric charge is, the weaker its electric field at its surface will be. [ 4 ] [ 5 ]

what are two conclusions of the gold foil experiment

Thomson model alpha particle scattering. https://handwiki.org/wiki/index.php?curid=2078708

As a worked example, consider an alpha particle passing tangentially to a Thomson gold atom, where it will experience the electric field at its strongest and thus experience the maximum deflection θ . Since the electrons are very light compared to the alpha particle, their influence can be neglected [ 6 ] and the atom can be seen as a heavy sphere of positive charge.

Using classical physics, the alpha particle's lateral change in momentum Δp can be approximated using the impulse of force relationship and the Coulomb force expression:

The above calculation is but an approximation of what happens when an alpha particle comes near a Thomson atom, but it is clear that the deflection at most will be in the order of a small fraction of a degree. If the alpha particle were to pass through a gold foil about 0.0004cm thick (2410 atoms) [ 7 ] and experience maximal deflection in the same direction (unlikely), it would still be a small deflection.

1.3. The Outcome of the Experiments

what are two conclusions of the gold foil experiment

At Rutherford's behest, Geiger and Marsden performed a series of experiments where they pointed a beam of alpha particles at a thin foil of metal and measured the scattering pattern by using a fluorescent screen. They spotted alpha particles bouncing off the metal foil in all directions, some right back at the source. This should have been impossible according to Thomson's model; the alpha particles should have all gone straight through. Obviously, those particles had encountered an electrostatic force far greater than Thomson's model suggested they would, which in turn implied that the atom's positive charge was concentrated in a much tinier volume than Thomson imagined. [ 8 ]

When Geiger and Marsden shot alpha particles at their metal foil, they noticed only a small fraction of the alpha particles were deflected by more than 90°. Most flew straight through the foil. This suggested that those tiny spheres of intense positive charge were separated by vast gulfs of empty space. [ 8 ] Most particles passed through the empty space and experienced negligible deviation, while a handful passed close to the nuclei of the atoms and were deflected through large angles.

Rutherford thus rejected Thomson's model of the atom, and instead proposed a model where the atom consisted of mostly empty space, with all of its positive charge concentrated in its center in a very tiny volume, surrounded by a cloud of electrons.

2. Timeline

2.1. background.

what are two conclusions of the gold foil experiment

Ernest Rutherford was Langsworthy Professor of Physics at the Victoria University of Manchester [ 9 ] (now the University of Manchester). He had already received numerous honours for his studies of radiation. He had discovered the existence of alpha rays, beta rays, and gamma rays, and had proved that these were the consequence of the disintegration of atoms. In 1906, he received a visit from a German physicist named Hans Geiger, and was so impressed that he asked Geiger to stay and help him with his research. [ 10 ] Ernest Marsden was a physics undergraduate student studying under Geiger.

Alpha particles are tiny, positively charged particles that are spontaneously emitted by certain substances such as uranium and radium. Rutherford had discovered them in 1899. In 1908, he was trying to precisely measure their charge-to-mass ratio. To do this, he first needed to know just how many alpha particles his sample of radium was giving off (after which he would measure their total charge and divide one by the other). Alpha particles are too tiny to be seen with a microscope, but Rutherford knew that alpha particles ionize air molecules, and if the air is within an electric field, the ions will produce an electric current. On this principle, Rutherford and Geiger designed a simple counting device which consisted of two electrodes in a glass tube. Every alpha particle that passed through the tube would create a pulse of electricity that could be counted. It was an early version of the Geiger counter. [ 10 ]

The counter that Geiger and Rutherford built proved unreliable because the alpha particles were being too strongly deflected by their collisions with the molecules of air within the detection chamber. The highly variable trajectories of the alpha particles meant that they did not all generate the same number of ions as they passed through the gas, thus producing erratic readings. This puzzled Rutherford because he had thought that alpha particles were just too heavy to be deflected so strongly. Rutherford asked Geiger to investigate just how much matter could scatter alpha rays. [ 11 ]

The experiments they designed involved bombarding a metal foil with alpha particles to observe how the foil scattered them in relation to their thickness and material. They used a fluorescent screen to measure the trajectories of the particles. Each impact of an alpha particle on the screen produced a tiny flash of light. Geiger worked in a darkened lab for hours on end, counting these tiny scintillations using a microscope. [ 5 ] Rutherford lacked the endurance for this work, which is why he left it to his younger colleagues. [ 12 ] For the metal foil, they tested a variety of metals, but they preferred gold because they could make the foil very thin, as gold is very malleable. [ 13 ] As a source of alpha particles, Rutherford's substance of choice was radon, a substance several million times more radioactive than uranium.

