Jump to navigation

Home

Cochrane Training

Chapter 14: completing ‘summary of findings’ tables and grading the certainty of the evidence.

Holger J Schünemann, Julian PT Higgins, Gunn E Vist, Paul Glasziou, Elie A Akl, Nicole Skoetz, Gordon H Guyatt; on behalf of the Cochrane GRADEing Methods Group (formerly Applicability and Recommendations Methods Group) and the Cochrane Statistical Methods Group

Key Points:

  • A ‘Summary of findings’ table for a given comparison of interventions provides key information concerning the magnitudes of relative and absolute effects of the interventions examined, the amount of available evidence and the certainty (or quality) of available evidence.
  • ‘Summary of findings’ tables include a row for each important outcome (up to a maximum of seven). Accepted formats of ‘Summary of findings’ tables and interactive ‘Summary of findings’ tables can be produced using GRADE’s software GRADEpro GDT.
  • Cochrane has adopted the GRADE approach (Grading of Recommendations Assessment, Development and Evaluation) for assessing certainty (or quality) of a body of evidence.
  • The GRADE approach specifies four levels of the certainty for a body of evidence for a given outcome: high, moderate, low and very low.
  • GRADE assessments of certainty are determined through consideration of five domains: risk of bias, inconsistency, indirectness, imprecision and publication bias. For evidence from non-randomized studies and rarely randomized studies, assessments can then be upgraded through consideration of three further domains.

Cite this chapter as: Schünemann HJ, Higgins JPT, Vist GE, Glasziou P, Akl EA, Skoetz N, Guyatt GH. Chapter 14: Completing ‘Summary of findings’ tables and grading the certainty of the evidence. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from www.training.cochrane.org/handbook .

14.1 ‘Summary of findings’ tables

14.1.1 introduction to ‘summary of findings’ tables.

‘Summary of findings’ tables present the main findings of a review in a transparent, structured and simple tabular format. In particular, they provide key information concerning the certainty or quality of evidence (i.e. the confidence or certainty in the range of an effect estimate or an association), the magnitude of effect of the interventions examined, and the sum of available data on the main outcomes. Cochrane Reviews should incorporate ‘Summary of findings’ tables during planning and publication, and should have at least one key ‘Summary of findings’ table representing the most important comparisons. Some reviews may include more than one ‘Summary of findings’ table, for example if the review addresses more than one major comparison, or includes substantially different populations that require separate tables (e.g. because the effects differ or it is important to show results separately). In the Cochrane Database of Systematic Reviews (CDSR),  all ‘Summary of findings’ tables for a review appear at the beginning, before the Background section.

14.1.2 Selecting outcomes for ‘Summary of findings’ tables

Planning for the ‘Summary of findings’ table starts early in the systematic review, with the selection of the outcomes to be included in: (i) the review; and (ii) the ‘Summary of findings’ table. This is a crucial step, and one that review authors need to address carefully.

To ensure production of optimally useful information, Cochrane Reviews begin by developing a review question and by listing all main outcomes that are important to patients and other decision makers (see Chapter 2 and Chapter 3 ). The GRADE approach to assessing the certainty of the evidence (see Section 14.2 ) defines and operationalizes a rating process that helps separate outcomes into those that are critical, important or not important for decision making. Consultation and feedback on the review protocol, including from consumers and other decision makers, can enhance this process.

Critical outcomes are likely to include clearly important endpoints; typical examples include mortality and major morbidity (such as strokes and myocardial infarction). However, they may also represent frequent minor and rare major side effects, symptoms, quality of life, burdens associated with treatment, and resource issues (costs). Burdens represent the impact of healthcare workload on patient function and well-being, and include the demands of adhering to an intervention that patients or caregivers (e.g. family) may dislike, such as having to undergo more frequent tests, or the restrictions on lifestyle that certain interventions require (Spencer-Bonilla et al 2017).

Frequently, when formulating questions that include all patient-important outcomes for decision making, review authors will confront reports of studies that have not included all these outcomes. This is particularly true for adverse outcomes. For instance, randomized trials might contribute evidence on intended effects, and on frequent, relatively minor side effects, but not report on rare adverse outcomes such as suicide attempts. Chapter 19 discusses strategies for addressing adverse effects. To obtain data for all important outcomes it may be necessary to examine the results of non-randomized studies (see Chapter 24 ). Cochrane, in collaboration with others, has developed guidance for review authors to support their decision about when to look for and include non-randomized studies (Schünemann et al 2013).

If a review includes only randomized trials, these trials may not address all important outcomes and it may therefore not be possible to address these outcomes within the constraints of the review. Review authors should acknowledge these limitations and make them transparent to readers. Review authors are encouraged to include non-randomized studies to examine rare or long-term adverse effects that may not adequately be studied in randomized trials. This raises the possibility that harm outcomes may come from studies in which participants differ from those in studies used in the analysis of benefit. Review authors will then need to consider how much such differences are likely to impact on the findings, and this will influence the certainty of evidence because of concerns about indirectness related to the population (see Section 14.2.2 ).

Non-randomized studies can provide important information not only when randomized trials do not report on an outcome or randomized trials suffer from indirectness, but also when the evidence from randomized trials is rated as very low and non-randomized studies provide evidence of higher certainty. Further discussion of these issues appears also in Chapter 24 .

14.1.3 General template for ‘Summary of findings’ tables

Several alternative standard versions of ‘Summary of findings’ tables have been developed to ensure consistency and ease of use across reviews, inclusion of the most important information needed by decision makers, and optimal presentation (see examples at Figures 14.1.a and 14.1.b ). These formats are supported by research that focused on improved understanding of the information they intend to convey (Carrasco-Labra et al 2016, Langendam et al 2016, Santesso et al 2016). They are available through GRADE’s official software package developed to support the GRADE approach: GRADEpro GDT (www.gradepro.org).

Standard Cochrane ‘Summary of findings’ tables include the following elements using one of the accepted formats. Further guidance on each of these is provided in Section 14.1.6 .

  • A brief description of the population and setting addressed by the available evidence (which may be slightly different to or narrower than those defined by the review question).
  • A brief description of the comparison addressed in the ‘Summary of findings’ table, including both the experimental and comparison interventions.
  • A list of the most critical and/or important health outcomes, both desirable and undesirable, limited to seven or fewer outcomes.
  • A measure of the typical burden of each outcomes (e.g. illustrative risk, or illustrative mean, on comparator intervention).
  • The absolute and relative magnitude of effect measured for each (if both are appropriate).
  • The numbers of participants and studies contributing to the analysis of each outcomes.
  • A GRADE assessment of the overall certainty of the body of evidence for each outcome (which may vary by outcome).
  • Space for comments.
  • Explanations (formerly known as footnotes).

Ideally, ‘Summary of findings’ tables are supported by more detailed tables (known as ‘evidence profiles’) to which the review may be linked, which provide more detailed explanations. Evidence profiles include the same important health outcomes, and provide greater detail than ‘Summary of findings’ tables of both of the individual considerations feeding into the grading of certainty and of the results of the studies (Guyatt et al 2011a). They ensure that a structured approach is used to rating the certainty of evidence. Although they are rarely published in Cochrane Reviews, evidence profiles are often used, for example, by guideline developers in considering the certainty of the evidence to support guideline recommendations. Review authors will find it easier to develop the ‘Summary of findings’ table by completing the rating of the certainty of evidence in the evidence profile first in GRADEpro GDT. They can then automatically convert this to one of the ‘Summary of findings’ formats in GRADEpro GDT, including an interactive ‘Summary of findings’ for publication.

As a measure of the magnitude of effect for dichotomous outcomes, the ‘Summary of findings’ table should provide a relative measure of effect (e.g. risk ratio, odds ratio, hazard) and measures of absolute risk. For other types of data, an absolute measure alone (such as a difference in means for continuous data) might be sufficient. It is important that the magnitude of effect is presented in a meaningful way, which may require some transformation of the result of a meta-analysis (see also Chapter 15, Section 15.4 and Section 15.5 ). Reviews with more than one main comparison should include a separate ‘Summary of findings’ table for each comparison.

Figure 14.1.a provides an example of a ‘Summary of findings’ table. Figure 15.1.b  provides an alternative format that may further facilitate users’ understanding and interpretation of the review’s findings. Evidence evaluating different formats suggests that the ‘Summary of findings’ table should include a risk difference as a measure of the absolute effect and authors should preferably use a format that includes a risk difference .

A detailed description of the contents of a ‘Summary of findings’ table appears in Section 14.1.6 .

Figure 14.1.a Example of a ‘Summary of findings’ table

Summary of findings (for interactive version click here )

anyone taking a long flight (lasting more than 6 hours)

international air travel

compression stockings

without stockings

Outcomes

* (95% CI)

Relative effect (95% CI)

Number of participants (studies)

Certainty of the evidence (GRADE)

Comments

Assumed risk

Corresponding risk

(DVT)

See comment

See comment

Not estimable

2821

(9 studies)

See comment

0 participants developed symptomatic DVT in these studies

(0.04 to 0.26)

2637

(9 studies)

⊕⊕⊕⊕

 

(0 to 3)

(1 to 8)

(2 to 15)

(0.18 to 1.13)

1804

(8 studies)

⊕⊕⊕◯

 

Post-flight values measured on a scale from 0, no oedema, to 10, maximum oedema

The mean oedema score ranged across control groups from

The mean oedema score in the intervention groups was on average

(95% CI –4.9 to –4.5)

 

1246

(6 studies)

⊕⊕◯◯

 

See comment

See comment

Not estimable

2821

(9 studies)

See comment

0 participants developed pulmonary embolus in these studies

See comment

See comment

Not estimable

2821

(9 studies)

See comment

0 participants died in these studies

See comment

See comment

Not estimable

1182

(4 studies)

See comment

The tolerability of the stockings was described as very good with no complaints of side effects in 4 studies

*The basis for the is provided in footnotes. The (and its 95% confidence interval) is based on the assumed risk in the intervention group and the of the intervention (and its 95% CI).

CI: confidence interval; RR: risk ratio; GRADE: GRADE Working Group grades of evidence (see explanations).

a All the stockings in the nine studies included in this review were below-knee compression stockings. In four studies the compression strength was 20 mmHg to 30 mmHg at the ankle. It was 10 mmHg to 20 mmHg in the other four studies. Stockings come in different sizes. If a stocking is too tight around the knee it can prevent essential venous return causing the blood to pool around the knee. Compression stockings should be fitted properly. A stocking that is too tight could cut into the skin on a long flight and potentially cause ulceration and increased risk of DVT. Some stockings can be slightly thicker than normal leg covering and can be potentially restrictive with tight foot wear. It is a good idea to wear stockings around the house prior to travel to ensure a good, comfortable fit. Participants put their stockings on two to three hours before the flight in most of the studies. The availability and cost of stockings can vary.

b Two studies recruited high risk participants defined as those with previous episodes of DVT, coagulation disorders, severe obesity, limited mobility due to bone or joint problems, neoplastic disease within the previous two years, large varicose veins or, in one of the studies, participants taller than 190 cm and heavier than 90 kg. The incidence for the seven studies that excluded high risk participants was 1.45% and the incidence for the two studies that recruited high-risk participants (with at least one risk factor) was 2.43%. We have used 10 and 30 per 1000 to express different risk strata, respectively.

c The confidence interval crosses no difference and does not rule out a small increase.

d The measurement of oedema was not validated (indirectness of the outcome) or blinded to the intervention (risk of bias).

e If there are very few or no events and the number of participants is large, judgement about the certainty of evidence (particularly judgements about imprecision) may be based on the absolute effect. Here the certainty rating may be considered ‘high’ if the outcome was appropriately assessed and the event, in fact, did not occur in 2821 studied participants.

f None of the other studies reported adverse effects, apart from four cases of superficial vein thrombosis in varicose veins in the knee region that were compressed by the upper edge of the stocking in one study.

Figure 14.1.b Example of alternative ‘Summary of findings’ table

children given antibiotics

inpatients and outpatient

probiotics

no probiotics

Follow-up: 10 days to 3 months

Children < 5 years

 

⊕⊕⊕⊝

Due to risk of bias

Probably decreases the incidence of diarrhoea.

1474 (7 studies)

(0.29 to 0.55)

(6.5 to 12.2)

(10.1 to 15.8 fewer)

Children > 5 years

 

⊕⊕⊝⊝

Due to risk of bias and imprecision

May decrease the incidence of diarrhoea.

624 (4 studies)

(0.53 to 1.21)

(5.9 to 13.6)

(5.3 fewer to 2.4 more)

Follow-up: 10 to 44 days

1575 (11 studies)

-

(0.8 to 3.8)

(1 fewer to 2 more)

⊕⊕⊝⊝

Due to risk of bias and inconsistency

There may be little or no difference in adverse events.

Follow-up: 10 days to 3 months

897 (5 studies)

-

The mean duration of diarrhoea without probiotics was

-

(1.18 to 0.02 fewer days)

⊕⊕⊝⊝

Due to imprecision and inconsistency

May decrease the duration of diarrhoea.

Follow-up: 10 days to 3 months

425 (4 studies)

-

The mean stools per day without probiotics was

-

(0.6 to 0 fewer)

⊕⊕⊝⊝

Due to imprecision and inconsistency

There may be little or no difference in stools per day.

*The basis for the (e.g. the median control group risk across studies) is provided in footnotes. The (and its 95% confidence interval) is based on the assumed risk in the comparison group and the of the intervention (and its 95% CI). confidence interval; risk ratio.

Control group risk estimates come from pooled estimates of control groups. Relative effect based on available case analysis

High risk of bias due to high loss to follow-up.

Imprecision due to few events and confidence intervals include appreciable benefit or harm.

Side effects: rash, nausea, flatulence, vomiting, increased phlegm, chest pain, constipation, taste disturbance and low appetite.

Risks were calculated from pooled risk differences.

High risk of bias. Only 11 of 16 trials reported on adverse events, suggesting a selective reporting bias.

Serious inconsistency. Numerous probiotic agents and doses were evaluated amongst a relatively small number of trials, limiting our ability to draw conclusions on the safety of the many probiotics agents and doses administered.

Serious unexplained inconsistency (large heterogeneity I = 79%, P value [P = 0.04], point estimates and confidence intervals vary considerably).

Serious imprecision. The upper bound of 0.02 fewer days of diarrhoea is not considered patient important.

Serious unexplained inconsistency (large heterogeneity I = 78%, P value [P = 0.05], point estimates and confidence intervals vary considerably).

Serious imprecision. The 95% confidence interval includes no effect and lower bound of 0.60 stools per day is of questionable patient importance.

14.1.4 Producing ‘Summary of findings’ tables

The GRADE Working Group’s software, GRADEpro GDT ( www.gradepro.org ), including GRADE’s interactive handbook, is available to assist review authors in the preparation of ‘Summary of findings’ tables. GRADEpro can use data on the comparator group risk and the effect estimate (entered by the review authors or imported from files generated in RevMan) to produce the relative effects and absolute risks associated with experimental interventions. In addition, it leads the user through the process of a GRADE assessment, and produces a table that can be used as a standalone table in a review (including by direct import into software such as RevMan or integration with RevMan Web), or an interactive ‘Summary of findings’ table (see help resources in GRADEpro).

14.1.5 Statistical considerations in ‘Summary of findings’ tables

14.1.5.1 dichotomous outcomes.

‘Summary of findings’ tables should include both absolute and relative measures of effect for dichotomous outcomes. Risk ratios, odds ratios and risk differences are different ways of comparing two groups with dichotomous outcome data (see Chapter 6, Section 6.4.1 ). Furthermore, there are two distinct risk ratios, depending on which event (e.g. ‘yes’ or ‘no’) is the focus of the analysis (see Chapter 6, Section 6.4.1.5 ). In the presence of a non-zero intervention effect, any variation across studies in the comparator group risks (i.e. variation in the risk of the event occurring without the intervention of interest, for example in different populations) makes it impossible for more than one of these measures to be truly the same in every study.

It has long been assumed in epidemiology that relative measures of effect are more consistent than absolute measures of effect from one scenario to another. There is empirical evidence to support this assumption (Engels et al 2000, Deeks and Altman 2001, Furukawa et al 2002). For this reason, meta-analyses should generally use either a risk ratio or an odds ratio as a measure of effect (see Chapter 10, Section 10.4.3 ). Correspondingly, a single estimate of relative effect is likely to be a more appropriate summary than a single estimate of absolute effect. If a relative effect is indeed consistent across studies, then different comparator group risks will have different implications for absolute benefit. For instance, if the risk ratio is consistently 0.75, then the experimental intervention would reduce a comparator group risk of 80% to 60% in the intervention group (an absolute risk reduction of 20 percentage points), but would also reduce a comparator group risk of 20% to 15% in the intervention group (an absolute risk reduction of 5 percentage points).

‘Summary of findings’ tables are built around the assumption of a consistent relative effect. It is therefore important to consider the implications of this effect for different comparator group risks (these can be derived or estimated from a number of sources, see Section 14.1.6.3 ), which may require an assessment of the certainty of evidence for prognostic evidence (Spencer et al 2012, Iorio et al 2015). For any comparator group risk, it is possible to estimate a corresponding intervention group risk (i.e. the absolute risk with the intervention) from the meta-analytic risk ratio or odds ratio. Note that the numbers provided in the ‘Corresponding risk’ column are specific to the ‘risks’ in the adjacent column.

For the meta-analytic risk ratio (RR) and assumed comparator risk (ACR) the corresponding intervention risk is obtained as:

research summary of findings example

As an example, in Figure 14.1.a , the meta-analytic risk ratio for symptomless deep vein thrombosis (DVT) is RR = 0.10 (95% CI 0.04 to 0.26). Assuming a comparator risk of ACR = 10 per 1000 = 0.01, we obtain:

research summary of findings example

For the meta-analytic odds ratio (OR) and assumed comparator risk, ACR, the corresponding intervention risk is obtained as:

research summary of findings example

Upper and lower confidence limits for the corresponding intervention risk are obtained by replacing RR or OR by their upper and lower confidence limits, respectively (e.g. replacing 0.10 with 0.04, then with 0.26, in the example). Such confidence intervals do not incorporate uncertainty in the assumed comparator risks.

When dealing with risk ratios, it is critical that the same definition of ‘event’ is used as was used for the meta-analysis. For example, if the meta-analysis focused on ‘death’ (as opposed to survival) as the event, then corresponding risks in the ‘Summary of findings’ table must also refer to ‘death’.

In (rare) circumstances in which there is clear rationale to assume a consistent risk difference in the meta-analysis, in principle it is possible to present this for relevant ‘assumed risks’ and their corresponding risks, and to present the corresponding (different) relative effects for each assumed risk.

The risk difference expresses the difference between the ACR and the corresponding intervention risk (or the difference between the experimental and the comparator intervention).