2.2. The 1908 Experiment

what are two conclusions of the gold foil experiment

A 1908 paper by Geiger, On the Scattering of α-Particles by Matter , [ 14 ] describes the following experiment. He constructed a long glass tube, nearly two meters in length. At one end of the tube was a quantity of "radium emanation" (R) that served as a source of alpha particles. The opposite end of the tube was covered with a phosphorescent screen (Z). In the middle of the tube was a 0.9 mm-wide slit. The alpha particles from R passed through the slit and created a glowing patch of light on the screen. A microscope (M) was used to count the scintillations on the screen and measure their spread. Geiger pumped all the air out of the tube so that the alpha particles would be unobstructed, and they left a neat and tight image on the screen that corresponded to the shape of the slit. Geiger then allowed some air in the tube, and the glowing patch became more diffuse. Geiger then pumped out the air and placed some gold foil over the slit at AA. This too caused the patch of light on the screen to become more spread out. This experiment demonstrated that both air and solid matter could markedly scatter alpha particles. The apparatus, however, could only observe small angles of deflection. Rutherford wanted to know if the alpha particles were being scattered by even larger angles—perhaps larger than 90°.

2.3. The 1909 Experiment

what are two conclusions of the gold foil experiment

In a 1909 paper, On a Diffuse Reflection of the α-Particles , [ 15 ] Geiger and Marsden described the experiment by which they proved that alpha particles can indeed be scattered by more than 90°. In their experiment, they prepared a small conical glass tube (AB) containing "radium emanation" (radon), "radium A" (actual radium), and "radium C" (bismuth-214); its open end sealed with mica. This was their alpha particle emitter. They then set up a lead plate (P), behind which they placed a fluorescent screen (S). The tube was held on the opposite side of plate, such that the alpha particles it emitted could not directly strike the screen. They noticed a few scintillations on the screen, because some alpha particles got around the plate by bouncing off air molecules. They then placed a metal foil (R) to the side of the lead plate. They pointed the tube at the foil to see if the alpha particles would bounce off it and strike the screen on the other side of the plate, and observed an increase in the number of scintillations on the screen. Counting the scintillations, they observed that metals with higher atomic mass, such as gold, reflected more alpha particles than lighter ones such as aluminium.

Geiger and Marsden then wanted to estimate the total number of alpha particles that were being reflected. The previous setup was unsuitable for doing this because the tube contained several radioactive substances (radium plus its decay products) and thus the alpha particles emitted had varying ranges, and because it was difficult for them to ascertain at what rate the tube was emitting alpha particles. This time, they placed a small quantity of radium C (bismuth-214) on the lead plate, which bounced off a platinum reflector (R) and onto the screen. They found that only a tiny fraction of the alpha particles that struck the reflector bounced onto the screen (in this case, 1 in 8,000). [ 15 ]

2.4. The 1910 Experiment

what are two conclusions of the gold foil experiment

A 1910 paper [ 16 ] by Geiger, The Scattering of the α-Particles by Matter , describes an experiment by which he sought to measure how the most probable angle through which an a-particle is deflected varies with the material it passes through, the thickness of said material, and the velocity of the alpha particles. He constructed an airtight glass tube from which the air was pumped out. At one end was a bulb (B) containing "radium emanation" (radon-222). By means of mercury, the radon in B was pumped up the narrow glass pipe whose end at A was plugged with mica. At the other end of the tube was a fluorescent zinc sulfide screen (S). The microscope which he used to count the scintillations on the screen was affixed to a vertical millimeter scale with a vernier, which allowed Geiger to precisely measure where the flashes of light appeared on the screen and thus calculate the particles' angles of deflection. The alpha particles emitted from A was narrowed to a beam by a small circular hole at D. Geiger placed a metal foil in the path of the rays at D and E to observe how the zone of flashes changed. He could also vary the velocity of the alpha particles by placing extra sheets of mica or aluminium at A.

From the measurements he took, Geiger came to the following conclusions:

  • the most probable angle of deflection increases with the thickness of the material
  • the most probable angle of deflection is proportional to the atomic mass of the substance
  • the most probable angle of deflection decreases with the velocity of the alpha particles
  • the probability that a particle will be deflected by more than 90° is vanishingly small

2.5. Rutherford Mathematically Models the Scattering Pattern

Considering the results of the above experiments, Rutherford published a landmark paper in 1911 titled "The Scattering of α and β Particles by Matter and the Structure of the Atom" wherein he proposed that the atom contains at its center a volume of electric charge that is very small and intense (in fact, Rutherford treats it as a point charge in his calculations). [ 1 ] For the purpose of his mathematical calculations he assumed this central charge was positive, but he admitted he could not prove this and that he had to wait for other experiments to develop his theory.

Rutherford developed a mathematical equation that modeled how the foil should scatter the alpha particles if all the positive charge and most of the atomic mass was concentrated in a single point at the center of an atom.

what are two conclusions of the gold foil experiment

https://handwiki.org/wiki/index.php?curid=2007572

[math]\displaystyle{ s = \frac {Xnt\csc^4{\!\left(\tfrac {\phi}{2}\right)}}{16r^2} \cdot {\left(\frac {2Q_n Q_{\alpha}}{mv^2}\right)}^2 }[/math]

From the scattering data, Rutherford estimated the central charge Q n to be about +100 units (see Rutherford model)

2.6. The 1913 Experiment

In a 1913 paper, The Laws of Deflexion of α Particles through Large Angles , [ 17 ] Geiger and Marsden describe a series of experiments by which they sought to experimentally verify the above equation that Rutherford developed. Rutherford's equation predicted that the number of scintillations per minute s that will be observed at a given angle Φ should be proportional to:

  • csc 4 (Φ/2)
  • thickness of foil t
  • magnitude of the square of central charge Q n
  • 1/(mv 2 ) 2

Their 1913 paper describes four experiments by which they proved each of these four relationships.

what are two conclusions of the gold foil experiment

To test how the scattering varied with the angle of deflection (i.e. if s ∝ csc 4 (Φ/2) ) Geiger and Marsden built an apparatus that consisted of a hollow metal cylinder mounted on a turntable. Inside the cylinder was a metal foil (F) and a radiation source containing radon (R), mounted on a detached column (T) which allowed the cylinder to rotate independently. The column was also a tube by which air was pumped out of the cylinder. A microscope (M) with its objective lens covered by a fluorescent zinc sulfide screen (S) penetrated the wall of the cylinder and pointed at the metal foil. By turning the table, the microscope could be moved a full circle around the foil, allowing Geiger to observe and count alpha particles deflected by up to 150°. Correcting for experimental error, Geiger and Marsden found that the number of alpha particles that are deflected by a given angle Φ is indeed proportional to csc 4 (Φ/2) . [ 17 ]

what are two conclusions of the gold foil experiment

Geiger and Marsden then tested how the scattering varied with the thickness of the foil (i.e. if s ∝ t ). They constructed a disc (S) with six holes drilled in it. The holes were covered with metal foil (F) of varying thickness, or none for control. This disc was then sealed in a brass ring (A) between two glass plates (B and C). The disc could be rotated by means of a rod (P) to bring each window in front of the alpha particle source (R). On the rear glass pane was a zinc sulfide screen (Z). Geiger and Marsden found that the number of scintillations that appeared on the zinc sulfide screen was indeed proportional to the thickness as long as said thickness was small. [ 17 ]