For the meta-analytic risk ratio (RR) and assumed comparator risk (ACR) the corresponding risk difference is obtained as (note that risks can also be expressed using percentage or percentage points):

research summary of findings example

As an example, in Figure 14.1.b the meta-analytic risk ratio is 0.41 (95% CI 0.29 to 0.55) for diarrhoea in children less than 5 years of age. Assuming a comparator group risk of 22.3% we obtain:

research summary of findings example

For the meta-analytic odds ratio (OR) and assumed comparator risk (ACR) the absolute risk difference is obtained as (percentage points):

research summary of findings example

Upper and lower confidence limits for the absolute risk difference are obtained by re-running the calculation above while replacing RR or OR by their upper and lower confidence limits, respectively (e.g. replacing 0.41 with 0.28, then with 0.55, in the example). Such confidence intervals do not incorporate uncertainty in the assumed comparator risks.

14.1.5.2 Time-to-event outcomes

Time-to-event outcomes measure whether and when a particular event (e.g. death) occurs (van Dalen et al 2007). The impact of the experimental intervention relative to the comparison group on time-to-event outcomes is usually measured using a hazard ratio (HR) (see Chapter 6, Section 6.8.1 ).

A hazard ratio expresses a relative effect estimate. It may be used in various ways to obtain absolute risks and other interpretable quantities for a specific population. Here we describe how to re-express hazard ratios in terms of: (i) absolute risk of event-free survival within a particular period of time; (ii) absolute risk of an event within a particular period of time; and (iii) median time to the event. All methods are built on an assumption of consistent relative effects (i.e. that the hazard ratio does not vary over time).

(i) Absolute risk of event-free survival within a particular period of time Event-free survival (e.g. overall survival) is commonly reported by individual studies. To obtain absolute effects for time-to-event outcomes measured as event-free survival, the summary HR can be used in conjunction with an assumed proportion of patients who are event-free in the comparator group (Tierney et al 2007). This proportion of patients will be specific to a period of time of observation. However, it is not strictly necessary to specify this period of time. For instance, a proportion of 50% of event-free patients might apply to patients with a high event rate observed over 1 year, or to patients with a low event rate observed over 2 years.

research summary of findings example

As an example, suppose the meta-analytic hazard ratio is 0.42 (95% CI 0.25 to 0.72). Assuming a comparator group risk of event-free survival (e.g. for overall survival people being alive) at 2 years of ACR = 900 per 1000 = 0.9 we obtain:

research summary of findings example

so that that 956 per 1000 people will be alive with the experimental intervention at 2 years. The derivation of the risk should be explained in a comment or footnote.

(ii) Absolute risk of an event within a particular period of time To obtain this absolute effect, again the summary HR can be used (Tierney et al 2007):

research summary of findings example

In the example, suppose we assume a comparator group risk of events (e.g. for mortality, people being dead) at 2 years of ACR = 100 per 1000 = 0.1. We obtain:

research summary of findings example

so that that 44 per 1000 people will be dead with the experimental intervention at 2 years.

(iii) Median time to the event Instead of absolute numbers, the time to the event in the intervention and comparison groups can be expressed as median survival time in months or years. To obtain median survival time the pooled HR can be applied to an assumed median survival time in the comparator group (Tierney et al 2007):

research summary of findings example

In the example, assuming a comparator group median survival time of 80 months, we obtain:

research summary of findings example

For all three of these options for re-expressing results of time-to-event analyses, upper and lower confidence limits for the corresponding intervention risk are obtained by replacing HR by its upper and lower confidence limits, respectively (e.g. replacing 0.42 with 0.25, then with 0.72, in the example). Again, as for dichotomous outcomes, such confidence intervals do not incorporate uncertainty in the assumed comparator group risks. This is of special concern for long-term survival with a low or moderate mortality rate and a corresponding high number of censored patients (i.e. a low number of patients under risk and a high censoring rate).

14.1.6 Detailed contents of a ‘Summary of findings’ table

14.1.6.1 table title and header.

The title of each ‘Summary of findings’ table should specify the healthcare question, framed in terms of the population and making it clear exactly what comparison of interventions are made. In Figure 14.1.a , the population is people taking long aeroplane flights, the intervention is compression stockings, and the control is no compression stockings.

The first rows of each ‘Summary of findings’ table should provide the following ‘header’ information:

Patients or population This further clarifies the population (and possibly the subpopulations) of interest and ideally the magnitude of risk of the most crucial adverse outcome at which an intervention is directed. For instance, people on a long-haul flight may be at different risks for DVT; those using selective serotonin reuptake inhibitors (SSRIs) might be at different risk for side effects; while those with atrial fibrillation may be at low (< 1%), moderate (1% to 4%) or high (> 4%) yearly risk of stroke.

Setting This should state any specific characteristics of the settings of the healthcare question that might limit the applicability of the summary of findings to other settings (e.g. primary care in Europe and North America).

Intervention The experimental intervention.

Comparison The comparator intervention (including no specific intervention).

14.1.6.2 Outcomes

The rows of a ‘Summary of findings’ table should include all desirable and undesirable health outcomes (listed in order of importance) that are essential for decision making, up to a maximum of seven outcomes. If there are more outcomes in the review, review authors will need to omit the less important outcomes from the table, and the decision selecting which outcomes are critical or important to the review should be made during protocol development (see Chapter 3 ). Review authors should provide time frames for the measurement of the outcomes (e.g. 90 days or 12 months) and the type of instrument scores (e.g. ranging from 0 to 100).

Note that review authors should include the pre-specified critical and important outcomes in the table whether data are available or not. However, they should be alert to the possibility that the importance of an outcome (e.g. a serious adverse effect) may only become known after the protocol was written or the analysis was carried out, and should take appropriate actions to include these in the ‘Summary of findings’ table.

The ‘Summary of findings’ table can include effects in subgroups of the population for different comparator risks and effect sizes separately. For instance, in Figure 14.1.b effects are presented for children younger and older than 5 years separately. Review authors may also opt to produce separate ‘Summary of findings’ tables for different populations.

Review authors should include serious adverse events, but it might be possible to combine minor adverse events as a single outcome, and describe this in an explanatory footnote (note that it is not appropriate to add events together unless they are independent, that is, a participant who has experienced one adverse event has an unaffected chance of experiencing the other adverse event).

Outcomes measured at multiple time points represent a particular problem. In general, to keep the table simple, review authors should present multiple time points only for outcomes critical to decision making, where either the result or the decision made are likely to vary over time. The remainder should be presented at a common time point where possible.

Review authors can present continuous outcome measures in the ‘Summary of findings’ table and should endeavour to make these interpretable to the target audience. This requires that the units are clear and readily interpretable, for example, days of pain, or frequency of headache, and the name and scale of any measurement tools used should be stated (e.g. a Visual Analogue Scale, ranging from 0 to 100). However, many measurement instruments are not readily interpretable by non-specialist clinicians or patients, for example, points on a Beck Depression Inventory or quality of life score. For these, a more interpretable presentation might involve converting a continuous to a dichotomous outcome, such as >50% improvement (see Chapter 15, Section 15.5 ).

14.1.6.3 Best estimate of risk with comparator intervention

Review authors should provide up to three typical risks for participants receiving the comparator intervention. For dichotomous outcomes, we recommend that these be presented in the form of the number of people experiencing the event per 100 or 1000 people (natural frequency) depending on the frequency of the outcome. For continuous outcomes, this would be stated as a mean or median value of the outcome measured.

Estimated or assumed comparator intervention risks could be based on assessments of typical risks in different patient groups derived from the review itself, individual representative studies in the review, or risks derived from a systematic review of prognosis studies or other sources of evidence which may in turn require an assessment of the certainty for the prognostic evidence (Spencer et al 2012, Iorio et al 2015). Ideally, risks would reflect groups that clinicians can easily identify on the basis of their presenting features.

An explanatory footnote should specify the source or rationale for each comparator group risk, including the time period to which it corresponds where appropriate. In Figure 14.1.a , clinicians can easily differentiate individuals with risk factors for deep venous thrombosis from those without. If there is known to be little variation in baseline risk then review authors may use the median comparator group risk across studies. If typical risks are not known, an option is to choose the risk from the included studies, providing the second highest for a high and the second lowest for a low risk population.

14.1.6.4 Risk with intervention

For dichotomous outcomes, review authors should provide a corresponding absolute risk for each comparator group risk, along with a confidence interval. This absolute risk with the (experimental) intervention will usually be derived from the meta-analysis result presented in the relative effect column (see Section 14.1.6.6 ). Formulae are provided in Section 14.1.5 . Review authors should present the absolute effect in the same format as the risks with comparator intervention (see Section 14.1.6.3 ), for example as the number of people experiencing the event per 1000 people.

For continuous outcomes, a difference in means or standardized difference in means should be presented with its confidence interval. These will typically be obtained directly from a meta-analysis. Explanatory text should be used to clarify the meaning, as in Figures 14.1.a and 14.1.b .

14.1.6.5 Risk difference

For dichotomous outcomes, the risk difference can be provided using one of the ‘Summary of findings’ table formats as an additional option (see Figure 14.1.b ). This risk difference expresses the difference between the experimental and comparator intervention and will usually be derived from the meta-analysis result presented in the relative effect column (see Section 14.1.6.6 ). Formulae are provided in Section 14.1.5 . Review authors should present the risk difference in the same format as assumed and corresponding risks with comparator intervention (see Section 14.1.6.3 ); for example, as the number of people experiencing the event per 1000 people or as percentage points if the assumed and corresponding risks are expressed in percentage.

For continuous outcomes, if the ‘Summary of findings’ table includes this option, the mean difference can be presented here and the ‘corresponding risk’ column left blank (see Figure 14.1.b ).

14.1.6.6 Relative effect (95% CI)

The relative effect will typically be a risk ratio or odds ratio (or occasionally a hazard ratio) with its accompanying 95% confidence interval, obtained from a meta-analysis performed on the basis of the same effect measure. Risk ratios and odds ratios are similar when the comparator intervention risks are low and effects are small, but may differ considerably when comparator group risks increase. The meta-analysis may involve an assumption of either fixed or random effects, depending on what the review authors consider appropriate, and implying that the relative effect is either an estimate of the effect of the intervention, or an estimate of the average effect of the intervention across studies, respectively.

14.1.6.7 Number of participants (studies)

This column should include the number of participants assessed in the included studies for each outcome and the corresponding number of studies that contributed these participants.

14.1.6.8 Certainty of the evidence (GRADE)

Review authors should comment on the certainty of the evidence (also known as quality of the body of evidence or confidence in the effect estimates). Review authors should use the specific evidence grading system developed by the GRADE Working Group (Atkins et al 2004, Guyatt et al 2008, Guyatt et al 2011a), which is described in detail in Section 14.2 . The GRADE approach categorizes the certainty in a body of evidence as ‘high’, ‘moderate’, ‘low’ or ‘very low’ by outcome. This is a result of judgement, but the judgement process operates within a transparent structure. As an example, the certainty would be ‘high’ if the summary were of several randomized trials with low risk of bias, but the rating of certainty becomes lower if there are concerns about risk of bias, inconsistency, indirectness, imprecision or publication bias. Judgements other than of ‘high’ certainty should be made transparent using explanatory footnotes or the ‘Comments’ column in the ‘Summary of findings’ table (see Section 14.1.6.10 ).

14.1.6.9 Comments

The aim of the ‘Comments’ field is to help interpret the information or data identified in the row. For example, this may be on the validity of the outcome measure or the presence of variables that are associated with the magnitude of effect. Important caveats about the results should be flagged here. Not all rows will need comments, and it is best to leave a blank if there is nothing warranting a comment.

14.1.6.10 Explanations

Detailed explanations should be included as footnotes to support the judgements in the ‘Summary of findings’ table, such as the overall GRADE assessment. The explanations should describe the rationale for important aspects of the content. Table 14.1.a lists guidance for useful explanations. Explanations should be concise, informative, relevant, easy to understand and accurate. If explanations cannot be sufficiently described in footnotes, review authors should provide further details of the issues in the Results and Discussion sections of the review.

Table 14.1.a Guidance for providing useful explanations in ‘Summary of findings’ (SoF) tables. Adapted from Santesso et al (2016)

, Chi , Tau), or the overlap of confidence intervals, or similarity of point estimates. , describe it as considerable, substantial, moderate or not important.

14.2 Assessing the certainty or quality of a body of evidence

14.2.1 the grade approach.

The Grades of Recommendation, Assessment, Development and Evaluation Working Group (GRADE Working Group) has developed a system for grading the certainty of evidence (Schünemann et al 2003, Atkins et al 2004, Schünemann et al 2006, Guyatt et al 2008, Guyatt et al 2011a). Over 100 organizations including the World Health Organization (WHO), the American College of Physicians, the American Society of Hematology (ASH), the Canadian Agency for Drugs and Technology in Health (CADTH) and the National Institutes of Health and Clinical Excellence (NICE) in the UK have adopted the GRADE system ( www.gradeworkinggroup.org ).

Cochrane has also formally adopted this approach, and all Cochrane Reviews should use GRADE to evaluate the certainty of evidence for important outcomes (see MECIR Box 14.2.a ).

MECIR Box 14.2.a Relevant expectations for conduct of intervention reviews

Assessing the certainty of the body of evidence ( )

GRADE is the most widely used approach for summarizing confidence in effects of interventions by outcome across studies. It is preferable to use the online GRADEpro tool, and to use it as described in the help system of the software. This should help to ensure that author teams are accessing the same information to inform their judgements. Ideally, two people working independently should assess the certainty of the body of evidence and reach a consensus view on any downgrading decisions. The five GRADE considerations should be addressed irrespective of whether the review includes a ‘Summary of findings’ table. It is helpful to draw on this information in the Discussion, in the Authors’ conclusions and to convey the certainty in the evidence in the Abstract and Plain language summary.

Justifying assessments of the certainty of the body of evidence ( )

The adoption of a structured approach ensures transparency in formulating an interpretation of the evidence, and the result is more informative to the user.

For systematic reviews, the GRADE approach defines the certainty of a body of evidence as the extent to which one can be confident that an estimate of effect or association is close to the quantity of specific interest. Assessing the certainty of a body of evidence involves consideration of within- and across-study risk of bias (limitations in study design and execution or methodological quality), inconsistency (or heterogeneity), indirectness of evidence, imprecision of the effect estimates and risk of publication bias (see Section 14.2.2 ), as well as domains that may increase our confidence in the effect estimate (as described in Section 14.2.3 ). The GRADE system entails an assessment of the certainty of a body of evidence for each individual outcome. Judgements about the domains that determine the certainty of evidence should be described in the results or discussion section and as part of the ‘Summary of findings’ table.

The GRADE approach specifies four levels of certainty ( Figure 14.2.a ). For interventions, including diagnostic and other tests that are evaluated as interventions (Schünemann et al 2008b, Schünemann et al 2008a, Balshem et al 2011, Schünemann et al 2012), the starting point for rating the certainty of evidence is categorized into two types:

  • randomized trials; and
  • non-randomized studies of interventions (NRSI), including observational studies (including but not limited to cohort studies, and case-control studies, cross-sectional studies, case series and case reports, although not all of these designs are usually included in Cochrane Reviews).

There are many instances in which review authors rely on information from NRSI, in particular to evaluate potential harms (see Chapter 24 ). In addition, review authors can obtain relevant data from both randomized trials and NRSI, with each type of evidence complementing the other (Schünemann et al 2013).

In GRADE, a body of evidence from randomized trials begins with a high-certainty rating while a body of evidence from NRSI begins with a low-certainty rating. The lower rating with NRSI is the result of the potential bias induced by the lack of randomization (i.e. confounding and selection bias).

However, when using the new Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) tool (Sterne et al 2016), an assessment tool that covers the risk of bias due to lack of randomization, all studies may start as high certainty of the evidence (Schünemann et al 2018). The approach of starting all study designs (including NRSI) as high certainty does not conflict with the initial GRADE approach of starting the rating of NRSI as low certainty evidence. This is because a body of evidence from NRSI should generally be downgraded by two levels due to the inherent risk of bias associated with the lack of randomization, namely confounding and selection bias. Not downgrading NRSI from high to low certainty needs transparent and detailed justification for what mitigates concerns about confounding and selection bias (Schünemann et al 2018). Very few examples of where not rating down by two levels is appropriate currently exist.

The highest certainty rating is a body of evidence when there are no concerns in any of the GRADE factors listed in Figure 14.2.a . Review authors often downgrade evidence to moderate, low or even very low certainty evidence, depending on the presence of the five factors in Figure 14.2.a . Usually, certainty rating will fall by one level for each factor, up to a maximum of three levels for all factors. If there are very severe problems for any one domain (e.g. when assessing risk of bias, all studies were unconcealed, unblinded and lost over 50% of their patients to follow-up), evidence may fall by two levels due to that factor alone. It is not possible to rate lower than ‘very low certainty’ evidence.

Review authors will generally grade evidence from sound non-randomized studies as low certainty, even if ROBINS-I is used. If, however, such studies yield large effects and there is no obvious bias explaining those effects, review authors may rate the evidence as moderate or – if the effect is large enough – even as high certainty ( Figure 14.2.a ). The very low certainty level is appropriate for, but is not limited to, studies with critical problems and unsystematic clinical observations (e.g. case series or case reports).

Figure 14.2.a Levels of the certainty of a body of evidence in the GRADE approach. *Upgrading criteria are usually applicable to non-randomized studies only (but exceptions exist).


 


 


 

 

⊕⊕⊕⊕

 

 

⊕⊕⊕◯

⊕⊕◯◯

 

 

⊕◯◯◯

14.2.2 Domains that can lead to decreasing the certainty level of a body of evidence   

We now describe in more detail the five reasons (or domains) for downgrading the certainty of a body of evidence for a specific outcome. In each case, if no reason is found for downgrading the evidence, it should be classified as 'no limitation or not serious' (not important enough to warrant downgrading). If a reason is found for downgrading the evidence, it should be classified as 'serious' (downgrading the certainty rating by one level) or 'very serious' (downgrading the certainty grade by two levels). For non-randomized studies assessed with ROBINS-I, rating down by three levels should be classified as 'extremely' serious.

(1) Risk of bias or limitations in the detailed design and implementation

Our confidence in an estimate of effect decreases if studies suffer from major limitations that are likely to result in a biased assessment of the intervention effect. For randomized trials, these methodological limitations include failure to generate a random sequence, lack of allocation sequence concealment, lack of blinding (particularly with subjective outcomes that are highly susceptible to biased assessment), a large loss to follow-up or selective reporting of outcomes. Chapter 8 provides a discussion of study-level assessments of risk of bias in the context of a Cochrane Review, and proposes an approach to assessing the risk of bias for an outcome across studies as ‘Low’ risk of bias, ‘Some concerns’ and ‘High’ risk of bias for randomized trials. Levels of ‘Low’. ‘Moderate’, ‘Serious’ and ‘Critical’ risk of bias arise for non-randomized studies assessed with ROBINS-I ( Chapter 25 ). These assessments should feed directly into this GRADE domain. In particular, ‘Low’ risk of bias would indicate ‘no limitation’; ‘Some concerns’ would indicate either ‘no limitation’ or ‘serious limitation’; and ‘High’ risk of bias would indicate either ‘serious limitation’ or ‘very serious limitation’. ‘Critical’ risk of bias on ROBINS-I would indicate extremely serious limitations in GRADE. Review authors should use their judgement to decide between alternative categories, depending on the likely magnitude of the potential biases.