Geiger and Marsden reused the above apparatus to measure how the scattering pattern varied with the square of the nuclear charge (i.e. if s ∝ Q n 2 ). Geiger and Marsden didn't know what the positive charge of the nucleus of their metals were (they had only just discovered the nucleus existed at all), but they assumed it was proportional to the atomic weight, so they tested whether the scattering was proportional to the atomic weight squared. Geiger and Marsden covered the holes of the disc with foils of gold, tin, silver, copper, and aluminum. They measured each foil's stopping power by equating it to an equivalent thickness of air. They counted the number of scintillations per minute that each foil produced on the screen. They divided the number of scintillations per minute by the respective foil's air equivalent, then divided again by the square root of the atomic weight (Geiger and Marsden knew that for foils of equal stopping power, the number of atoms per unit area is proportional to the square root of the atomic weight). Thus, for each metal, Geiger and Marsden obtained the number of scintillations that a fixed number of atoms produce. For each metal, they then divided this number by the square of the atomic weight, and found that the ratios were more or less the same. Thus they proved that s ∝ Q n 2 . [ 17 ]

Finally, Geiger and Marsden tested how the scattering varied with the velocity of the alpha particles (i.e. if s ∝ 1/v 4 ). Using the same apparatus again, they slowed the alpha particles by placing extra sheets of mica in front of the alpha particle source. They found that, within the range of experimental error, that the number of scinitillations was indeed proportional to 1/v 4 . [ 17 ]

2.7. Rutherford Determines the Nucleus is Positively Charged

In his 1911 paper (see above), Rutherford assumed that the central charge of the atom was positive, but a negative charge would have fitted his scattering model just as well. [ 18 ] In a 1913 paper, [ 19 ] Rutherford declared that the "nucleus" (as he now called it) was indeed positively charged, based on the result of experiments exploring the scattering of alpha particles in various gases.

In 1917, Rutherford and his assistant William Kay began exploring the passage of alpha particles through gases such as hydrogen and nitrogen. In an experiment where they shot a beam of alpha particles through hydrogen, the alpha particles knocked the hydrogen nuclei forwards in the direction of the beam, not backwards. In an experiment where they shot alpha particles through nitrogen, he discovered that the alpha particles knocked hydrogen nuclei (i.e. protons) out of the nitrogen nuclei. [ 18 ]

When Geiger reported to Rutherford that he had spotted alpha particles being strongly deflected, Rutherford was astounded. In a lecture Rutherford delivered at Cambridge University, he said:

It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you. On consideration, I realized that this scattering backward must be the result of a single collision, and when I made calculations I saw that it was impossible to get anything of that order of magnitude unless you took a system in which the greater part of the mass of the atom was concentrated in a minute nucleus. It was then that I had the idea of an atom with a minute massive centre, carrying a charge. —Ernest Rutherford [ 20 ]

Accolades soon flooded in. Hantaro Nagaoka, who had once proposed a Saturnian model of the atom, wrote to Rutherford from Tokyo in 1911: "Congratulations on the simpleness of the apparatus you employ and the brilliant results you obtained". The conclusions of these experiments revealed how all matter on Earth is structured and thus affected every scientific and engineering discipline, making it one of the most pivotal scientific discoveries of all time. The astronomer Arthur Eddington called Rutherford's discovery the most important scientific achievement since Democritus proposed the atom ages earlier. [ 12 ]

Like most scientific models, Rutherford's atomic model was neither perfect nor complete. According to classical Newtonian physics, it was in fact impossible. Accelerating charged particles radiate electromagnetic waves, so an electron orbiting an atomic nucleus in theory would spiral into the nucleus as it loses energy. To fix this problem, scientists had to incorporate quantum mechanics into Rutherford's model.

  • Rutherford (1911)
  • Daintith & Gjertsen (1999)
  • Nagaoka (1904)
  • Hyperphysics
  • Cavendish Laboratory
  • Jewett & Serway (2014), p. 1299
  • https://www.chemteam.info/Chem-History/Rutherford-1911/Rutherford-1911.html
  • Manners (2000), p. 28
  • 'Inward Bound' by Abraham Pais, Oxford University Press, 1986
  • Heilbron (2003), p. 59
  • Heilbron (2003)
  • Reeves (2008)
  • Tibbetts (2007), p. 127
  • Geiger (1908)
  • Geiger & Marsden (1909)
  • Geiger (1910)
  • Geiger & Marsden (1913)
  • Rutherford & Nuttal (1913)
  • Rutherford & Ratcliffe (1938), p. 61

encyclopedia

  • Terms and Conditions
  • Privacy Policy
  • Advisory Board

what are two conclusions of the gold foil experiment

2.2 Evolution of Atomic Theory

Learning objectives.