Every study addressing a particular outcome will differ, to some degree, in the risk of bias. Review authors should make an overall judgement on whether the certainty of evidence for an outcome warrants downgrading on the basis of study limitations. The assessment of study limitations should apply to the studies contributing to the results in the ‘Summary of findings’ table, rather than to all studies that could potentially be included in the analysis. We have argued in Chapter 7, Section 7.6.2 , that the primary analysis should be restricted to studies at low (or low and unclear) risk of bias where possible.

Table 14.2.a presents the judgements that must be made in going from assessments of the risk of bias to judgements about study limitations for each outcome included in a ‘Summary of findings’ table. A rating of high certainty evidence can be achieved only when most evidence comes from studies that met the criteria for low risk of bias. For example, of the 22 studies addressing the impact of beta-blockers on mortality in patients with heart failure, most probably or certainly used concealed allocation of the sequence, all blinded at least some key groups and follow-up of randomized patients was almost complete (Brophy et al 2001). The certainty of evidence might be downgraded by one level when most of the evidence comes from individual studies either with a crucial limitation for one item, or with some limitations for multiple items. An example of very serious limitations, warranting downgrading by two levels, is provided by evidence on surgery versus conservative treatment in the management of patients with lumbar disc prolapse (Gibson and Waddell 2007). We are uncertain of the benefit of surgery in reducing symptoms after one year or longer, because the one study included in the analysis had inadequate concealment of the allocation sequence and the outcome was assessed using a crude rating by the surgeon without blinding.

(2) Unexplained heterogeneity or inconsistency of results

When studies yield widely differing estimates of effect (heterogeneity or variability in results), investigators should look for robust explanations for that heterogeneity. For instance, drugs may have larger relative effects in sicker populations or when given in larger doses. A detailed discussion of heterogeneity and its investigation is provided in Chapter 10, Section 10.10 and Section 10.11 . If an important modifier exists, with good evidence that important outcomes are different in different subgroups (which would ideally be pre-specified), then a separate ‘Summary of findings’ table may be considered for a separate population. For instance, a separate ‘Summary of findings’ table would be used for carotid endarterectomy in symptomatic patients with high grade stenosis (70% to 99%) in which the intervention is, in the hands of the right surgeons, beneficial, and another (if review authors considered it relevant) for asymptomatic patients with low grade stenosis (less than 30%) in which surgery appears harmful (Orrapin and Rerkasem 2017). When heterogeneity exists and affects the interpretation of results, but review authors are unable to identify a plausible explanation with the data available, the certainty of the evidence decreases.

(3) Indirectness of evidence

Two types of indirectness are relevant. First, a review comparing the effectiveness of alternative interventions (say A and B) may find that randomized trials are available, but they have compared A with placebo and B with placebo. Thus, the evidence is restricted to indirect comparisons between A and B. Where indirect comparisons are undertaken within a network meta-analysis context, GRADE for network meta-analysis should be used (see Chapter 11, Section 11.5 ).

Second, a review may find randomized trials that meet eligibility criteria but address a restricted version of the main review question in terms of population, intervention, comparator or outcomes. For example, suppose that in a review addressing an intervention for secondary prevention of coronary heart disease, most identified studies happened to be in people who also had diabetes. Then the evidence may be regarded as indirect in relation to the broader question of interest because the population is primarily related to people with diabetes. The opposite scenario can equally apply: a review addressing the effect of a preventive strategy for coronary heart disease in people with diabetes may consider studies in people without diabetes to provide relevant, albeit indirect, evidence. This would be particularly likely if investigators had conducted few if any randomized trials in the target population (e.g. people with diabetes). Other sources of indirectness may arise from interventions studied (e.g. if in all included studies a technical intervention was implemented by expert, highly trained specialists in specialist centres, then evidence on the effects of the intervention outside these centres may be indirect), comparators used (e.g. if the comparator groups received an intervention that is less effective than standard treatment in most settings) and outcomes assessed (e.g. indirectness due to surrogate outcomes when data on patient-important outcomes are not available, or when investigators seek data on quality of life but only symptoms are reported). Review authors should make judgements transparent when they believe downgrading is justified, based on differences in anticipated effects in the group of primary interest. Review authors may be aided and increase transparency of their judgements about indirectness if they use Table 14.2.b available in the GRADEpro GDT software (Schünemann et al 2013).

(4) Imprecision of results

When studies include few participants or few events, and thus have wide confidence intervals, review authors can lower their rating of the certainty of the evidence. The confidence intervals included in the ‘Summary of findings’ table will provide readers with information that allows them to make, to some extent, their own rating of precision. Review authors can use a calculation of the optimal information size (OIS) or review information size (RIS), similar to sample size calculations, to make judgements about imprecision (Guyatt et al 2011b, Schünemann 2016). The OIS or RIS is calculated on the basis of the number of participants required for an adequately powered individual study. If the 95% confidence interval excludes a risk ratio (RR) of 1.0, and the total number of events or patients exceeds the OIS criterion, precision is adequate. If the 95% CI includes appreciable benefit or harm (an RR of under 0.75 or over 1.25 is often suggested as a very rough guide) downgrading for imprecision may be appropriate even if OIS criteria are met (Guyatt et al 2011b, Schünemann 2016).

(5) High probability of publication bias

The certainty of evidence level may be downgraded if investigators fail to report studies on the basis of results (typically those that show no effect: publication bias) or outcomes (typically those that may be harmful or for which no effect was observed: selective outcome non-reporting bias). Selective reporting of outcomes from among multiple outcomes measured is assessed at the study level as part of the assessment of risk of bias (see Chapter 8, Section 8.7 ), so for the studies contributing to the outcome in the ‘Summary of findings’ table this is addressed by domain 1 above (limitations in the design and implementation). If a large number of studies included in the review do not contribute to an outcome, or if there is evidence of publication bias, the certainty of the evidence may be downgraded. Chapter 13 provides a detailed discussion of reporting biases, including publication bias, and how it may be tackled in a Cochrane Review. A prototypical situation that may elicit suspicion of publication bias is when published evidence includes a number of small studies, all of which are industry-funded (Bhandari et al 2004). For example, 14 studies of flavanoids in patients with haemorrhoids have shown apparent large benefits, but enrolled a total of only 1432 patients (i.e. each study enrolled relatively few patients) (Alonso-Coello et al 2006). The heavy involvement of sponsors in most of these studies raises questions of whether unpublished studies that suggest no benefit exist (publication bias).

A particular body of evidence can suffer from problems associated with more than one of the five factors listed here, and the greater the problems, the lower the certainty of evidence rating that should result. One could imagine a situation in which randomized trials were available, but all or virtually all of these limitations would be present, and in serious form. A very low certainty of evidence rating would result.

Table 14.2.a Further guidelines for domain 1 (of 5) in a GRADE assessment: going from assessments of risk of bias in studies to judgements about study limitations for main outcomes across studies

Low risk of bias

Most information is from results at low risk of bias.

Plausible bias unlikely to seriously alter the results.

No apparent limitations.

No serious limitations, do not downgrade.

Some concerns

Most information is from results at low risk of bias or with some concerns.

Plausible bias that raises some doubt about the results.

Potential limitations are unlikely to lower confidence in the estimate of effect.

No serious limitations, do not downgrade.

Potential limitations are likely to lower confidence in the estimate of effect.

Serious limitations, downgrade one level.

High risk of bias

The proportion of information from results at high risk of bias is sufficient to affect the interpretation of results.

Plausible bias that seriously weakens confidence in the results.

Crucial limitation for one criterion, or some limitations for multiple criteria, sufficient to lower confidence in the estimate of effect.

Serious limitations, downgrade one level.

Crucial limitation for one or more criteria sufficient to substantially lower confidence in the estimate of effect.

Very serious limitations, downgrade two levels.

Table 14.2.b Judgements about indirectness by outcome (available in GRADEpro GDT)

 

Probably yes

Probably no

No

 

 

 

 

Intervention:

Yes

Probably yes

Probably no

No

 

 

 

 

Comparator:

Direct comparison:

Final judgement about indirectness across domains:

 

14.2.3 Domains that may lead to increasing the certainty level of a body of evidence

Although NRSI and downgraded randomized trials will generally yield a low rating for certainty of evidence, there will be unusual circumstances in which review authors could ‘upgrade’ such evidence to moderate or even high certainty ( Table 14.3.a ).

  • Large effects On rare occasions when methodologically well-done observational studies yield large, consistent and precise estimates of the magnitude of an intervention effect, one may be particularly confident in the results. A large estimated effect (e.g. RR >2 or RR <0.5) in the absence of plausible confounders, or a very large effect (e.g. RR >5 or RR <0.2) in studies with no major threats to validity, might qualify for this. In these situations, while the NRSI may possibly have provided an over-estimate of the true effect, the weak study design may not explain all of the apparent observed benefit. Thus, despite reservations based on the observational study design, review authors are confident that the effect exists. The magnitude of the effect in these studies may move the assigned certainty of evidence from low to moderate (if the effect is large in the absence of other methodological limitations). For example, a meta-analysis of observational studies showed that bicycle helmets reduce the risk of head injuries in cyclists by a large margin (odds ratio (OR) 0.31, 95% CI 0.26 to 0.37) (Thompson et al 2000). This large effect, in the absence of obvious bias that could create the association, suggests a rating of moderate-certainty evidence.  Note : GRADE guidance suggests the possibility of rating up one level for a large effect if the relative effect is greater than 2.0. However, if the point estimate of the relative effect is greater than 2.0, but the confidence interval is appreciably below 2.0, then some hesitation would be appropriate in the decision to rate up for a large effect. Another situation allows inference of a strong association without a formal comparative study. Consider the question of the impact of routine colonoscopy versus no screening for colon cancer on the rate of perforation associated with colonoscopy. Here, a large series of representative patients undergoing colonoscopy may provide high certainty evidence about the risk of perforation associated with colonoscopy. When the risk of the event among patients receiving the relevant comparator is known to be near 0 (i.e. we are certain that the incidence of spontaneous colon perforation in patients not undergoing colonoscopy is extremely low), case series or cohort studies of representative patients can provide high certainty evidence of adverse effects associated with an intervention, thereby allowing us to infer a strong association from even a limited number of events.
  • Dose-response The presence of a dose-response gradient may increase our confidence in the findings of observational studies and thereby enhance the assigned certainty of evidence. For example, our confidence in the result of observational studies that show an increased risk of bleeding in patients who have supratherapeutic anticoagulation levels is increased by the observation that there is a dose-response gradient between the length of time needed for blood to clot (as measured by the international normalized ratio (INR)) and an increased risk of bleeding (Levine et al 2004). A systematic review of NRSI investigating the effect of cyclooxygenase-2 inhibitors on cardiovascular events found that the summary estimate (RR) with rofecoxib was 1.33 (95% CI 1.00 to 1.79) with doses less than 25mg/d, and 2.19 (95% CI 1.64 to 2.91) with doses more than 25mg/d. Although residual confounding is likely to exist in the NRSI that address this issue, the existence of a dose-response gradient and the large apparent effect of higher doses of rofecoxib markedly increase our strength of inference that the association cannot be explained by residual confounding, and is therefore likely to be both causal and, at high levels of exposure, substantial.  Note : GRADE guidance suggests the possibility of rating up one level for a large effect if the relative effect is greater than 2.0. Here, the fact that the point estimate of the relative effect is greater than 2.0, but the confidence interval is appreciably below 2.0 might make some hesitate in the decision to rate up for a large effect
  • Plausible confounding On occasion, all plausible biases from randomized or non-randomized studies may be working to under-estimate an apparent intervention effect. For example, if only sicker patients receive an experimental intervention or exposure, yet they still fare better, it is likely that the actual intervention or exposure effect is larger than the data suggest. For instance, a rigorous systematic review of observational studies including a total of 38 million patients demonstrated higher death rates in private for-profit versus private not-for-profit hospitals (Devereaux et al 2002). One possible bias relates to different disease severity in patients in the two hospital types. It is likely, however, that patients in the not-for-profit hospitals were sicker than those in the for-profit hospitals. Thus, to the extent that residual confounding existed, it would bias results against the not-for-profit hospitals. The second likely bias was the possibility that higher numbers of patients with excellent private insurance coverage could lead to a hospital having more resources and a spill-over effect that would benefit those without such coverage. Since for-profit hospitals are likely to admit a larger proportion of such well-insured patients than not-for-profit hospitals, the bias is once again against the not-for-profit hospitals. Since the plausible biases would all diminish the demonstrated intervention effect, one might consider the evidence from these observational studies as moderate rather than low certainty. A parallel situation exists when observational studies have failed to demonstrate an association, but all plausible biases would have increased an intervention effect. This situation will usually arise in the exploration of apparent harmful effects. For example, because the hypoglycaemic drug phenformin causes lactic acidosis, the related agent metformin was under suspicion for the same toxicity. Nevertheless, very large observational studies have failed to demonstrate an association (Salpeter et al 2007). Given the likelihood that clinicians would be more alert to lactic acidosis in the presence of the agent and over-report its occurrence, one might consider this moderate, or even high certainty, evidence refuting a causal relationship between typical therapeutic doses of metformin and lactic acidosis.

14.3 Describing the assessment of the certainty of a body of evidence using the GRADE framework

Review authors should report the grading of the certainty of evidence in the Results section for each outcome for which this has been performed, providing the rationale for downgrading or upgrading the evidence, and referring to the ‘Summary of findings’ table where applicable.

Table 14.3.a provides a framework and examples for how review authors can justify their judgements about the certainty of evidence in each domain. These justifications should also be included in explanatory notes to the ‘Summary of Findings’ table (see Section 14.1.6.10 ).

Chapter 15, Section 15.6 , describes in more detail how the overall GRADE assessment across all domains can be used to draw conclusions about the effects of the intervention, as well as providing implications for future research.

Table 14.3.a Framework for describing the certainty of evidence and justifying downgrading or upgrading

Describe the risk of bias based on the criteria used in the risk-of-bias table.

Downgraded because of 10 randomized trials, five did not blind patients and caretakers.

Describe the degree of inconsistency by outcome using one or more indicators (e.g. I and P value), confidence interval overlap, difference in point estimate, between-study variance.

Not downgraded because the proportion of the variability in effect estimates that is due to true heterogeneity rather than chance is not important (I = 0%).

Describe if the majority of studies address the PICO – were they similar to the question posed?

Downgraded because the included studies were restricted to patients with advanced cancer.

Describe the number of events, and width of the confidence intervals.

The confidence intervals for the effect on mortality are consistent with both an appreciable benefit and appreciable harm and we lowered the certainty.

Describe the possible degree of publication bias.

1. The funnel plot of 14 randomized trials indicated that there were several small studies that showed a small positive effect, but small studies that showed no effect or harm may have been unpublished. The certainty of the evidence was lowered.

2. There are only three small positive studies, it appears that studies showing no effect or harm have not been published. There also is for-profit interest in the intervention. The certainty of the evidence was lowered.

Describe the magnitude of the effect and the widths of the associate confidence intervals.

Upgraded because the RR is large: 0.3 (95% CI 0.2 to 0.4), with a sufficient number of events to be precise.

 

The studies show a clear relation with increases in the outcome of an outcome (e.g. lung cancer) with higher exposure levels.

Upgraded because the dose-response relation shows a relative risk increase of 10% in never smokers, 15% in smokers of 10 pack years and 20% in smokers of 15 pack years.

Describe which opposing plausible biases and confounders may have not been considered.

The estimate of effect is not controlled for the following possible confounders: smoking, degree of education, but the distribution of these factors in the studies is likely to lead to an under-estimate of the true effect. The certainty of the evidence was increased.

14.4 Chapter information

Authors: Holger J Schünemann, Julian PT Higgins, Gunn E Vist, Paul Glasziou, Elie A Akl, Nicole Skoetz, Gordon H Guyatt; on behalf of the Cochrane GRADEing Methods Group (formerly Applicability and Recommendations Methods Group) and the Cochrane Statistical Methods Group

Acknowledgements: Andrew D Oxman contributed to earlier versions. Professor Penny Hawe contributed to the text on adverse effects in earlier versions. Jon Deeks provided helpful contributions on an earlier version of this chapter. For details of previous authors and editors of the Handbook , please refer to the Preface.

Funding: This work was in part supported by funding from the Michael G DeGroote Cochrane Canada Centre and the Ontario Ministry of Health.

14.5 References

Alonso-Coello P, Zhou Q, Martinez-Zapata MJ, Mills E, Heels-Ansdell D, Johanson JF, Guyatt G. Meta-analysis of flavonoids for the treatment of haemorrhoids. British Journal of Surgery 2006; 93 : 909-920.

Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O'Connell D, Oxman AD, Phillips B, Schünemann HJ, Edejer TT, Varonen H, Vist GE, Williams JW, Jr., Zaza S. Grading quality of evidence and strength of recommendations. BMJ 2004; 328 : 1490.

Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH. GRADE guidelines: 3. Rating the quality of evidence. Journal of Clinical Epidemiology 2011; 64 : 401-406.

Bhandari M, Busse JW, Jackowski D, Montori VM, Schünemann H, Sprague S, Mears D, Schemitsch EH, Heels-Ansdell D, Devereaux PJ. Association between industry funding and statistically significant pro-industry findings in medical and surgical randomized trials. Canadian Medical Association Journal 2004; 170 : 477-480.

Brophy JM, Joseph L, Rouleau JL. Beta-blockers in congestive heart failure. A Bayesian meta-analysis. Annals of Internal Medicine 2001; 134 : 550-560.

Carrasco-Labra A, Brignardello-Petersen R, Santesso N, Neumann I, Mustafa RA, Mbuagbaw L, Etxeandia Ikobaltzeta I, De Stio C, McCullagh LJ, Alonso-Coello P, Meerpohl JJ, Vandvik PO, Brozek JL, Akl EA, Bossuyt P, Churchill R, Glenton C, Rosenbaum S, Tugwell P, Welch V, Garner P, Guyatt G, Schünemann HJ. Improving GRADE evidence tables part 1: a randomized trial shows improved understanding of content in summary of findings tables with a new format. Journal of Clinical Epidemiology 2016; 74 : 7-18.

Deeks JJ, Altman DG. Effect measures for meta-analysis of trials with binary outcomes. In: Egger M, Davey Smith G, Altman DG, editors. Systematic Reviews in Health Care: Meta-analysis in Context . 2nd ed. London (UK): BMJ Publication Group; 2001. p. 313-335.

Devereaux PJ, Choi PT, Lacchetti C, Weaver B, Schünemann HJ, Haines T, Lavis JN, Grant BJ, Haslam DR, Bhandari M, Sullivan T, Cook DJ, Walter SD, Meade M, Khan H, Bhatnagar N, Guyatt GH. A systematic review and meta-analysis of studies comparing mortality rates of private for-profit and private not-for-profit hospitals. Canadian Medical Association Journal 2002; 166 : 1399-1406.

Engels EA, Schmid CH, Terrin N, Olkin I, Lau J. Heterogeneity and statistical significance in meta-analysis: an empirical study of 125 meta-analyses. Statistics in Medicine 2000; 19 : 1707-1728.

Furukawa TA, Guyatt GH, Griffith LE. Can we individualize the 'number needed to treat'? An empirical study of summary effect measures in meta-analyses. International Journal of Epidemiology 2002; 31 : 72-76.