  • Outline milestones in the development of modern atomic theory
  • Summarize and interpret the results of the experiments of Thomson, Millikan, and Rutherford
  • Describe the three subatomic particles that compose atoms
  • Define isotopes and give examples for several elements

In the two centuries since Dalton developed his ideas, scientists have made significant progress in furthering our understanding of atomic theory. Much of this came from the results of several seminal experiments that revealed the details of the internal structure of atoms. Here, we will discuss some of those key developments, with an emphasis on application of the scientific method, as well as understanding how the experimental evidence was analyzed. While the historical persons and dates behind these experiments can be quite interesting, it is most important to understand the concepts resulting from their work.

Atomic Theory after the Nineteenth Century

If matter were composed of atoms, what were atoms composed of? Were they the smallest particles, or was there something smaller? In the late 1800s, a number of scientists interested in questions like these investigated the electrical discharges that could be produced in low-pressure gases, with the most significant discovery made by English physicist J. J. Thomson using a cathode ray tube. This apparatus consisted of a sealed glass tube from which almost all the air had been removed; the tube contained two metal electrodes. When high voltage was applied across the electrodes, a visible beam called a cathode ray appeared between them. This beam was deflected toward the positive charge and away from the negative charge, and was produced in the same way with identical properties when different metals were used for the electrodes. In similar experiments, the ray was simultaneously deflected by an applied magnetic field, and measurements of the extent of deflection and the magnetic field strength allowed Thomson to calculate the charge-to-mass ratio of the cathode ray particles. The results of these measurements indicated that these particles were much lighter than atoms ( Figure 2.6 ).

Based on his observations, here is what Thomson proposed and why: The particles are attracted by positive (+) charges and repelled by negative (−) charges, so they must be negatively charged (like charges repel and unlike charges attract); they are less massive than atoms and indistinguishable, regardless of the source material, so they must be fundamental, subatomic constituents of all atoms. Although controversial at the time, Thomson’s idea was gradually accepted, and his cathode ray particle is what we now call an electron , a negatively charged, subatomic particle with a mass more than one thousand-times less that of an atom. The term “electron” was coined in 1891 by Irish physicist George Stoney, from “ electr ic i on .”

Link to Learning

Click here to hear Thomson describe his discovery in his own voice.

In 1909, more information about the electron was uncovered by American physicist Robert A. Millikan via his “oil drop” experiments. Millikan created microscopic oil droplets, which could be electrically charged by friction as they formed or by using X-rays. These droplets initially fell due to gravity, but their downward progress could be slowed or even reversed by an electric field lower in the apparatus. By adjusting the electric field strength and making careful measurements and appropriate calculations, Millikan was able to determine the charge on individual drops ( Figure 2.7 ).

Looking at the charge data that Millikan gathered, you may have recognized that the charge of an oil droplet is always a multiple of a specific charge, 1.6 × × 10 −19 C. Millikan concluded that this value must therefore be a fundamental charge—the charge of a single electron—with his measured charges due to an excess of one electron (1 times 1.6 × × 10 −19 C), two electrons (2 times 1.6 × × 10 −19 C), three electrons (3 times 1.6 × × 10 −19 C), and so on, on a given oil droplet. Since the charge of an electron was now known due to Millikan’s research, and the charge-to-mass ratio was already known due to Thomson’s research (1.759 × × 10 11 C/kg), it only required a simple calculation to determine the mass of the electron as well.

Scientists had now established that the atom was not indivisible as Dalton had believed, and due to the work of Thomson, Millikan, and others, the charge and mass of the negative, subatomic particles—the electrons—were known. However, the positively charged part of an atom was not yet well understood. In 1904, Thomson proposed the “plum pudding” model of atoms, which described a positively charged mass with an equal amount of negative charge in the form of electrons embedded in it, since all atoms are electrically neutral. A competing model had been proposed in 1903 by Hantaro Nagaoka , who postulated a Saturn-like atom, consisting of a positively charged sphere surrounded by a halo of electrons ( Figure 2.8 ).

The next major development in understanding the atom came from Ernest Rutherford , a physicist from New Zealand who largely spent his scientific career in Canada and England. He performed a series of experiments using a beam of high-speed, positively charged alpha particles (α particles) that were produced by the radioactive decay of radium; α particles consist of two protons and two neutrons (you will learn more about radioactive decay in the chapter on nuclear chemistry). Rutherford and his colleagues Hans Geiger (later famous for the Geiger counter) and Ernest Marsden aimed a beam of α particles, the source of which was embedded in a lead block to absorb most of the radiation, at a very thin piece of gold foil and examined the resultant scattering of the α particles using a luminescent screen that glowed briefly where hit by an α particle.

What did they discover? Most particles passed right through the foil without being deflected at all. However, some were diverted slightly, and a very small number were deflected almost straight back toward the source ( Figure 2.9 ). Rutherford described finding these results: “It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you” 1 (p. 68).

Here is what Rutherford deduced: Because most of the fast-moving α particles passed through the gold atoms undeflected, they must have traveled through essentially empty space inside the atom. Alpha particles are positively charged, so deflections arose when they encountered another positive charge (like charges repel each other). Since like charges repel one another, the few positively charged α particles that changed paths abruptly must have hit, or closely approached, another body that also had a highly concentrated, positive charge. Since the deflections occurred a small fraction of the time, this charge only occupied a small amount of the space in the gold foil. Analyzing a series of such experiments in detail, Rutherford drew two conclusions:

  • The volume occupied by an atom must consist of a large amount of empty space.
  • A small, relatively heavy, positively charged body, the nucleus , must be at the center of each atom.

View this simulation of the Rutherford gold foil experiment. Adjust the slit width to produce a narrower or broader beam of α particles to see how that affects the scattering pattern.

This analysis led Rutherford to propose a model in which an atom consists of a very small, positively charged nucleus, in which most of the mass of the atom is concentrated, surrounded by the negatively charged electrons, so that the atom is electrically neutral ( Figure 2.10 ). After many more experiments, Rutherford also discovered that the nuclei of other elements contain the hydrogen nucleus as a “building block,” and he named this more fundamental particle the proton , the positively charged, subatomic particle found in the nucleus. With one addition, which you will learn next, this nuclear model of the atom, proposed over a century ago, is still used today.

The Rutherford Scattering simulation allows you to investigate the differences between a “plum pudding” atom and a Rutherford atom by firing α particles at each type of atom.

Another important finding was the discovery of isotopes. During the early 1900s, scientists identified several substances that appeared to be new elements, isolating them from radioactive ores. For example, a “new element” produced by the radioactive decay of thorium was initially given the name mesothorium. However, a more detailed analysis showed that mesothorium was chemically identical to radium (another decay product), despite having a different atomic mass. This result, along with similar findings for other elements, led the English chemist Frederick Soddy to realize that an element could have types of atoms with different masses that were chemically indistinguishable. These different types are called isotopes —atoms of the same element that differ in mass. Soddy was awarded the Nobel Prize in Chemistry in 1921 for this discovery.

One puzzle remained: The nucleus was known to contain almost all of the mass of an atom, with the number of protons only providing half, or less, of that mass. Different proposals were made to explain what constituted the remaining mass, including the existence of neutral particles in the nucleus. As you might expect, detecting uncharged particles is very challenging, and it was not until 1932 that James Chadwick found evidence of neutrons , uncharged, subatomic particles with a mass approximately the same as that of protons. The existence of the neutron also explained isotopes: They differ in mass because they have different numbers of neutrons, but they are chemically identical because they have the same number of protons. This will be explained in more detail later in this chapter.