Gibson JN, Waddell G. Surgical interventions for lumbar disc prolapse: updated Cochrane Review. Spine 2007; 32 : 1735-1747.

Guyatt G, Oxman A, Vist G, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann H. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336 : 3.

Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schünemann HJ. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 2011a; 64 : 383-394.

Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, Jaeschke R, Williams JW, Jr., Murad MH, Sinclair D, Falck-Ytter Y, Meerpohl J, Whittington C, Thorlund K, Andrews J, Schünemann HJ. GRADE guidelines 6. Rating the quality of evidence--imprecision. Journal of Clinical Epidemiology 2011b; 64 : 1283-1293.

Iorio A, Spencer FA, Falavigna M, Alba C, Lang E, Burnand B, McGinn T, Hayden J, Williams K, Shea B, Wolff R, Kujpers T, Perel P, Vandvik PO, Glasziou P, Schünemann H, Guyatt G. Use of GRADE for assessment of evidence about prognosis: rating confidence in estimates of event rates in broad categories of patients. BMJ 2015; 350 : h870.

Langendam M, Carrasco-Labra A, Santesso N, Mustafa RA, Brignardello-Petersen R, Ventresca M, Heus P, Lasserson T, Moustgaard R, Brozek J, Schünemann HJ. Improving GRADE evidence tables part 2: a systematic survey of explanatory notes shows more guidance is needed. Journal of Clinical Epidemiology 2016; 74 : 19-27.

Levine MN, Raskob G, Landefeld S, Kearon C, Schulman S. Hemorrhagic complications of anticoagulant treatment: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 2004; 126 : 287S-310S.

Orrapin S, Rerkasem K. Carotid endarterectomy for symptomatic carotid stenosis. Cochrane Database of Systematic Reviews 2017; 6 : CD001081.

Salpeter S, Greyber E, Pasternak G, Salpeter E. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database of Systematic Reviews 2007; 4 : CD002967.

Santesso N, Carrasco-Labra A, Langendam M, Brignardello-Petersen R, Mustafa RA, Heus P, Lasserson T, Opiyo N, Kunnamo I, Sinclair D, Garner P, Treweek S, Tovey D, Akl EA, Tugwell P, Brozek JL, Guyatt G, Schünemann HJ. Improving GRADE evidence tables part 3: detailed guidance for explanatory footnotes supports creating and understanding GRADE certainty in the evidence judgments. Journal of Clinical Epidemiology 2016; 74 : 28-39.

Schünemann HJ, Best D, Vist G, Oxman AD, Group GW. Letters, numbers, symbols and words: how to communicate grades of evidence and recommendations. Canadian Medical Association Journal 2003; 169 : 677-680.

Schünemann HJ, Jaeschke R, Cook DJ, Bria WF, El-Solh AA, Ernst A, Fahy BF, Gould MK, Horan KL, Krishnan JA, Manthous CA, Maurer JR, McNicholas WT, Oxman AD, Rubenfeld G, Turino GM, Guyatt G. An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. American Journal of Respiratory and Critical Care Medicine 2006; 174 : 605-614.

Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE, Williams JW, Jr., Kunz R, Craig J, Montori VM, Bossuyt P, Guyatt GH. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 2008a; 336 : 1106-1110.

Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Bossuyt P, Chang S, Muti P, Jaeschke R, Guyatt GH. GRADE: assessing the quality of evidence for diagnostic recommendations. ACP Journal Club 2008b; 149 : 2.

Schünemann HJ, Mustafa R, Brozek J. [Diagnostic accuracy and linked evidence--testing the chain]. Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen 2012; 106 : 153-160.

Schünemann HJ, Tugwell P, Reeves BC, Akl EA, Santesso N, Spencer FA, Shea B, Wells G, Helfand M. Non-randomized studies as a source of complementary, sequential or replacement evidence for randomized controlled trials in systematic reviews on the effects of interventions. Research Synthesis Methods 2013; 4 : 49-62.

Schünemann HJ. Interpreting GRADE's levels of certainty or quality of the evidence: GRADE for statisticians, considering review information size or less emphasis on imprecision? Journal of Clinical Epidemiology 2016; 75 : 6-15.

Schünemann HJ, Cuello C, Akl EA, Mustafa RA, Meerpohl JJ, Thayer K, Morgan RL, Gartlehner G, Kunz R, Katikireddi SV, Sterne J, Higgins JPT, Guyatt G, Group GW. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. Journal of Clinical Epidemiology 2018.

Spencer-Bonilla G, Quinones AR, Montori VM, International Minimally Disruptive Medicine W. Assessing the Burden of Treatment. Journal of General Internal Medicine 2017; 32 : 1141-1145.

Spencer FA, Iorio A, You J, Murad MH, Schünemann HJ, Vandvik PO, Crowther MA, Pottie K, Lang ES, Meerpohl JJ, Falck-Ytter Y, Alonso-Coello P, Guyatt GH. Uncertainties in baseline risk estimates and confidence in treatment effects. BMJ 2012; 345 : e7401.

Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hróbjartsson A, Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JPT. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016; 355 : i4919.

Thompson DC, Rivara FP, Thompson R. Helmets for preventing head and facial injuries in bicyclists. Cochrane Database of Systematic Reviews 2000; 2 : CD001855.

Tierney JF, Stewart LA, Ghersi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007; 8 .

van Dalen EC, Tierney JF, Kremer LCM. Tips and tricks for understanding and using SR results. No. 7: time‐to‐event data. Evidence-Based Child Health 2007; 2 : 1089-1090.

For permission to re-use material from the Handbook (either academic or commercial), please see here for full details.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

How To Write A Research Summary

Deeptanshu D

It’s a common perception that writing a research summary is a quick and easy task. After all, how hard can jotting down 300 words be? But when you consider the weight those 300 words carry, writing a research summary as a part of your dissertation, essay or compelling draft for your paper instantly becomes daunting task.

A research summary requires you to synthesize a complex research paper into an informative, self-explanatory snapshot. It needs to portray what your article contains. Thus, writing it often comes at the end of the task list.

Regardless of when you’re planning to write, it is no less of a challenge, particularly if you’re doing it for the first time. This blog will take you through everything you need to know about research summary so that you have an easier time with it.

How to write a research summary

What is a Research Summary?

A research summary is the part of your research paper that describes its findings to the audience in a brief yet concise manner. A well-curated research summary represents you and your knowledge about the information written in the research paper.

While writing a quality research summary, you need to discover and identify the significant points in the research and condense it in a more straightforward form. A research summary is like a doorway that provides access to the structure of a research paper's sections.

Since the purpose of a summary is to give an overview of the topic, methodology, and conclusions employed in a paper, it requires an objective approach. No analysis or criticism.

Research summary or Abstract. What’s the Difference?

They’re both brief, concise, and give an overview of an aspect of the research paper. So, it’s easy to understand why many new researchers get the two confused. However, a research summary and abstract are two very different things with individual purpose. To start with, a research summary is written at the end while the abstract comes at the beginning of a research paper.

A research summary captures the essence of the paper at the end of your document. It focuses on your topic, methods, and findings. More like a TL;DR, if you will. An abstract, on the other hand, is a description of what your research paper is about. It tells your reader what your topic or hypothesis is, and sets a context around why you have embarked on your research.

Getting Started with a Research Summary

Before you start writing, you need to get insights into your research’s content, style, and organization. There are three fundamental areas of a research summary that you should focus on.

  • While deciding the contents of your research summary, you must include a section on its importance as a whole, the techniques, and the tools that were used to formulate the conclusion. Additionally, there needs to be a short but thorough explanation of how the findings of the research paper have a significance.
  • To keep the summary well-organized, try to cover the various sections of the research paper in separate paragraphs. Besides, how the idea of particular factual research came up first must be explained in a separate paragraph.
  • As a general practice worldwide, research summaries are restricted to 300-400 words. However, if you have chosen a lengthy research paper, try not to exceed the word limit of 10% of the entire research paper.

How to Structure Your Research Summary

The research summary is nothing but a concise form of the entire research paper. Therefore, the structure of a summary stays the same as the paper. So, include all the section titles and write a little about them. The structural elements that a research summary must consist of are:

It represents the topic of the research. Try to phrase it so that it includes the key findings or conclusion of the task.

The abstract gives a context of the research paper. Unlike the abstract at the beginning of a paper, the abstract here, should be very short since you’ll be working with a limited word count.

Introduction

This is the most crucial section of a research summary as it helps readers get familiarized with the topic. You should include the definition of your topic, the current state of the investigation, and practical relevance in this part. Additionally, you should present the problem statement, investigative measures, and any hypothesis in this section.

Methodology

This section provides details about the methodology and the methods adopted to conduct the study. You should write a brief description of the surveys, sampling, type of experiments, statistical analysis, and the rationality behind choosing those particular methods.

Create a list of evidence obtained from the various experiments with a primary analysis, conclusions, and interpretations made upon that. In the paper research paper, you will find the results section as the most detailed and lengthy part. Therefore, you must pick up the key elements and wisely decide which elements are worth including and which are worth skipping.

This is where you present the interpretation of results in the context of their application. Discussion usually covers results, inferences, and theoretical models explaining the obtained values, key strengths, and limitations. All of these are vital elements that you must include in the summary.

Most research papers merge conclusion with discussions. However, depending upon the instructions, you may have to prepare this as a separate section in your research summary. Usually, conclusion revisits the hypothesis and provides the details about the validation or denial about the arguments made in the research paper, based upon how convincing the results were obtained.

The structure of a research summary closely resembles the anatomy of a scholarly article . Additionally, you should keep your research and references limited to authentic and  scholarly sources only.

Tips for Writing a Research Summary

The core concept behind undertaking a research summary is to present a simple and clear understanding of your research paper to the reader. The biggest hurdle while doing that is the number of words you have at your disposal. So, follow the steps below to write a research summary that sticks.

1. Read the parent paper thoroughly

You should go through the research paper thoroughly multiple times to ensure that you have a complete understanding of its contents. A 3-stage reading process helps.

a. Scan: In the first read, go through it to get an understanding of its basic concept and methodologies.

b. Read: For the second step, read the article attentively by going through each section, highlighting the key elements, and subsequently listing the topics that you will include in your research summary.

c. Skim: Flip through the article a few more times to study the interpretation of various experimental results, statistical analysis, and application in different contexts.

Sincerely go through different headings and subheadings as it will allow you to understand the underlying concept of each section. You can try reading the introduction and conclusion simultaneously to understand the motive of the task and how obtained results stay fit to the expected outcome.

2. Identify the key elements in different sections

While exploring different sections of an article, you can try finding answers to simple what, why, and how. Below are a few pointers to give you an idea:

  • What is the research question and how is it addressed?
  • Is there a hypothesis in the introductory part?
  • What type of methods are being adopted?
  • What is the sample size for data collection and how is it being analyzed?
  • What are the most vital findings?
  • Do the results support the hypothesis?

Discussion/Conclusion

  • What is the final solution to the problem statement?
  • What is the explanation for the obtained results?
  • What is the drawn inference?
  • What are the various limitations of the study?

3. Prepare the first draft

Now that you’ve listed the key points that the paper tries to demonstrate, you can start writing the summary following the standard structure of a research summary. Just make sure you’re not writing statements from the parent research paper verbatim.

Instead, try writing down each section in your own words. This will not only help in avoiding plagiarism but will also show your complete understanding of the subject. Alternatively, you can use a summarizing tool (AI-based summary generators) to shorten the content or summarize the content without disrupting the actual meaning of the article.

SciSpace Copilot is one such helpful feature! You can easily upload your research paper and ask Copilot to summarize it. You will get an AI-generated, condensed research summary. SciSpace Copilot also enables you to highlight text, clip math and tables, and ask any question relevant to the research paper; it will give you instant answers with deeper context of the article..

4. Include visuals

One of the best ways to summarize and consolidate a research paper is to provide visuals like graphs, charts, pie diagrams, etc.. Visuals make getting across the facts, the past trends, and the probabilistic figures around a concept much more engaging.

5. Double check for plagiarism

It can be very tempting to copy-paste a few statements or the entire paragraphs depending upon the clarity of those sections. But it’s best to stay away from the practice. Even paraphrasing should be done with utmost care and attention.

Also: QuillBot vs SciSpace: Choose the best AI-paraphrasing tool

6. Religiously follow the word count limit

You need to have strict control while writing different sections of a research summary. In many cases, it has been observed that the research summary and the parent research paper become the same length. If that happens, it can lead to discrediting of your efforts and research summary itself. Whatever the standard word limit has been imposed, you must observe that carefully.

7. Proofread your research summary multiple times

The process of writing the research summary can be exhausting and tiring. However, you shouldn’t allow this to become a reason to skip checking your academic writing several times for mistakes like misspellings, grammar, wordiness, and formatting issues. Proofread and edit until you think your research summary can stand out from the others, provided it is drafted perfectly on both technicality and comprehension parameters. You can also seek assistance from editing and proofreading services , and other free tools that help you keep these annoying grammatical errors at bay.

8. Watch while you write

Keep a keen observation of your writing style. You should use the words very precisely, and in any situation, it should not represent your personal opinions on the topic. You should write the entire research summary in utmost impersonal, precise, factually correct, and evidence-based writing.

9. Ask a friend/colleague to help

Once you are done with the final copy of your research summary, you must ask a friend or colleague to read it. You must test whether your friend or colleague could grasp everything without referring to the parent paper. This will help you in ensuring the clarity of the article.

Once you become familiar with the research paper summary concept and understand how to apply the tips discussed above in your current task, summarizing a research summary won’t be that challenging. While traversing the different stages of your academic career, you will face different scenarios where you may have to create several research summaries.

In such cases, you just need to look for answers to simple questions like “Why this study is necessary,” “what were the methods,” “who were the participants,” “what conclusions were drawn from the research,” and “how it is relevant to the wider world.” Once you find out the answers to these questions, you can easily create a good research summary following the standard structure and a precise writing style.

research summary of findings example

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

  • Privacy Policy

Research Method

Home » Research Findings – Types Examples and Writing Guide

Research Findings – Types Examples and Writing Guide

Table of Contents

Research Findings

Research Findings

Definition:

Research findings refer to the results obtained from a study or investigation conducted through a systematic and scientific approach. These findings are the outcomes of the data analysis, interpretation, and evaluation carried out during the research process.

Types of Research Findings

There are two main types of research findings:

Qualitative Findings

Qualitative research is an exploratory research method used to understand the complexities of human behavior and experiences. Qualitative findings are non-numerical and descriptive data that describe the meaning and interpretation of the data collected. Examples of qualitative findings include quotes from participants, themes that emerge from the data, and descriptions of experiences and phenomena.

Quantitative Findings

Quantitative research is a research method that uses numerical data and statistical analysis to measure and quantify a phenomenon or behavior. Quantitative findings include numerical data such as mean, median, and mode, as well as statistical analyses such as t-tests, ANOVA, and regression analysis. These findings are often presented in tables, graphs, or charts.

Both qualitative and quantitative findings are important in research and can provide different insights into a research question or problem. Combining both types of findings can provide a more comprehensive understanding of a phenomenon and improve the validity and reliability of research results.

Parts of Research Findings

Research findings typically consist of several parts, including:

  • Introduction: This section provides an overview of the research topic and the purpose of the study.
  • Literature Review: This section summarizes previous research studies and findings that are relevant to the current study.
  • Methodology : This section describes the research design, methods, and procedures used in the study, including details on the sample, data collection, and data analysis.
  • Results : This section presents the findings of the study, including statistical analyses and data visualizations.
  • Discussion : This section interprets the results and explains what they mean in relation to the research question(s) and hypotheses. It may also compare and contrast the current findings with previous research studies and explore any implications or limitations of the study.
  • Conclusion : This section provides a summary of the key findings and the main conclusions of the study.
  • Recommendations: This section suggests areas for further research and potential applications or implications of the study’s findings.

How to Write Research Findings

Writing research findings requires careful planning and attention to detail. Here are some general steps to follow when writing research findings:

  • Organize your findings: Before you begin writing, it’s essential to organize your findings logically. Consider creating an outline or a flowchart that outlines the main points you want to make and how they relate to one another.
  • Use clear and concise language : When presenting your findings, be sure to use clear and concise language that is easy to understand. Avoid using jargon or technical terms unless they are necessary to convey your meaning.
  • Use visual aids : Visual aids such as tables, charts, and graphs can be helpful in presenting your findings. Be sure to label and title your visual aids clearly, and make sure they are easy to read.
  • Use headings and subheadings: Using headings and subheadings can help organize your findings and make them easier to read. Make sure your headings and subheadings are clear and descriptive.
  • Interpret your findings : When presenting your findings, it’s important to provide some interpretation of what the results mean. This can include discussing how your findings relate to the existing literature, identifying any limitations of your study, and suggesting areas for future research.
  • Be precise and accurate : When presenting your findings, be sure to use precise and accurate language. Avoid making generalizations or overstatements and be careful not to misrepresent your data.
  • Edit and revise: Once you have written your research findings, be sure to edit and revise them carefully. Check for grammar and spelling errors, make sure your formatting is consistent, and ensure that your writing is clear and concise.

Research Findings Example

Following is a Research Findings Example sample for students:

Title: The Effects of Exercise on Mental Health

Sample : 500 participants, both men and women, between the ages of 18-45.

Methodology : Participants were divided into two groups. The first group engaged in 30 minutes of moderate intensity exercise five times a week for eight weeks. The second group did not exercise during the study period. Participants in both groups completed a questionnaire that assessed their mental health before and after the study period.

Findings : The group that engaged in regular exercise reported a significant improvement in mental health compared to the control group. Specifically, they reported lower levels of anxiety and depression, improved mood, and increased self-esteem.

Conclusion : Regular exercise can have a positive impact on mental health and may be an effective intervention for individuals experiencing symptoms of anxiety or depression.

Applications of Research Findings

Research findings can be applied in various fields to improve processes, products, services, and outcomes. Here are some examples:

  • Healthcare : Research findings in medicine and healthcare can be applied to improve patient outcomes, reduce morbidity and mortality rates, and develop new treatments for various diseases.
  • Education : Research findings in education can be used to develop effective teaching methods, improve learning outcomes, and design new educational programs.
  • Technology : Research findings in technology can be applied to develop new products, improve existing products, and enhance user experiences.
  • Business : Research findings in business can be applied to develop new strategies, improve operations, and increase profitability.
  • Public Policy: Research findings can be used to inform public policy decisions on issues such as environmental protection, social welfare, and economic development.
  • Social Sciences: Research findings in social sciences can be used to improve understanding of human behavior and social phenomena, inform public policy decisions, and develop interventions to address social issues.
  • Agriculture: Research findings in agriculture can be applied to improve crop yields, develop new farming techniques, and enhance food security.
  • Sports : Research findings in sports can be applied to improve athlete performance, reduce injuries, and develop new training programs.

When to use Research Findings

Research findings can be used in a variety of situations, depending on the context and the purpose. Here are some examples of when research findings may be useful:

  • Decision-making : Research findings can be used to inform decisions in various fields, such as business, education, healthcare, and public policy. For example, a business may use market research findings to make decisions about new product development or marketing strategies.
  • Problem-solving : Research findings can be used to solve problems or challenges in various fields, such as healthcare, engineering, and social sciences. For example, medical researchers may use findings from clinical trials to develop new treatments for diseases.
  • Policy development : Research findings can be used to inform the development of policies in various fields, such as environmental protection, social welfare, and economic development. For example, policymakers may use research findings to develop policies aimed at reducing greenhouse gas emissions.
  • Program evaluation: Research findings can be used to evaluate the effectiveness of programs or interventions in various fields, such as education, healthcare, and social services. For example, educational researchers may use findings from evaluations of educational programs to improve teaching and learning outcomes.
  • Innovation: Research findings can be used to inspire or guide innovation in various fields, such as technology and engineering. For example, engineers may use research findings on materials science to develop new and innovative products.

Purpose of Research Findings

The purpose of research findings is to contribute to the knowledge and understanding of a particular topic or issue. Research findings are the result of a systematic and rigorous investigation of a research question or hypothesis, using appropriate research methods and techniques.

The main purposes of research findings are:

  • To generate new knowledge : Research findings contribute to the body of knowledge on a particular topic, by adding new information, insights, and understanding to the existing knowledge base.
  • To test hypotheses or theories : Research findings can be used to test hypotheses or theories that have been proposed in a particular field or discipline. This helps to determine the validity and reliability of the hypotheses or theories, and to refine or develop new ones.
  • To inform practice: Research findings can be used to inform practice in various fields, such as healthcare, education, and business. By identifying best practices and evidence-based interventions, research findings can help practitioners to make informed decisions and improve outcomes.
  • To identify gaps in knowledge: Research findings can help to identify gaps in knowledge and understanding of a particular topic, which can then be addressed by further research.
  • To contribute to policy development: Research findings can be used to inform policy development in various fields, such as environmental protection, social welfare, and economic development. By providing evidence-based recommendations, research findings can help policymakers to develop effective policies that address societal challenges.

Characteristics of Research Findings

Research findings have several key characteristics that distinguish them from other types of information or knowledge. Here are some of the main characteristics of research findings:

  • Objective : Research findings are based on a systematic and rigorous investigation of a research question or hypothesis, using appropriate research methods and techniques. As such, they are generally considered to be more objective and reliable than other types of information.
  • Empirical : Research findings are based on empirical evidence, which means that they are derived from observations or measurements of the real world. This gives them a high degree of credibility and validity.
  • Generalizable : Research findings are often intended to be generalizable to a larger population or context beyond the specific study. This means that the findings can be applied to other situations or populations with similar characteristics.
  • Transparent : Research findings are typically reported in a transparent manner, with a clear description of the research methods and data analysis techniques used. This allows others to assess the credibility and reliability of the findings.
  • Peer-reviewed: Research findings are often subject to a rigorous peer-review process, in which experts in the field review the research methods, data analysis, and conclusions of the study. This helps to ensure the validity and reliability of the findings.
  • Reproducible : Research findings are often designed to be reproducible, meaning that other researchers can replicate the study using the same methods and obtain similar results. This helps to ensure the validity and reliability of the findings.

Advantages of Research Findings

Research findings have many advantages, which make them valuable sources of knowledge and information. Here are some of the main advantages of research findings:

  • Evidence-based: Research findings are based on empirical evidence, which means that they are grounded in data and observations from the real world. This makes them a reliable and credible source of information.
  • Inform decision-making: Research findings can be used to inform decision-making in various fields, such as healthcare, education, and business. By identifying best practices and evidence-based interventions, research findings can help practitioners and policymakers to make informed decisions and improve outcomes.
  • Identify gaps in knowledge: Research findings can help to identify gaps in knowledge and understanding of a particular topic, which can then be addressed by further research. This contributes to the ongoing development of knowledge in various fields.
  • Improve outcomes : Research findings can be used to develop and implement evidence-based practices and interventions, which have been shown to improve outcomes in various fields, such as healthcare, education, and social services.
  • Foster innovation: Research findings can inspire or guide innovation in various fields, such as technology and engineering. By providing new information and understanding of a particular topic, research findings can stimulate new ideas and approaches to problem-solving.
  • Enhance credibility: Research findings are generally considered to be more credible and reliable than other types of information, as they are based on rigorous research methods and are subject to peer-review processes.

Limitations of Research Findings

While research findings have many advantages, they also have some limitations. Here are some of the main limitations of research findings:

  • Limited scope: Research findings are typically based on a particular study or set of studies, which may have a limited scope or focus. This means that they may not be applicable to other contexts or populations.
  • Potential for bias : Research findings can be influenced by various sources of bias, such as researcher bias, selection bias, or measurement bias. This can affect the validity and reliability of the findings.
  • Ethical considerations: Research findings can raise ethical considerations, particularly in studies involving human subjects. Researchers must ensure that their studies are conducted in an ethical and responsible manner, with appropriate measures to protect the welfare and privacy of participants.
  • Time and resource constraints : Research studies can be time-consuming and require significant resources, which can limit the number and scope of studies that are conducted. This can lead to gaps in knowledge or a lack of research on certain topics.
  • Complexity: Some research findings can be complex and difficult to interpret, particularly in fields such as science or medicine. This can make it challenging for practitioners and policymakers to apply the findings to their work.
  • Lack of generalizability : While research findings are intended to be generalizable to larger populations or contexts, there may be factors that limit their generalizability. For example, cultural or environmental factors may influence how a particular intervention or treatment works in different populations or contexts.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Limitations in Research

Limitations in Research – Types, Examples and...

Context of the Study

Context of the Study – Writing Guide and Examples

Research Design

Research Design – Types, Methods and Examples

Research Summary

Research Summary – Structure, Examples and...

Dissertation vs Thesis

Dissertation vs Thesis – Key Differences

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • How to Write Discussions and Conclusions

How to Write Discussions and Conclusions

The discussion section contains the results and outcomes of a study. An effective discussion informs readers what can be learned from your experiment and provides context for the results.

What makes an effective discussion?

When you’re ready to write your discussion, you’ve already introduced the purpose of your study and provided an in-depth description of the methodology. The discussion informs readers about the larger implications of your study based on the results. Highlighting these implications while not overstating the findings can be challenging, especially when you’re submitting to a journal that selects articles based on novelty or potential impact. Regardless of what journal you are submitting to, the discussion section always serves the same purpose: concluding what your study results actually mean.

A successful discussion section puts your findings in context. It should include:

  • the results of your research,
  • a discussion of related research, and
  • a comparison between your results and initial hypothesis.

Tip: Not all journals share the same naming conventions.

You can apply the advice in this article to the conclusion, results or discussion sections of your manuscript.

Our Early Career Researcher community tells us that the conclusion is often considered the most difficult aspect of a manuscript to write. To help, this guide provides questions to ask yourself, a basic structure to model your discussion off of and examples from published manuscripts. 

research summary of findings example

Questions to ask yourself:

  • Was my hypothesis correct?
  • If my hypothesis is partially correct or entirely different, what can be learned from the results? 
  • How do the conclusions reshape or add onto the existing knowledge in the field? What does previous research say about the topic? 
  • Why are the results important or relevant to your audience? Do they add further evidence to a scientific consensus or disprove prior studies? 
  • How can future research build on these observations? What are the key experiments that must be done? 
  • What is the “take-home” message you want your reader to leave with?

How to structure a discussion

Trying to fit a complete discussion into a single paragraph can add unnecessary stress to the writing process. If possible, you’ll want to give yourself two or three paragraphs to give the reader a comprehensive understanding of your study as a whole. Here’s one way to structure an effective discussion:

research summary of findings example

Writing Tips

While the above sections can help you brainstorm and structure your discussion, there are many common mistakes that writers revert to when having difficulties with their paper. Writing a discussion can be a delicate balance between summarizing your results, providing proper context for your research and avoiding introducing new information. Remember that your paper should be both confident and honest about the results! 

What to do

  • Read the journal’s guidelines on the discussion and conclusion sections. If possible, learn about the guidelines before writing the discussion to ensure you’re writing to meet their expectations. 
  • Begin with a clear statement of the principal findings. This will reinforce the main take-away for the reader and set up the rest of the discussion. 
  • Explain why the outcomes of your study are important to the reader. Discuss the implications of your findings realistically based on previous literature, highlighting both the strengths and limitations of the research. 
  • State whether the results prove or disprove your hypothesis. If your hypothesis was disproved, what might be the reasons? 
  • Introduce new or expanded ways to think about the research question. Indicate what next steps can be taken to further pursue any unresolved questions. 
  • If dealing with a contemporary or ongoing problem, such as climate change, discuss possible consequences if the problem is avoided. 
  • Be concise. Adding unnecessary detail can distract from the main findings. 

What not to do

Don’t

  • Rewrite your abstract. Statements with “we investigated” or “we studied” generally do not belong in the discussion. 
  • Include new arguments or evidence not previously discussed. Necessary information and evidence should be introduced in the main body of the paper. 
  • Apologize. Even if your research contains significant limitations, don’t undermine your authority by including statements that doubt your methodology or execution. 
  • Shy away from speaking on limitations or negative results. Including limitations and negative results will give readers a complete understanding of the presented research. Potential limitations include sources of potential bias, threats to internal or external validity, barriers to implementing an intervention and other issues inherent to the study design. 
  • Overstate the importance of your findings. Making grand statements about how a study will fully resolve large questions can lead readers to doubt the success of the research. 

Snippets of Effective Discussions:

Consumer-based actions to reduce plastic pollution in rivers: A multi-criteria decision analysis approach

Identifying reliable indicators of fitness in polar bears

  • How to Write a Great Title
  • How to Write an Abstract
  • How to Write Your Methods
  • How to Report Statistics
  • How to Edit Your Work

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research summary of findings example

Home Surveys Academic Research

Research Summary: What is it & how to write one

research summary

The Research Summary is used to report facts about a study clearly. You will almost certainly be required to prepare a research summary during your academic research or while on a research project for your organization.

If it is the first time you have to write one, the writing requirements may confuse you. The instructors generally assign someone to write a summary of the research work. Research summaries require the writer to have a thorough understanding of the issue.

This article will discuss the definition of a research summary and how to write one.

What is a research summary?

A research summary is a piece of writing that summarizes your research on a specific topic. Its primary goal is to offer the reader a detailed overview of the study with the key findings. A research summary generally contains the article’s structure in which it is written.

You must know the goal of your analysis before you launch a project. A research overview summarizes the detailed response and highlights particular issues raised in it. Writing it might be somewhat troublesome. To write a good overview, you want to start with a structure in mind. Read on for our guide.

Why is an analysis recap so important?

Your summary or analysis is going to tell readers everything about your research project. This is the critical piece that your stakeholders will read to identify your findings and valuable insights. Having a good and concise research summary that presents facts and comes with no research biases is the critical deliverable of any research project.

We’ve put together a cheat sheet to help you write a good research summary below.

Research Summary Guide

  • Why was this research done?  – You want to give a clear description of why this research study was done. What hypothesis was being tested?
  • Who was surveyed? – The what and why or your research decides who you’re going to interview/survey. Your research summary has a detailed note on who participated in the study and why they were selected. 
  • What was the methodology? – Talk about the methodology. Did you do face-to-face interviews? Was it a short or long survey or a focus group setting? Your research methodology is key to the results you’re going to get. 
  • What were the key findings? – This can be the most critical part of the process. What did we find out after testing the hypothesis? This section, like all others, should be just facts, facts facts. You’re not sharing how you feel about the findings. Keep it bias-free.
  • Conclusion – What are the conclusions that were drawn from the findings. A good example of a conclusion. Surprisingly, most people interviewed did not watch the lunar eclipse in 2022, which is unexpected given that 100% of those interviewed knew about it before it happened.
  • Takeaways and action points – This is where you bring in your suggestion. Given the data you now have from the research, what are the takeaways and action points? If you’re a researcher running this research project for your company, you’ll use this part to shed light on your recommended action plans for the business.

LEARN ABOUT:   Action Research

If you’re doing any research, you will write a summary, which will be the most viewed and more important part of the project. So keep a guideline in mind before you start. Focus on the content first and then worry about the length. Use the cheat sheet/checklist in this article to organize your summary, and that’s all you need to write a great research summary!

But once your summary is ready, where is it stored? Most teams have multiple documents in their google drives, and it’s a nightmare to find projects that were done in the past. Your research data should be democratized and easy to use.

We at QuestionPro launched a research repository for research teams, and our clients love it. All your data is in one place, and everything is searchable, including your research summaries! 

Authors: Prachi, Anas

MORE LIKE THIS

The Item I Failed to Leave Behind — Tuesday CX Thoughts

The Item I Failed to Leave Behind — Tuesday CX Thoughts

Jun 25, 2024

feedback loop

Feedback Loop: What It Is, Types & How It Works?

Jun 21, 2024

research summary of findings example

QuestionPro Thrive: A Space to Visualize & Share the Future of Technology

Jun 18, 2024

research summary of findings example

Relationship NPS Fails to Understand Customer Experiences — Tuesday CX

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence
  • Research Summary: What Is It & How To Write One

Angela Kayode-Sanni

Introduction

A research summary is a requirement during academic research and sometimes you might need to prepare a research summary during a research project for an organization.

Most people find a research summary a daunting task as you are required to condense complex research material into an informative, easy-to-understand article most times with a minimum of 300-500 words.

In this post, we will guide you through all the steps required to make writing your research summary an easier task. 

What is a Research Summary?

A research summary is a piece of writing that summarizes the research of a specific topic into bite-size easy-to-read and comprehend articles. The primary goal is to give the reader a detailed outline of the key findings of a research.

It is an unavoidable requirement in colleges and universities. To write a good research summary, you must understand the goal of your research, as this would help make the process easier. 

A research summary preserves the structure and sections of the article it is derived from.

Research Summary or Abstract: What’s The Difference?

The Research Summary and Abstract are similar, especially as they are both brief, straight to the point, and provide an overview of the entire research paper. However, there are very clear differences.

To begin with, a Research summary is written at the end of a research activity, while the Abstract is written at the beginning of a research paper. 

A Research Summary captures the main points of a study, with an emphasis on the topic, method , and discoveries, an Abstract is a description of what your research paper would talk about and the reason for your research or the hypothesis you are trying to validate.

Let us take a deeper look at the difference between both terms.

What is an Abstract?

An abstract is a short version of a research paper. It is written to convey the findings of the research to the reader. It provides the reader with information that would help them understand the research, by giving them a clear idea about the subject matter of a research paper. It is usually submitted before the presentation of a research paper.

What is a Summary?

A summary is a short form of an essay, a research paper, or a chapter in a book. A research summary is a narration of a research study, condensing the focal points of research to a shorter form, usually aligned with the same structure of the research study, from which the summary is derived.

What Is The Difference Between an Abstract and a Summary?

An abstract communicates the main points of a research paper, it includes the questions, major findings, the importance of the findings, etc.

An abstract reflects the perceptions of the author about a topic, while a research summary reflects the ideology of the research study that is being summarized.

Getting Started with a Research Summary

Before commencing a research summary, there is a need to understand the style and organization of the content you plan to summarize. There are three fundamental areas of the research that should be the focal point:

  • When deciding on the content include a section that speaks to the importance of the research, and the techniques and tools used to arrive at your conclusion.
  • Keep the summary well organized, and use paragraphs to discuss the various sections of the research.
  • Restrict your research to 300-400 words which is the standard practice for research summaries globally. However, if the research paper you want to summarize is a lengthy one, do not exceed 10% of the entire research material.

Once you have satisfied the requirements of the fundamentals for starting your research summary, you can now begin to write using the following format:

  • Why was this research done?   – A clear description of the reason the research was embarked on and the hypothesis being tested.
  • Who was surveyed? – Your research study should have details of the source of your information. If it was via a survey, you should document who the participants of the survey were and the reason that they were selected.
  • What was the methodology? – Discuss the methodology, in terms of what kind of survey method did you adopt. Was it a face-to-face interview, a phone interview, or a focus group setting?
  • What were the key findings? – This is perhaps the most vital part of the process. What discoveries did you make after the testing? This part should be based on raw facts free from any personal bias.
  • Conclusion – What conclusions did you draw from the findings?
  • Takeaways and action points – This is where your views and perception can be reflected. Here, you can now share your recommendations or action points.
  • Identify the focal point of the article –  In other to get a grasp of the content covered in the research paper, you can skim the article first, in a bid to understand the most essential part of the research paper. 
  • Analyze and understand the topic and article – Writing a summary of a research paper involves being familiar with the topic –  the current state of knowledge, key definitions, concepts, and models. This is often gleaned while reading the literature review. Please note that only a deep understanding ensures efficient and accurate summarization of the content.
  • Make notes as you read – Highlight and summarize each paragraph as you read. Your notes are what you would further condense to create a draft that would form your research summary.

How to Structure Your Research Summary

  • Title – This highlights the area of analysis, and can be formulated to briefly highlight key findings.
  • Abstract – this is a very brief and comprehensive description of the study, required in every academic article, with a length of 100-500 words at most. 
  • Introduction – this is a vital part of any research summary, it provides the context and the literature review that gently introduces readers to the subject matter. The introduction usually covers definitions, questions, and hypotheses of the research study. 
  • Methodology –This section emphasizes the process and or data analysis methods used, in terms of experiments, surveys, sampling, or statistical analysis. 
  • Results section – this section lists in detail the results derived from the research with evidence obtained from all the experiments conducted.
  • Discussion – these parts discuss the results within the context of current knowledge among subject matter experts. Interpretation of results and theoretical models explaining the observed results, the strengths of the study, and the limitations experienced are going to be a part of the discussion. 
  • Conclusion – In a conclusion, hypotheses are discussed and revalidated or denied, based on how convincing the evidence is.
  • References – this section is for giving credit to those who work you studied to create your summary. You do this by providing appropriate citations as you write.

Research Summary Example 1

Below are some defining elements of a sample research summary.

Title – “The probability of an unexpected volcanic eruption in Greenwich”

Introduction – this section would list the catastrophic consequences that occurred in the country and the importance of analyzing this event. 

Hypothesis –  An eruption of the Greenwich supervolcano would be preceded by intense preliminary activity manifesting in advance, before the eruption.

Results – these could contain a report of statistical data from various volcanic eruptions happening globally while looking critically at the activity that occurred before these events. 

Discussion and conclusion – Given that Greenwich is now consistently monitored by scientists and that signs of an eruption are usually detected before the volcanic eruption, this confirms the hypothesis. Hence creating an emergency plan outlining other intervention measures and ultimately evacuation is essential. 

Research Summary Example 2

Below is another sample sketch.

Title – “The frequency of extreme weather events in the UK in 2000-2008 as compared to the ‘60s”

Introduction – Weather events bring intense material damage and cause pain to the victims affected.

Hypothesis – Extreme weather events are more frequent in recent times compared to the ‘50s

Results – The frequency of several categories of extreme events now and then are listed here, such as droughts, fires, massive rainfall/snowfalls, floods, hurricanes, tornadoes, etc.

Discussion and conclusion – Several types of extreme events have become more commonplace in recent times, confirming the hypothesis. This rise in extreme weather events can be traced to rising CO2 levels and increasing temperatures and global warming explain the rising frequency of these disasters. Addressing the rising CO2 levels and paying attention to climate change is the only to combat this phenomenon.