  • 1 Ernest Rutherford, “The Development of the Theory of Atomic Structure,” ed. J. A. Ratcliffe, in Background to Modern Science , eds. Joseph Needham and Walter Pagel, (Cambridge, UK: Cambridge University Press, 1938), 61–74. Accessed September 22, 2014, https://ia600508.us.archive.org/3/items/backgroundtomode032734mbp/backgroundtomode032734mbp.pdf.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/chemistry/pages/1-introduction
  • Authors: Paul Flowers, William R. Robinson, PhD, Richard Langley, Klaus Theopold
  • Publisher/website: OpenStax
  • Book title: Chemistry
  • Publication date: Mar 11, 2015
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/chemistry/pages/1-introduction
  • Section URL: https://openstax.org/books/chemistry/pages/2-2-evolution-of-atomic-theory

© Feb 15, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

COMMENTS

  1. 4.14: Gold Foil Experiment

    The Gold Foil Experiment. In 1911, Rutherford and coworkers Hans Geiger and Ernest Marsden initiated a series of groundbreaking experiments that would completely change the accepted model of the atom. They bombarded very thin sheets of gold foil with fast moving alpha particles. Alpha particles, a type of natural radioactive particle, are ...

  2. Discovery of the electron and nucleus (article)

    In Rutherford's gold foil experiment, a beam of α ‍ particles that was shot at a thin sheet of gold foil. Most of the α ‍ particles passed straight through the gold foil, but a small number were deflected slightly, and an even smaller fraction were deflected more than 90 ∘ ‍ from their path. Image from Openstax, CC BY 4.0.

  3. What is the 'Gold Foil Experiment'? The Geiger-Marsden experiments

    Bibliography. The Geiger-Marsden experiment, also called the gold foil experiment or the α-particle scattering experiments, refers to a series of early-20th-century experiments that gave ...

  4. About Rutherford's Gold Foil Experiment

    Features. The gold foil experiment consisted of a series of tests in which a positively charged helium particle was shot at a very thin layer of gold foil. The expected result was that the positive particles would be moved just a few degrees from their path as they passed through the sea of positive charge proposed in the plum pudding model ...

  5. Rutherford's Gold Foil Experiment

    Rutherford's diffraction experiment tests diffraction via a thin foil made of gold metal. Opposite the gold foil is a screen that emits a flash of light when struck by a particle. The passing of many of the particles through suggested the condensed nucleus version of the atom model.

  6. Rutherford's Gold Foil Experiment

    The gold foil experiment was a pathbreaking work conducted by scientists Hans Geiger and Ernest Marsden under the supervision of Nobel laureate physicist Ernest Rutherford that led to the discovery of the proper structure of an atom. Known as the Geiger-Marsden experiment, it was performed at the Physical Laboratories of the University of ...

  7. Experimental Evidence for the Structure of the Atom

    The Rutherford Gold Foil Experiment offered the first experimental evidence that led to the discovery of the nucleus of the atom as a small, dense, and positively charged atomic core. Also known as the Geiger-Marsden Experiments, the discovery actually involved a series of experiments performed by Hans Geiger and Ernest Marsden under Ernest ...

  8. Rutherford's gold foil experiment (video)

    Well, that is quite an interesting question. You see, the detector the speaker speaks about here is actually a film of Zinc Sulphide positioned around the gold foil, with a small space to let the alpha particles, as mentioned by the speaker. Now, the Zinc Sulphide screen has fluorescent properties, i.e., when the scattered alpha particles hit ...

  9. Discovering the Nucleus: Rutherford's Gold Foil Experiment

    The Nuclear Model. The gold-foil experiment disproved J.J. Thomsons plum pudding model, which hypothesized the atom was positively charged spaced with electrons embedded inside. Therefore, giving way to the nuclear model. In this model, Rutherford theorized the atomic structure was similar to that of the solar system.

  10. Rutherford model

    The gold-foil experiment showed that the atom consists of a small, massive, positively charged nucleus with the negatively charged electrons being at a great distance from the centre. Niels Bohr built upon Rutherford's model to make his own. In Bohr's model the orbits of the electrons were explained by quantum mechanics.

  11. What is the Rutherford gold-foil experiment?

    A few even bounced backward. The only way this would happen was if the atom had a small, heavy region of positive charge inside it. What is the Rutherford gold-foil experiment? A piece of gold foil was hit with alpha particles, which have a positive charge. Most alpha particles wen.