A research summary is the short form of a research paper, analyzing the important aspect of the study. Everyone who reads a research summary has a full grasp of the main idea being discussed in the original research paper. Conducting any research means you will write a summary, which is an important part of your project and would be the most read part of your project.

Having a guideline before you start helps, this would form your checklist which would guide your actions as you write your research summary. It is important to note that a Research Summary is different from an Abstract paper written at the beginning of a research paper, describing the idea behind a research paper.

Logo

Connect to Formplus, Get Started Now - It's Free!

  • abstract in research papers
  • abstract writing
  • action research
  • research summary
  • research summary vs abstract
  • research surveys
  • Angela Kayode-Sanni

Formplus

You may also like:

Research Questions: Definitions, Types + [Examples]

A comprehensive guide on the definition of research questions, types, importance, good and bad research question examples

research summary of findings example

How to Write An Abstract For Research Papers: Tips & Examples

In this article, we will share some tips for writing an effective abstract, plus samples you can learn from.

Action Research: What it is, Stages & Examples

Introduction Action research is an evidence-based approach that has been used for years in the field of education and social sciences....

The McNamara Fallacy: How Researchers Can Detect and to Avoid it.

Introduction The McNamara Fallacy is a common problem in research. It happens when researchers take a single piece of data as evidence...

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

research summary of findings example

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Research Paper Summary

Journal submission: Tips to submit better manuscripts | Paperpal

One of the most important skills you can imbibe as an academician is to know how to summarize a research paper. During your academic journey, you may need to write a summary of findings in research quite often and for varied reasons – be it to write an introduction for a peer-reviewed publication , to submit a critical review, or to simply create a useful database for future referencing.

It can be quite challenging to effectively write a research paper summary for often complex work, which is where a pre-determined workflow can help you optimize the process. Investing time in developing this skill can also help you improve your scientific acumen, increasing your efficiency and productivity at work. This article illustrates some useful advice on how to write a research summary effectively. But, what is research summary in the first place?  

A research paper summary is a crisp, comprehensive overview of a research paper, which encapsulates the purpose, findings, methods, conclusions, and relevance of a study. A well-written research paper summary is an indicator of how well you have understood the author’s work. 

Table of Contents

Draft a research paper summary in minutes with paperpal. click here to start writing.

  • 2. Invest enough time to understand the topic deeply 

Use Paperpal to summarize your research paper. Click here to get started!

  • Mistakes to avoid while writing your research paper summary 

Let Paperpal do the heavy lifting. Click here to start writing your summary now!

Frequently asked questions (faq), how to write a research paper summary.

Writing a good research paper summary comes with practice and skill. Here is some useful advice on how to write a research paper summary effectively.  

1. Determine the focus of your summary

Before you begin to write a summary of research papers, determine the aim of your research paper summary. This will give you more clarity on how to summarize a research paper, including what to highlight and where to find the information you need, which accelerates the entire process. If you are aiming for the summary to be a supporting document or a proof of principle for your current research findings, then you can look for elements that are relevant to your work.

On the other hand, if your research summary is intended to be a critical review of the research article, you may need to use a completely different lens while reading the paper and conduct your own research regarding the accuracy of the data presented. Then again, if the research summary is intended to be a source of information for future referencing, you will likely have a different approach. This makes determining the focus of your summary a key step in the process of writing an effective research paper summary. 

2. Invest enough time to understand the topic deeply

In order to author an effective research paper summary, you need to dive into the topic of the research article. Begin by doing a quick scan for relevant information under each section of the paper. The abstract is a great starting point as it helps you to quickly identify the top highlights of the research article, speeding up the process of understanding the key findings in the paper. Be sure to do a careful read of the research paper, preparing notes that describe each section in your own words to put together a summary of research example or a first draft. This will save your time and energy in revisiting the paper to confirm relevant details and ease the entire process of writing a research paper summary.

When reading papers, be sure to acknowledge and ignore any pre-conceived notions that you might have regarding the research topic. This will not only help you understand the topic better but will also help you develop a more balanced perspective, ensuring that your research paper summary is devoid of any personal opinions or biases. 

3. Keep the summary crisp, brief and engaging

A research paper summary is usually intended to highlight and explain the key points of any study, saving the time required to read through the entire article. Thus, your primary goal while compiling the summary should be to keep it as brief, crisp and readable as possible. Usually, a short introduction followed by 1-2 paragraphs is adequate for an effective research article summary. Avoid going into too much technical detail while describing the main results and conclusions of the study. Rather focus on connecting the main findings of the study to the hypothesis , which can make the summary more engaging. For example, instead of simply reporting an original finding – “the graph showed a decrease in the mortality rates…”, you can say, “there was a decline in the number of deaths, as predicted by the authors while beginning the study…” or “there was a decline in the number of deaths, which came as a surprise to the authors as this was completely unexpected…”.

Unless you are writing a critical review of the research article, the language used in your research paper summaries should revolve around reporting the findings, not assessing them. On the other hand, if you intend to submit your summary as a critical review, make sure to provide sufficient external evidence to support your final analysis. Invest sufficient time in editing and proofreading your research paper summary thoroughly to ensure you’ve captured the findings accurately. You can also get an external opinion on the preliminary draft of the research paper summary from colleagues or peers who have not worked on the research topic. 

Mistakes to avoid while writing your research paper summary

Now that you’ve understood how to summarize a research paper, watch out for these red flags while writing your summary. 

  • Not paying attention to the word limit and recommended format, especially while submitting a critical review 
  • Evaluating the findings instead of maintaining an objective , unbiased view while reading the research paper 
  • Skipping the essential editing step , which can help eliminate avoidable errors and ensure that the language does not misrepresent the findings 
  • Plagiarism, it is critical to write in your own words or paraphrase appropriately when reporting the findings in your scientific article summary 

We hope the recommendations listed above will help answer the question of how to summarize a research paper and enable you to tackle the process effectively. 

Summarize your research paper with Paperpal

Paperpal, an AI academic writing assistant, is designed to support academics at every step of the academic writing process. Built on over two decades of experience helping researchers get published and trained on millions of published research articles, Paperpal offers human precision at machine speed. Paperpal Copilot, with advanced generative AI features, can help academics achieve 2x the writing in half the time, while transforming how they research and write.

research summary of findings example

How to summarize a research paper with Paperpal?

To generate your research paper summary, simply login to the platform and use the Paperpal Copilot Summary feature to create a flawless summary of your work. Here’s a step-by-step process to help you craft a summary in minutes:

  • Paste relevant research articles to be summarized into Paperpal; the AI will scan each section and extract key information.
  • In minutes, Paperpal will generate a comprehensive summary that showcases the main paper highlights while adhering to academic writing conventions.
  • Check the content to polish and refine the language, ensure your own voice, and add citations or references as needed.

The abstract and research paper summary serve similar purposes but differ in scope, length, and placement. The abstract is a concise yet detailed overview of the research, placed at the beginning of a paper, with the aim of providing readers with a quick understanding of the paper’s content and to help them decide whether to read the full article. Usually limited to a few hundred words, it highlights the main objectives, methods, results, and conclusions of the study. On the other hand, a research paper summary provides a crisp account of the entire research paper. Its purpose is to provide a brief recap for readers who may want to quickly grasp the main points of the research without reading the entire paper in detail.

The structure of a research summary can vary depending on the specific requirements or guidelines provided by the target publication or institution. A typical research summary includes the following key sections: introduction (including the research question or objective), methodology (briefly describing the research design and methods), results (summarizing the key findings), discussion (highlighting the implications and significance of the findings), and conclusion (providing a summary of the main points and potential future directions).

The summary of a research paper is important because it provides a condensed overview of the study’s purpose, methods, results, and conclusions. It allows you to quickly grasp the main points and relevance of the research without having to read the entire paper. Research summaries can also be an invaluable way to communicate research findings to a broader audience, such as policymakers or the general public.

  When writing a research paper summary, it is crucial to avoid plagiarism by properly attributing the original authors’ work. To learn how to summarize a research paper while avoiding plagiarism, follow these critical guidelines: (1) Read the paper thoroughly to understand the main points and key findings. (2) Use your own words and sentence structures to restate the information, ensuring that the research paper summary reflects your understanding of the paper. (3) Clearly indicate when you are paraphrasing or quoting directly from the original paper by using appropriate citation styles. (4) Cite the original source for any specific ideas, concepts, or data that you include in your summary. (5) Review your summary to ensure it accurately represents the research paper while giving credit to the original authors.

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects
  • How to Write a Conclusion for Research Papers (with Examples)
  • Publish or Perish – Understanding the Importance of Scholarly Publications in Academia

PhD Dissertation Outline: Creating a Roadmap to Success

How ai can improve the academic writing experience, you may also like, how to write a high-quality conference paper, measuring academic success: definition & strategies for excellence, is it ethical to use ai-generated abstracts without..., what are journal guidelines on using generative ai..., should you use ai tools like chatgpt for..., 9 steps to publish a research paper, how to make translating academic papers less challenging, self-plagiarism in research: what it is and how..., 6 tips for post-doc researchers to take their..., presenting research data effectively through tables and figures.

Scientific Journal Article Summary Example: Best Practices

We can all agree - condensing complex scientific research into an accurate, engaging summary is tricky.

But with the right approach, you can craft summaries that effectively convey key details and implications to various audiences.

In this post, you'll uncover best practices for summarizing scientific journal articles. You'll learn how to identify core findings, summarize methodologies precisely, convey results properly, and synthesize everything into a cohesive narrative. An example APA-formatted summary is also provided to see these tips in action.

Introduction to Scientific Journal Article Summaries

Summarizing scientific journal articles is an important skill for researchers and students. It allows you to concisely communicate the key objectives, methods, findings, and conclusions of a study to various audiences.

The Art of Condensing Complex Research

When summarizing scientific research, it is essential to identify and highlight the core elements that capture the essence of the study. This involves analyzing complex details and data to extract the most critical information. Key steps include:

Clearly articulating the central research question or objective

Condensing the methods into a simple overview

Highlighting key results and statistics

Summarizing the conclusions and implications

Skills like active reading, critical thinking, and concise writing help distill multidimensional research into accessible summaries.

Target Audience: Tailoring Summaries for Different Readers

Scientific article summaries should be adapted based on the intended reader. For example:

Emphasize key learning points

Define discipline-specific terminology

Focus on practical applications

Academic Peers

Use precise disciplinary language

Include technical details on methodology

Highlight novel contributions to the field

Scientific Journal Article Summary Example for Students

Here is an example summary of a microbiology study tailored specifically for a student reader:

A 2022 study on antimicrobial peptides (AMPs) found that a synthetic AMP named “peptoid-1” effectively killed methicillin-resistant Staphylococcus aureus (MRSA) in lab tests. The peptoid-1 molecule disrupted the bacterial cell membranes of MRSA, including difficult-to-treat biofilms. The research demonstrates the potential of synthetic AMPs as a promising new class of antibiotics to combat drug-resistant superbugs like MRSA. This has important implications for developing urgently needed antibiotics to address the growing global threat of antimicrobial resistance.

This summary briefly explains the key learning points of the study in straightforward language appropriate for students. Technical details are avoided, and emphasis is placed on articulating the essential findings, applications, and implications.

How do you write a summary for a scientific journal article?

A well-written summary of a scientific journal article should cover three main points:

Why the research was done

The first section of your summary should provide background information and context about why the research was conducted. This includes:

The research goals, questions, or hypotheses being investigated

Gaps in existing knowledge the study aims to address

The overall importance of the research topic

For example:

This study investigates the effects of climate change on crop yields in sub-Saharan Africa. Prior research has not examined how higher temperatures may impact staple crops in this region specifically. Understanding climate change effects on agriculture is critical for food security policymaking across developing nations.

What happened in the experiment

The second section should explain the methodology and highlight key findings from the study's experiments, data analysis, or other research activities. Use concise language to describe:

The study sample, materials, and procedures

Statistical analysis techniques

Major results that relate to the research questions

For instance:

Researchers compiled 30 years of temperature data and crop production records from six countries. Using regression analysis, they found higher temperatures significantly reduced wheat and maize yields by an average of 15% and 12%, respectively.

What conclusions the author drew

Finally, summarize the researchers' conclusions, implications, and recommendations based on their results. Mention any limitations noted and future research suggested.

The authors conclude rising temperatures from climate change could seriously impact food security in sub-Saharan Africa. They call for policies to help farmers adapt through heat-tolerant crop varieties and improved irrigation access. Additional research is needed to develop effective adaptation strategies.

Following this basic structure will help you efficiently summarize the essential information in a scientific journal article.

What is journal article summary?

A journal article summary concisely overviews the main points and key takeaways from a scientific paper published in an academic journal. It allows readers to quickly understand the core findings and arguments of the original article without having to read the full text.

An effective summary should:

Identify the main objective or research question the authors aimed to address

Highlight the key methods, data sources, and analytical approaches used

Summarize the major results and main conclusions

Note any limitations or unanswered questions for future research

For example, a summary of a psychology paper might overview the hypothesis tested, experiment methodology, participant demographics, statistical analyses conducted, and whether the findings supported or rejected the original hypothesis.

Summaries are a useful way for scientists to stay current with latest developments across broad fields of research. They also help readers determine if they should invest time reading the full article based on whether the topic and findings are relevant to their own work. As such, summaries should provide enough detail and context to evaluate the scope and implications of the research.

Formatting a Journal Article Summary

When writing a journal article summary, the exact formatting can vary depending on the target publication or audience needs. However, some key elements tend to be consistent:

Citation: Include a full citation of the original paper using the required scholarly style

Background: 1-2 sentences placing the research in context of current knowledge state

Objective: 1 sentence stating the purpose/focus of the study

Methods: 1-2 sentences summarizing the experiment, data, analyses performed

Results: 2-3 sentences describing the major findings

Conclusion: 1-2 sentences covering implications and future directions

The full summary is typically 150-250 words or 8-15 sentences. Brevity and precision are key when condensing a complex study into such a compact overview.

What is the general format for summary of a journal article?

Summarizing a scientific journal article requires capturing the key details while maintaining brevity. Here are some best practices:

Follow the structure of the original paper

Like an abstract, organize your summary by:

Introduction - Cover the background, purpose, and hypothesis.

Methods - Briefly describe the experimental design.

Results - Highlight the main findings without going into excessive detail.

Discussion - Summarize the author's interpretation and conclusions.

Focus on key information

Identify and extract only the most critical details:

Research goals

Sample characteristics

Variables examined

Statistical analyses performed

Major results obtained

Conclusions reached

Maintain objectivity

Present the findings in a neutral tone without inserting your own opinions or judgments.

Use paraphrasing

Summarize points in your own words instead of relying heavily on direct quotes. However, scientifically precise terminology should be retained.

Follow formatting guidelines

Adhere to style formatting per journal or publisher requirements. Most scientific summaries require American Psychological Association (APA) citations.

Keeping summaries clear, accurate, and concise requires practice. But following these research article summary guidelines will help ensure quality. With wisio.app 's tools for discovering papers and translating terminology, scientists can efficiently produce summaries to advance their work.

How do you summarize a journal article in APA?

When summarizing a journal article in APA style, it is important to follow some key guidelines:

Use Your Own Words

Read through the full article and highlight the key points

Write the summary using your own words while staying true to the original meaning

Avoid directly quoting chunks of text from the original

Focus on Relevant Elements

Identify the critical elements like purpose, methods, findings, conclusions

Summarize only details directly relevant to the core focus of the article

Keep contextual details brief or exclude if non-essential

Maintain Clear Distinction

Clearly indicate in the summary which ideas are yours versus the author's

Do not interject your own analysis, evaluation, or interpretation

Keep the summary objective and descriptive in nature

Follow APA Formatting

Include a citation to the original article

Apply proper in-text citations for any verbatim short quotes

Format the summary using standard APA guidelines for font, spacing, etc.

Keep it Brief

Strive to keep the summary less than 10-15% of the original length

Tighten long summaries by removing non-vital details

Aim for brevity while preserving meaning and scientific accuracy

Following these basic tips will help produce an APA-style summary that accurately conveys the essence of the journal article in a clear and concise manner.

Understanding the Structure of Scientific Articles

Delve into the typical structure of scientific journal articles to understand the framework from which summaries are derived.

Dissecting the IMRaD Format

The IMRaD (Introduction, Methods, Results, and Discussion) format is a standard structure used in scientific writing. Understanding this structure is key when summarizing journal articles.

The Introduction presents background context, defines key terms, and states the research objective and hypothesis. When summarizing, capture the main research goals and questions driving the study.

The Methods section provides details on the experimental design, materials, data collection procedures, and statistical analysis. Identify the overall methodology without delving into granular specifics.

The Results present objective findings from the data analysis. Highlight key quantitative outcomes and discoveries in your summary.

The Discussion section interprets the results, explores their significance, compares them to other studies, acknowledges limitations, and suggests future work. Summarize the main conclusions, implications, and next steps discussed.

Decoding Abstracts and Conclusions

Article abstracts concisely overview the purpose, methods, findings, and implications covered in the full text. Leverage abstracts when first assessing articles for relevance.

Conclusions summarize the key points and provide final thoughts. Use them to validate your understanding of the central themes.

Both provide a helpful frame of reference when synthesizing summaries.

Critical Reading for Effective Summarization

Carefully analyze each section and subsection

Annotate and highlight meaningful passages

Identify connections between key ideas

Focus on what findings reveal about the research problem

Capture enough detail to convey original intent

Synthesize using clear, concise language

Thoughtful critical reading builds comprehension essential for quality summarization.

How to Summarize a Research Article

Summarizing a research article requires identifying the core findings and contributions, accurately capturing the methodologies, conveying the key results and implications, and crafting a cohesive narrative. Here is a step-by-step guide:

Identifying Core Findings and Contributions

When summarizing a research article, it is essential to pinpoint the most significant findings and contributions of the study. Key steps include:

Read the abstract and conclusion to understand the major findings.

Highlight unique discoveries, breakthroughs, or advances made.

Note the implications and importance communicated by the authors.

Identify knowledge gaps filled or new frameworks proposed.

Focusing on these elements will help determine the core essence to convey in your summary.

Summarizing Methodologies with Precision

While summarizing the methodologies, avoid oversimplifying complex research processes. Key tips include:

Use concise yet precise language to describe methods applied.

Specify instruments or tools leveraged in the research.

Provide sample sizes and measures captured if relevant.

Note statistical or analytical techniques utilized.

Maintaining key methodological details demonstrates analytical rigor when sharing the research with others.

Conveying Results and Their Implications

An effective summary should clearly communicate the study's results and why they matter. To accomplish this:

Report quantitative findings or qualitative discoveries made.

Contextualize results using benchmarks, comparisons, or real-world impacts.

Connect results back to the research aims and knowledge gaps identified.

Discuss limitations along with future research needed.

This enables readers to grasp the meaningfulness of the results.

Crafting a Cohesive Narrative

Finally, structure the various summary elements into a cohesive overview:

Organize content using section headers around aims, methods, results, and conclusions.

Use transition words (e.g. “additionally,” “in contrast,” “as a result”) to improve flow.

Focus on information that supports the core findings and contributions of the work.

Avoid excessive details and maintain brevity.

Following these steps will produce a concise yet insightful summary showcasing the relevance of the research.

Scientific Journal Article Summary Example APA Format

Adhering to proper formatting guidelines is critical when summarizing scientific journal articles, especially for academic purposes. The American Psychological Association (APA) style provides clear standards that enable precise, uniform communication across scientific disciplines.

Adhering to APA Style in Summaries

Following APA style lends credibility and ensures readers can easily reference sources. Key elements include:

Properly formatting in-text citations and references

Using headings and subheadings to organize content

Applying title case capitalization

Using active voice and clear language

Formatting title page with running head, page numbers, and other elements

Adhering to these conventions helps establish summaries as reputable academic works worthy of consideration.

Example of an APA-Formatted Summary

Here is an example of a properly formatted APA summary:

Smith, J. (2021). The impact of climate change on coral reef ecosystems. Marine Biology , 166 (3), 201–215. https://doi.org/10.1007/s00227-021-03876-8
This study examined the effects of rising ocean temperatures and acidification on coral reef health over 5 years. The author tracked changes in coral cover and biodiversity across 12 reef sites in the Caribbean Sea. On average, coral cover declined by 18.7% and species richness decreased by 22.4% on reefs exposed to prolonged marine heatwaves. The declines were attributed to mass coral bleaching triggered by unusually warm water temperatures. The findings suggest climate change may severely degrade coral reef ecosystems within decades. Further research into mitigation strategies is warranted to preserve these valuable marine habitats.

Key elements like the citation, use of third-person perspective, headings, and formal academic language adhere to APA conventions.

Common Mistakes to Avoid in APA Summaries

When writing APA-style summaries, writers should avoid:

Neglecting to include a full citation for the original work

Using first-person pronouns like “I” or “we”

Inserting opinions or commentary from the summarizer

Failing to use headings to organize content

Including direct quotes from the original text

Avoiding these pitfalls will ensure an APA-compliant summary format.

Practical Tips for Writing Scientific Summaries

Language and terminology: clarity above all.

When summarizing scientific research, it is crucial to use clear, precise language and terminology. Avoid vague or ambiguous phrasing, and opt for specificity whenever possible. Define key terms, acronyms, or concepts that may be unfamiliar to readers. Simplify complex statistical analysis or scientific jargon for general audiences without losing integrity. Stick to plain language with straightforward syntax to ensure readers grasp the key findings.

Brevity vs. Completeness: Striking the Right Balance

Balancing brevity and completeness presents a challenge when summarizing scientific papers. Focus on highlighting the central objective, methodology, results, and conclusions. Resist dwelling on intricate experimental details or tangential discussions. However, take care not to oversimplify complex research. Seek to distill the essence without omitting information that substantively impacts the interpretation or reproducibility of the study. Adhere to word limits when required but avoid excluding key facts, figures, or takeaways in the quest for brevity.

Ethical Considerations in Summarizing Research

When writing scientific summaries, it is vital to represent the original piece fairly and avoid misconstruing the author's intent. Exercise caution when paraphrasing specialized statistical analysis or scientific terminology. Cite sources properly, and refrain from plagiarizing significant portions of the original text. Also, recognize the limitations of summarization; for complete details, readers should consult the primary literature. By maintaining high ethical standards, scientific summarizers uphold the integrity of research communication.

Conclusion: Synthesizing the Essentials

Summarizing scientific journal articles effectively requires adhering to several key best practices. By focusing on the article's key findings, methodology, and conclusions, skilled summarizers can efficiently communicate the essential information to readers.

Recapitulating Best Practices for Summary Writing

When summarizing a scientific article, it's important to:

Highlight the important methods, data, and analyses used in the study

Note the study's core findings and conclusions

Maintain the authors' original meaning and intent

Follow applicable formatting guidelines (e.g. APA style)

Adhering to these principles helps preserve the accuracy and integrity of the research while making the information more readily digestible.

Summary of a Research Article Example

Here is an example summary incorporating the best practices covered in this article:

Smith et al. (2021) set out to understand the effects of climate change on crop yields. The authors analyzed 30 years of temperature, rainfall, and corn production data across major farming regions of the U.S. Midwest. They found that increased temperatures and shifting rainfall patterns have already caused measurable declines in corn yields over the past decade. Based on predictive climate models, the authors expect these negative impacts on crop productivity to accelerate in the coming years if mitigation measures are not adopted. This clearly structured summary concisely conveys the objective, methods, key results, and conclusions of the article while maintaining authorial intent and voice. The formatting adheres to APA guidelines.

In this way, skillful summarization enables efficient scientific communication while upholding standards of accuracy and integrity.

Avatar of Antonio Carlos Filho

Antonio Carlos Filho @acfilho_dev

How to Write the Discussion Section of a Research Paper

The discussion section of a research paper analyzes and interprets the findings, provides context, compares them with previous studies, identifies limitations, and suggests future research directions.

Updated on September 15, 2023

researchers writing the discussion section of their research paper

Structure your discussion section right, and you’ll be cited more often while doing a greater service to the scientific community. So, what actually goes into the discussion section? And how do you write it?

The discussion section of your research paper is where you let the reader know how your study is positioned in the literature, what to take away from your paper, and how your work helps them. It can also include your conclusions and suggestions for future studies.

First, we’ll define all the parts of your discussion paper, and then look into how to write a strong, effective discussion section for your paper or manuscript.

Discussion section: what is it, what it does

The discussion section comes later in your paper, following the introduction, methods, and results. The discussion sets up your study’s conclusions. Its main goals are to present, interpret, and provide a context for your results.

What is it?

The discussion section provides an analysis and interpretation of the findings, compares them with previous studies, identifies limitations, and suggests future directions for research.

This section combines information from the preceding parts of your paper into a coherent story. By this point, the reader already knows why you did your study (introduction), how you did it (methods), and what happened (results). In the discussion, you’ll help the reader connect the ideas from these sections.

Why is it necessary?

The discussion provides context and interpretations for the results. It also answers the questions posed in the introduction. While the results section describes your findings, the discussion explains what they say. This is also where you can describe the impact or implications of your research.

Adds context for your results

Most research studies aim to answer a question, replicate a finding, or address limitations in the literature. These goals are first described in the introduction. However, in the discussion section, the author can refer back to them to explain how the study's objective was achieved. 

Shows what your results actually mean and real-world implications

The discussion can also describe the effect of your findings on research or practice. How are your results significant for readers, other researchers, or policymakers?

What to include in your discussion (in the correct order)

A complete and effective discussion section should at least touch on the points described below.

Summary of key findings

The discussion should begin with a brief factual summary of the results. Concisely overview the main results you obtained.

Begin with key findings with supporting evidence

Your results section described a list of findings, but what message do they send when you look at them all together?

Your findings were detailed in the results section, so there’s no need to repeat them here, but do provide at least a few highlights. This will help refresh the reader’s memory and help them focus on the big picture.

Read the first paragraph of the discussion section in this article (PDF) for an example of how to start this part of your paper. Notice how the authors break down their results and follow each description sentence with an explanation of why each finding is relevant. 

State clearly and concisely

Following a clear and direct writing style is especially important in the discussion section. After all, this is where you will make some of the most impactful points in your paper. While the results section often contains technical vocabulary, such as statistical terms, the discussion section lets you describe your findings more clearly. 

Interpretation of results

Once you’ve given your reader an overview of your results, you need to interpret those results. In other words, what do your results mean? Discuss the findings’ implications and significance in relation to your research question or hypothesis.

Analyze and interpret your findings

Look into your findings and explore what’s behind them or what may have caused them. If your introduction cited theories or studies that could explain your findings, use these sources as a basis to discuss your results.

For example, look at the second paragraph in the discussion section of this article on waggling honey bees. Here, the authors explore their results based on information from the literature.

Unexpected or contradictory results

Sometimes, your findings are not what you expect. Here’s where you describe this and try to find a reason for it. Could it be because of the method you used? Does it have something to do with the variables analyzed? Comparing your methods with those of other similar studies can help with this task.

Context and comparison with previous work

Refer to related studies to place your research in a larger context and the literature. Compare and contrast your findings with existing literature, highlighting similarities, differences, and/or contradictions.

How your work compares or contrasts with previous work

Studies with similar findings to yours can be cited to show the strength of your findings. Information from these studies can also be used to help explain your results. Differences between your findings and others in the literature can also be discussed here. 

How to divide this section into subsections

If you have more than one objective in your study or many key findings, you can dedicate a separate section to each of these. Here’s an example of this approach. You can see that the discussion section is divided into topics and even has a separate heading for each of them. 

Limitations

Many journals require you to include the limitations of your study in the discussion. Even if they don’t, there are good reasons to mention these in your paper.

Why limitations don’t have a negative connotation

A study’s limitations are points to be improved upon in future research. While some of these may be flaws in your method, many may be due to factors you couldn’t predict.

Examples include time constraints or small sample sizes. Pointing this out will help future researchers avoid or address these issues. This part of the discussion can also include any attempts you have made to reduce the impact of these limitations, as in this study .

How limitations add to a researcher's credibility

Pointing out the limitations of your study demonstrates transparency. It also shows that you know your methods well and can conduct a critical assessment of them.  

Implications and significance

The final paragraph of the discussion section should contain the take-home messages for your study. It can also cite the “strong points” of your study, to contrast with the limitations section.

Restate your hypothesis

Remind the reader what your hypothesis was before you conducted the study. 

How was it proven or disproven?

Identify your main findings and describe how they relate to your hypothesis.

How your results contribute to the literature

Were you able to answer your research question? Or address a gap in the literature?

Future implications of your research

Describe the impact that your results may have on the topic of study. Your results may show, for instance, that there are still limitations in the literature for future studies to address. There may be a need for studies that extend your findings in a specific way. You also may need additional research to corroborate your findings. 

Sample discussion section

This fictitious example covers all the aspects discussed above. Your actual discussion section will probably be much longer, but you can read this to get an idea of everything your discussion should cover.

Our results showed that the presence of cats in a household is associated with higher levels of perceived happiness by its human occupants. These findings support our hypothesis and demonstrate the association between pet ownership and well-being. 

The present findings align with those of Bao and Schreer (2016) and Hardie et al. (2023), who observed greater life satisfaction in pet owners relative to non-owners. Although the present study did not directly evaluate life satisfaction, this factor may explain the association between happiness and cat ownership observed in our sample.

Our findings must be interpreted in light of some limitations, such as the focus on cat ownership only rather than pets as a whole. This may limit the generalizability of our results.

Nevertheless, this study had several strengths. These include its strict exclusion criteria and use of a standardized assessment instrument to investigate the relationships between pets and owners. These attributes bolster the accuracy of our results and reduce the influence of confounding factors, increasing the strength of our conclusions. Future studies may examine the factors that mediate the association between pet ownership and happiness to better comprehend this phenomenon.

This brief discussion begins with a quick summary of the results and hypothesis. The next paragraph cites previous research and compares its findings to those of this study. Information from previous studies is also used to help interpret the findings. After discussing the results of the study, some limitations are pointed out. The paper also explains why these limitations may influence the interpretation of results. Then, final conclusions are drawn based on the study, and directions for future research are suggested.

How to make your discussion flow naturally

If you find writing in scientific English challenging, the discussion and conclusions are often the hardest parts of the paper to write. That’s because you’re not just listing up studies, methods, and outcomes. You’re actually expressing your thoughts and interpretations in words.

  • How formal should it be?
  • What words should you use, or not use?
  • How do you meet strict word limits, or make it longer and more informative?

Always give it your best, but sometimes a helping hand can, well, help. Getting a professional edit can help clarify your work’s importance while improving the English used to explain it. When readers know the value of your work, they’ll cite it. We’ll assign your study to an expert editor knowledgeable in your area of research. Their work will clarify your discussion, helping it to tell your story. Find out more about AJE Editing.

Adam Goulston, Science Marketing Consultant, PsyD, Human and Organizational Behavior, Scize

Adam Goulston, PsyD, MS, MBA, MISD, ELS

Science Marketing Consultant

See our "Privacy Policy"

Ensure your structure and ideas are consistent and clearly communicated

Pair your Premium Editing with our add-on service Presubmission Review for an overall assessment of your manuscript.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Literature Review | Guide, Examples, & Templates

How to Write a Literature Review | Guide, Examples, & Templates

Published on January 2, 2023 by Shona McCombes . Revised on September 11, 2023.

What is a literature review? A literature review is a survey of scholarly sources on a specific topic. It provides an overview of current knowledge, allowing you to identify relevant theories, methods, and gaps in the existing research that you can later apply to your paper, thesis, or dissertation topic .

There are five key steps to writing a literature review:

  • Search for relevant literature
  • Evaluate sources
  • Identify themes, debates, and gaps
  • Outline the structure
  • Write your literature review

A good literature review doesn’t just summarize sources—it analyzes, synthesizes , and critically evaluates to give a clear picture of the state of knowledge on the subject.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

What is the purpose of a literature review, examples of literature reviews, step 1 – search for relevant literature, step 2 – evaluate and select sources, step 3 – identify themes, debates, and gaps, step 4 – outline your literature review’s structure, step 5 – write your literature review, free lecture slides, other interesting articles, frequently asked questions, introduction.

  • Quick Run-through
  • Step 1 & 2

When you write a thesis , dissertation , or research paper , you will likely have to conduct a literature review to situate your research within existing knowledge. The literature review gives you a chance to:

  • Demonstrate your familiarity with the topic and its scholarly context
  • Develop a theoretical framework and methodology for your research
  • Position your work in relation to other researchers and theorists
  • Show how your research addresses a gap or contributes to a debate
  • Evaluate the current state of research and demonstrate your knowledge of the scholarly debates around your topic.

Writing literature reviews is a particularly important skill if you want to apply for graduate school or pursue a career in research. We’ve written a step-by-step guide that you can follow below.

Literature review guide

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

research summary of findings example

Try for free

Writing literature reviews can be quite challenging! A good starting point could be to look at some examples, depending on what kind of literature review you’d like to write.

  • Example literature review #1: “Why Do People Migrate? A Review of the Theoretical Literature” ( Theoretical literature review about the development of economic migration theory from the 1950s to today.)
  • Example literature review #2: “Literature review as a research methodology: An overview and guidelines” ( Methodological literature review about interdisciplinary knowledge acquisition and production.)
  • Example literature review #3: “The Use of Technology in English Language Learning: A Literature Review” ( Thematic literature review about the effects of technology on language acquisition.)
  • Example literature review #4: “Learners’ Listening Comprehension Difficulties in English Language Learning: A Literature Review” ( Chronological literature review about how the concept of listening skills has changed over time.)

You can also check out our templates with literature review examples and sample outlines at the links below.

Download Word doc Download Google doc

Before you begin searching for literature, you need a clearly defined topic .

If you are writing the literature review section of a dissertation or research paper, you will search for literature related to your research problem and questions .

Make a list of keywords

Start by creating a list of keywords related to your research question. Include each of the key concepts or variables you’re interested in, and list any synonyms and related terms. You can add to this list as you discover new keywords in the process of your literature search.

  • Social media, Facebook, Instagram, Twitter, Snapchat, TikTok
  • Body image, self-perception, self-esteem, mental health
  • Generation Z, teenagers, adolescents, youth

Search for relevant sources

Use your keywords to begin searching for sources. Some useful databases to search for journals and articles include:

  • Your university’s library catalogue
  • Google Scholar
  • Project Muse (humanities and social sciences)
  • Medline (life sciences and biomedicine)
  • EconLit (economics)
  • Inspec (physics, engineering and computer science)

You can also use boolean operators to help narrow down your search.

Make sure to read the abstract to find out whether an article is relevant to your question. When you find a useful book or article, you can check the bibliography to find other relevant sources.

You likely won’t be able to read absolutely everything that has been written on your topic, so it will be necessary to evaluate which sources are most relevant to your research question.

For each publication, ask yourself:

  • What question or problem is the author addressing?
  • What are the key concepts and how are they defined?
  • What are the key theories, models, and methods?
  • Does the research use established frameworks or take an innovative approach?
  • What are the results and conclusions of the study?
  • How does the publication relate to other literature in the field? Does it confirm, add to, or challenge established knowledge?
  • What are the strengths and weaknesses of the research?

Make sure the sources you use are credible , and make sure you read any landmark studies and major theories in your field of research.

You can use our template to summarize and evaluate sources you’re thinking about using. Click on either button below to download.

Take notes and cite your sources

As you read, you should also begin the writing process. Take notes that you can later incorporate into the text of your literature review.

It is important to keep track of your sources with citations to avoid plagiarism . It can be helpful to make an annotated bibliography , where you compile full citation information and write a paragraph of summary and analysis for each source. This helps you remember what you read and saves time later in the process.

Prevent plagiarism. Run a free check.

To begin organizing your literature review’s argument and structure, be sure you understand the connections and relationships between the sources you’ve read. Based on your reading and notes, you can look for:

  • Trends and patterns (in theory, method or results): do certain approaches become more or less popular over time?
  • Themes: what questions or concepts recur across the literature?
  • Debates, conflicts and contradictions: where do sources disagree?
  • Pivotal publications: are there any influential theories or studies that changed the direction of the field?
  • Gaps: what is missing from the literature? Are there weaknesses that need to be addressed?

This step will help you work out the structure of your literature review and (if applicable) show how your own research will contribute to existing knowledge.

  • Most research has focused on young women.
  • There is an increasing interest in the visual aspects of social media.
  • But there is still a lack of robust research on highly visual platforms like Instagram and Snapchat—this is a gap that you could address in your own research.

There are various approaches to organizing the body of a literature review. Depending on the length of your literature review, you can combine several of these strategies (for example, your overall structure might be thematic, but each theme is discussed chronologically).

Chronological

The simplest approach is to trace the development of the topic over time. However, if you choose this strategy, be careful to avoid simply listing and summarizing sources in order.

Try to analyze patterns, turning points and key debates that have shaped the direction of the field. Give your interpretation of how and why certain developments occurred.

If you have found some recurring central themes, you can organize your literature review into subsections that address different aspects of the topic.

For example, if you are reviewing literature about inequalities in migrant health outcomes, key themes might include healthcare policy, language barriers, cultural attitudes, legal status, and economic access.

Methodological

If you draw your sources from different disciplines or fields that use a variety of research methods , you might want to compare the results and conclusions that emerge from different approaches. For example:

  • Look at what results have emerged in qualitative versus quantitative research
  • Discuss how the topic has been approached by empirical versus theoretical scholarship
  • Divide the literature into sociological, historical, and cultural sources

Theoretical

A literature review is often the foundation for a theoretical framework . You can use it to discuss various theories, models, and definitions of key concepts.

You might argue for the relevance of a specific theoretical approach, or combine various theoretical concepts to create a framework for your research.

Like any other academic text , your literature review should have an introduction , a main body, and a conclusion . What you include in each depends on the objective of your literature review.

The introduction should clearly establish the focus and purpose of the literature review.

Depending on the length of your literature review, you might want to divide the body into subsections. You can use a subheading for each theme, time period, or methodological approach.