  12. Rutherford Gold Foil Experiment

    Observations and Conclusions of Rutherford's α (Alpha) Particle Scattering Experiment. Physics4students. 988. ... What fraction of the a particles in Rutherford's gold foil experiment are scattered at large angles? Assume the gold foil is two layers thick, as shown in Figure 2.9, and that the approximate diameters of a gold atom and its ...

  13. 3.4: Rutherford's Experiment- The Nuclear Model of the Atom

    In 1911, Rutherford and coworkers Hans Geiger and Ernest Marsden initiated a series of groundbreaking experiments that would completely change the accepted model of the atom. They bombarded very thin sheets of gold foil with fast moving alpha particles. Figure 3.4.2 3.4. 2 (a) The experimental setup for Rutherford's gold foil experiment: A ...

  14. Gold Foil Experiment

    Rutherford's gold foil experiment was a major milestone in the determination of the size and proportions of the different constituents of the atom. It was successful in determining that the majority of the mass of an atom lies within the nucleus, just as the majority of the mass of a planetary system lies within the stellar system of that ...

  15. Gold Foil Experiment

    What was the Experiment? The experiment studied the effects of shooting an alpha ray (which is composed of particles with a much greater mass than protons) at a thin sheet of gold foil.. Some of the alpha rays went straight through the foil while other alpha rays were deflected by the foil. The angles of the alpha rays' deflections were extremely interesting and caused Rutherford and his ...

  16. What are the conclusions of the Gold foil Experiment?

    Gold-foil experiment: Gold-foil experiment was given by Rutherford. In his experiment, the α-particles were made to come down on a thin gold foil. Many of the α-particles passed linearly through the gold foil. Some of the particles deviated at small angles. One out of every 12000 particles appeared to bounce. Conclusion of Rutherford's model ...

  17. Rutherford Atomic Model

    Rutherford's Gold Foil Experiment. The Rutherford gold foil experiment, also known as the scattering experiment, led to the creation of the model and explained the parts of the atom.In 1909, graduate student Ernest Marsden (under Ernest Rutherford's supervision) fired alpha particles at a gold foil piece. Most of the particles passed directly through the foil, meaning that a majority of ...

  18. Rutherford Gold Foil Experiment

    Okay, so just remember that this experiment is given by both of these names. The Rutherford Gold experiment, as well as the Geiger Marsden experiment. Now the experimental setup is a thin sheet of gold foil. So here we have our gold foil right here is bombarded with alpha particles emitting emitting from a radioactive element.

  19. 2.2 Evolution of Atomic Theory

    Analyzing a series of such experiments in detail, Rutherford drew two conclusions: The volume occupied by an atom must consist of a large amount of empty space. A small, relatively heavy, positively charged body, the nucleus, must be at the center of each atom. View this simulation of the Rutherford gold foil experiment. Adjust the slit width ...

  20. PDF Conclusions from the Gold Foil Experiment Conclusions from the Gold

    Conclusions from the Gold Foil Experiment Most of the particles passed right through A few particles were greatly deflected. Very few were GREATLY deflected Conclusions from the Gold Foil Experiment Most of the particles passed right through A few particles were greatly deflected. Very few were GREATLY deflected

  21. Ernest Rutherford Gold Foil Experiment Conclusion

    This experiment is also an example of a nuclear reaction and is considered to be the first demonstration that all atoms are not indestructible. In the experiment, a radioactive source is inserted in between two sheets of gold foil, and a thin lead sheet was interposed between the radium source and the foil.

  22. Geiger-Marsden Experiment

    The Geiger-Marsden experiments (also called the Rutherford gold foil experiment) were a landmark series of experiments by which scientists discovered that every atom has a nucleus where all of its positive charge and most of its mass is concentrated. They deduced this by measuring how an alpha particle beam is scattered when it strikes a thin metal foil. The experiments were performed ...

  23. 2.2 Evolution of Atomic Theory

    Figure 2.9 Geiger and Rutherford fired α particles at a piece of gold foil and detected where those particles went, as shown in this schematic diagram of their experiment. Most of the particles passed straight through the foil, but a few were deflected slightly and a very small number were significantly deflected.