As you write, you can follow these tips:

  • Summarize and synthesize: give an overview of the main points of each source and combine them into a coherent whole
  • Analyze and interpret: don’t just paraphrase other researchers — add your own interpretations where possible, discussing the significance of findings in relation to the literature as a whole
  • Critically evaluate: mention the strengths and weaknesses of your sources
  • Write in well-structured paragraphs: use transition words and topic sentences to draw connections, comparisons and contrasts

In the conclusion, you should summarize the key findings you have taken from the literature and emphasize their significance.

When you’ve finished writing and revising your literature review, don’t forget to proofread thoroughly before submitting. Not a language expert? Check out Scribbr’s professional proofreading services !

This article has been adapted into lecture slides that you can use to teach your students about writing a literature review.

Scribbr slides are free to use, customize, and distribute for educational purposes.

Open Google Slides Download PowerPoint

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question .

It is often written as part of a thesis, dissertation , or research paper , in order to situate your work in relation to existing knowledge.

There are several reasons to conduct a literature review at the beginning of a research project:

  • To familiarize yourself with the current state of knowledge on your topic
  • To ensure that you’re not just repeating what others have already done
  • To identify gaps in knowledge and unresolved problems that your research can address
  • To develop your theoretical framework and methodology
  • To provide an overview of the key findings and debates on the topic

Writing the literature review shows your reader how your work relates to existing research and what new insights it will contribute.

The literature review usually comes near the beginning of your thesis or dissertation . After the introduction , it grounds your research in a scholarly field and leads directly to your theoretical framework or methodology .

A literature review is a survey of credible sources on a topic, often used in dissertations , theses, and research papers . Literature reviews give an overview of knowledge on a subject, helping you identify relevant theories and methods, as well as gaps in existing research. Literature reviews are set up similarly to other  academic texts , with an introduction , a main body, and a conclusion .

An  annotated bibliography is a list of  source references that has a short description (called an annotation ) for each of the sources. It is often assigned as part of the research process for a  paper .  

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, September 11). How to Write a Literature Review | Guide, Examples, & Templates. Scribbr. Retrieved June 24, 2024, from https://www.scribbr.com/dissertation/literature-review/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a theoretical framework | guide to organizing, what is a research methodology | steps & tips, how to write a research proposal | examples & templates, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

National Academies Press: OpenBook

Improved Surface Drainage of Pavements: Final Report (1998)

Chapter: chapter 5 summary, findings, and recommendations.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

CHAPIER 5 SI~MARY, FINDINGS, AND RECOMMENDATIONS SUGARY The primary objective of this research was to identify unproved methods for draining rainwater from the surface of multi-lane pavements and to develop guidelines for their use. The guidelines, along with details on the rationale for their development, are presented in a separate document' "Proposed Design Guidelines for Improving Pavement Surface Drainage" (2J. The guidelines support an interactive computer program, PAVDRN, that can be used by practicing engineers In the process of designing new pavements or rehabilitating old pavements' is outlined In figure 39. The intended audience for the guidelines is practicing highway design engineers that work for transportation agencies or consulting firms. Improved pavement surface drainage is needed for two reasons: (~) to minimize splash and spray and (2) to control the tendency for hydroplaning. Both issues are primary safety concerns. At the request of the advisory panel for the project, the main focus of this study was on ~mprov~g surface drainage to mammae the tendency for hydroplaning. In terms of reducing the tendency for hydroplaTuT g, the needed level of drainage is defined in terms of the thickness of the film of water on the pavement. Therefore, the guidelines were developed within the context of reducing the thickness of the water film on pavement surfaces to the extent that hydroplaning is unlikely at highway design speeds. Since hydroplaning is ~7

DESIGN CRITERIA Pavement Geometry Number of lanes Section type - Tangent - Horizontal curve - Transition - Vertical crest curve - Vertical sag curve Enviromnental oramaters Rainfall intensity ~ Temperature Pavement Tvpe Dense-graded asphalt Porous asphalt Portland cement concrete ~ Grooved Portland cement concrete Desion Soeed Allowable speed for onset of hydroplaning Recommend Desion Changes Alter geometry Alter pavement surface Add appurtenances Groove (Portland cement concrete) CALCULATIONS Lenoth of flow path Calculate on basis of pavement geometry IT Hydraulic Analvses . No? Water film thickness Equation No. 10 Equation No.'s. 16-19 1 Hvdroolanino Analvsis Hydroplaning speed Equation No.'s 21-24 Rainfall Intensity Equation No. 25 -A I / Meet Design ~ \ Cntena? / \<es? Accent Desinn | Figure 39. Flow diagram representing PAVI)RN design process In "Proposed Guidelines for Improving Pavement Surface DrmT~age" (2). 118

controlled primarily by the thickness of the water film on the pavement surface, the design guidelines focus on the prediction and control of ache depth of water flowing across the pavement surface as a result of rainfall, often referred to as sheet flow. Water film thickness on highway pavements can be controlled In three fundamental ways, by: I. Minimizing the length of the longest flow path of the water over We pavement and thereby the distance over which the flow can develop; 2. Increasing the texture of the pavement surface; and 3. Removing water from the pavement's surface. In the process of using PAVDRN to implement the design guidelines, the designer is guided to (~) minimize the longest drainage path length of the section under design by altering the pavement geometry and (2) reduce the resultant water film thickness that will develop along that drainage path length by increasing the mean texture depth, choosing a surface that maximizes texture, or using permeable pavements, grooving, and appurtenances to remove water from the surface. Through the course of a typical design project, four key areas need to be considered in order to analyze and eventually reduce the potential for hydroplaning. These areas are: ~9

I. Environmental conditions: 2. Geometry of the roadway surface; 3. Pavement surface (texture) properties; and 4. Appurtenances. Each of these areas and their influence on the resulting hydroplaning speed of the designed section are discussed In detail In the guidelines (21. The environmental conditions considered are rainfall ~ntensibr and water temperature, which determines the kinematic viscosity of the water. The designer has no real control over these environmental factors but needs to select appropriate values when analyzing the effect of flow over the pavement surface and hydroplaning potential. Five section types, one for each of the basic geometric configurations used In highway design, are examined. These section are: 1. TaIlgent; 2. Superelevated curve; 3. Transition; 4. Vertical crest curve; and 5. Vertical sag curve. 120

Pavement properties that affect the water fihn thickness mclude surface characteristics, such as mean texture depth and grooving of Portland cement concrete surfaces, are considered In the process of applying PAVDRN. Porous asphalt pavement surfaces can also reduce He water film thickness and thereby contribute to the reduction of hydroplaning tendency and their presence can also be accounted for when using PAVDRN. Finally, PAVDRN also allows the design engineer to consider the effect of drainage appurtenances, such as slotted drain inlets. A complete description of the various elements that are considered In the PAVDRN program is illustrated In figure 40. A more complete description of the design process, the parameters used in the design process, and typical values for the parameters is presented In the "Proposed Design Guidelines for Improving Pavement Surface Drainage" (2) alla in Appendix A. fIN1)INGS The following findings are based on the research accomplished during the project, a survey of the literature, and a state-of-the-art survey of current practice. I. Model. The one~unensional mode} is adequate as a design tool. The simplicity and stability of the one~imensional mode} offsets any increased accuracy afforded by a two-d~mensional model. The one~mensional model as a predictor of water fiDn thickness and How path length was verified by using data from a previous study (11). 121

No. of Planes Length of Plane Grade Step Increment Wdth of Plane Cross Slope Section T,rne 1) Tangent 2) Honzontal Curare 3) Transition 4) Vertical Crest 5) Vertical Sag U=tS 1)U.S. 2) S. I. Rainfall Intenstity ~ , \ |Kinematic Viscosity |Design Speed Note: PC = Point of Curvature PI. = Point of Tangency PCC = Portland cement concrete WAC = Dense graded asphalt concrete 0GAC = 0pcn~raded asphalt concrete where OGAC includes all types of intentally draining asphalt surfaces GPCC = Grooved Ponland cement concrete Taneent Pavement Type Mean Texture Depth 1) PCC 2) DGAC 3) OGAC 4) GPCC Horizontal Cun~c Grade Cross Slope Radius of Cunran~re Wdth Pavement Type _ 2) DGAC 3) OGAC 4) GPCC Mean Texture Depth Step Increment _ Transition Length of Plane Super Elevation Tangent Cross Slope Tangent Grade width of Curve Transition Width Pavement Type_ 1) PCC 3) OGAC 4) GPCC Mean Texture Depth Step Increment Horizontal Length Cross slope width PC Grade PI' Grade Elevation: Pr-PC Vertical Crest Flow Direction Step Increment Pavement Type 1) PC Side I 2) PI. Side | 1)PCC 2) DGAC 3) OGAC 4) GPCC Mean Tex~rc Depth _ _ ~ Figure 40. Factors considered in PAVDRN program. 122 ~1 r - . , Vertical Sad | Horizontal Length | Cross slope Wldth PC Grade PI Grade Elevation: PIE Flow Direction Step Increment / Stored :_ ~ cats ~ 1) PC Side | 2) PI Side | . Pavement Typed 1) PCC 3) OGAC 14) GPCC Mean Texture Depth I I

~ Stored data V ~ 3 L IN1T For use with a second nut using data from the first run.) , 1 EPRINT (Echos input to output ) 1 CONVERT (Converts units to and from SI and English.) ~ , ADVP (Advances Page of output.) KINW (Calculates Minning's n, Water Film Thickness (WEIR), and Hydroplaning Speed UPS).) , EDGE (Determines if flow has reached the edge of the pavement.) out roar Figure 40. Factors considered in PAVDRN program (continued). 123

2. Occurrence of Hydropl~r g. In general, based on the PAVDRN mode! and the assumptions inherent in its development, hydroplaning can be expected at speeds below roadway design speeds if the length of the flow path exceeds two lane widths. 3. Water Film Thickness. Hydroplaning is initiated primarily by the depth of the water film thickness. Therefore, the primary design objective when controlling hydroplaning must be to limit the depth of the water film. 4. Reducing Water Film Thickness. There are no simple means for controlling water John thickness, but a number of methods can effectively reduce water film thickness and consequently hydroplaning potential. These include: Optimizing pavement geometry, especially cross-slope. Providing some means of additional drainage, such as use of grooved surfaces (PCC) or porous mixtures (HMA). Including slotted drains within the roadway. 5. Tests Needed for Design. The design guidelines require an estimate of the surface texture (MTD) and the coefficient of permeability Porous asphalt only). The sand patch is an acceptable test method for measuring surface texture, except for the more open (20-percent air voids) porous asphalt mixes. In these cases, an estimate of the surface texture, based on tabulated data, is sufficient. As an alternative, 124

sand patch measurements can be made on cast replicas of the surface. For the open mixes, the glass beads flow into the voids within the mixture, giving an inaccurate measure of surface texture. Based on the measurements obtained In the laboratory, the coefficient of permeability for the open-graded asphalt concrete does not exhibit a wide range of values, and values of k may be selected for design purposes from tabulated design data (k versus air voids). Given the uncertainty of this property resulting from compaction under traffic and clogging from contaminants and anti-skid material, a direct measurement (e.g., drainage lag permeameter) of k is not warranted. Based on the previous discussion, no new test procedures are needed to adopt the design guidelines developed during this project. 6. Grooving. Grooving of PCC pavements provides a reservoir for surface water and can facilitate the removal of water if the grooves are placed parallel to the flow oath. Parallel orientation is generally not practical because the flow on highway pavements is typically not transverse to the pavement. Thus, the primary contribution offered by grooving is to provide a surface reservoir unless the grooves comlect with drainage at the edge of the pavement. Once the grooves are filled with water, the tops of the grooves are the datum for the Why and do not contribute to the reduction in the hydroplaning potential. 125

7. Porous Pavements. These mixtures can enhance the water removal and Hereby reduce water film tHch~ess. They merit more consideration by highway agencies In the United States, but they are not a panacea for eliminating hydroplaning. As with grooved PCC pavements, the internal voids do not contribute to the reduction of hydroplaning; based on the field tests done In this study. hv~ronImiina can be if, , , ~ expected on these mixtures given sufficient water fiLn thickness. Other than their ability to conduct water through internal flow, the large MTD offered by porous asphalt is the main contribution offered by the mixtures to the reduction of hydroplaning potential. The high-void ~ > 20 percent), modified binder mixes used In Europe merit further evaluation in the United States. They should be used In areas where damage from freezing water and the problems of black ice are not likely. 8. Slotted Drains. These fixtures, when installed between travel lanes, offer perhaps the most effective means of controlling water film thickness from a hydraulics standpoint. They have not been used extensively In the traveled lanes and questions remain unanswered with respect to their installation (especially in rehabilitation situations) and maintenance. The ability to support traffic loads and still maintain surface smoothness has not been demonstrated and they may be susceptible to clogging from roadway debris, ice, or snow. 126

RECOMMENDATIONS AND CONCLUSIONS The following recommendations are offered based on the work accomplished during this project and on the conclusions given previously: I. Implementation. The PAVDRN program and associated guidelines need to be field tested and revised as needed. The program and the guidelines are sufficiently complete so that they can be used in a design office. Some of the parameters and algorithms will I~ely need to be modified as experience is gained with the program. 2. Database of Material Properties. A database of material properties should be gathered to supplement the information contained in PAVDRN. This information should Include typical values for the permeability of porous asphalt and topical values for the surface texture (MTD) for different pavement surfaces to include toned Portland cement concrete surfaces. A series of photographs of typical pavement sections and their associated texture depths should be considered as an addition to the design guide (21. 3. Pavement Geometry. The AASHTO design guidelines (~) should be re-evaluated In terms of current design criteria to determine if they can be modified to enhance drainage without adversely affecting vehicle handling or safety. ~27

4. Use of appurtenances. Slotted drams should be evaluated In the field to determine if they are practical when Installed In the traveled way. Manufacturers should reconsider the design of slotted drains and their Installation recommendations currently In force to maximize them for use In multi-lane pavements and to determine if slotted drains are suitable for installations In the traveled right of way. 5. Porous Asphalt Mixtures. More use should be made of these mixtures, especially the modified high a~r-void mixtures as used In France. Field trials should be conducted to monitor HPS and the long-term effectiveness of these mixtures and to validate the MPS and WDT predicted by PAVDRN. 6. Two-D~mensional Model. Further work should be done with two~mensional models to determine if they improve accuracy of PAVDRN and to determine if they are practical from a computational standpoint. ADDITIONAL STUDIES On the basis of the work done during this study, a number of additional items warrant furler study. These Include: 1. Full-scale skid resistance studies to validate PAVDRN in general and the relationship between water film thickness and hydroplaning potential in particular are needed in light of the unexpectedly low hvdronlanin~ speeds predicted during 128 , . ~. , ~

this study. The effect of water infiltration into pavement cracks and loss of water by splash and spray need to be accounted for In the prediction of water fihn Sickness. Surface Irregularities, especially rutting, need to be considered in the prediction models. 2. Field trials are needed to confirm the effectiveness of alternative asphalt and Portland cement concrete surfaces. These include porous Portland cement concrete surfaces, porous asphalt concrete, and various asphalt m~cro-surfaces. 3. The permeability of porous surface mixtures needs to be confirmed with samples removed from the field, and the practicality of a simplified method for measuring in-situ permeability must be investigated and compared to alternative measurements, such as the outflow meter. 4. For measuring pavement texture, alternatives to the sand patch method should be investigated, especially for use with porous asphalt mixtures. 129

THIS PAGE INTENTIONALLY LEFT BLANK

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Newly Launched - AI Presentation Maker

SlideTeam

Researched by Consultants from Top-Tier Management Companies

Banner Image

Powerpoint Templates

Icon Bundle

Kpi Dashboard

Professional

Business Plans

Swot Analysis

Gantt Chart

Business Proposal

Marketing Plan

Project Management

Business Case

Business Model

Cyber Security

Business PPT

Digital Marketing

Digital Transformation

Human Resources

Product Management

Artificial Intelligence

Company Profile

Acknowledgement PPT

PPT Presentation

Reports Brochures

One Page Pitch

Interview PPT

All Categories

Top 5 Summary of Findings Templates with Samples and Examples

Top 5 Summary of Findings Templates with Samples and Examples

Anushka Bansal

author-user

Imagine rifling through hundreds of pages of data and reports and still missing out on major red flags that it might be raising for major stakeholders. In this sea of information, a summary of findings emerges as a lifeboat, ensuring that researchers and decision-makers don’t drown without even a second-chance or the rescue mission reaching them.  

The central idea of compiling a summary of findings is to ensure that pivotal insights are not lost in irrelevant details. The importance of a well-crafted summary lies in its ability to distill the essence of extensive research.  Such a PPT Template  provides the roadmap to key discoveries and implications, saving time, and enabling informed decision-making.

A summary is a concise and clear overview of the main points, findings, or recommendations of a longer document, such as a report, proposal, or research paper. A summary helps your readers  understand the purpose, scope, and value of your work, without having to read the whole document. However, writing a summary that highlights key findings can be challenging, especially if you have a lot of information to condense and organize.

How to Write a Summary of Findings?

Before you start writing your summary, you need to identify the purpose and audience of your document. The purpose is the reason why you are writing the summary, such as to inform, persuade, or update your readers. The audience is the group of people who will read your summary, such as your manager, client, or colleague. Knowing your purpose and audience will help you decide what information to include, what tone to use, and how much detail to provide in your summary.

Next, you need to review the original document and extract the  findings that you want to highlight in your summary. Key findings are the most important or relevant results, conclusions, or recommendations that support your purpose and address your audience's needs or interests. To find the key findings, you can look for the main ideas, arguments, or evidence in each section of the document, as well as the executive summary, introduction, and conclusion.

After you have identified the key findings, you need to organize these  in a logical and coherent way in your summary.  

The methods in vogue to do this are chronological order, problem-solution structure, or thematic analysis. The method you choose should depend on the type, length, and complexity of the original document, as well as your purpose and audience.  This is where SlideTeam’s Summary of Findings Templates enter, to help you organize these findings in charts, tables, and graphs. 

These templates are 100% editable, customizable and  content-ready;  provide you with a structure to build your summary report highlighting key findings. With the desired flexibility to edit, they can be tailored to your original document type.

Let's explore the templates!

Template 1: Summary of Key Findings PPT Deck

The PPT Deck has over five templates to sort and structure your data. The first layout has a priority table to categorize tasks based on their recommendation and location. There are infographics like odometers to depict real-time data such as customer recognition, enhanced sales, and competitive edge. Use the columns to present highlighted information like annual sales, forecasted expenditure, and warning or detected red flags. To explore more, download now!

Summary of Key Findings PPT Deck

Download Now

Template 2: Confidential Computing Executive Summary of Key Findings PPT Template

Use this concise and effective summary template to present crucial information and data. The below given template features three primary columns. The first one comprises any relevant statements or assumptions. The second column records evidence in the form of  the data concerned and statistics. Use the last column to note the impact and consideration for other executives, with reference to the  initial statement or assumption. Download Now!

Confidential Computing Executive Summary of Key Findings PPT Template

Template 3: Summary of Internal Audit Team Findings with Rating PPT Template

Internal team audits are crucial for ensuring organizational effectiveness, identifying operational inefficiencies, and fostering continuous improvement by evaluating and enhancing the performance of internal processes and teams. Use this template to ensure a systematic review. List the areas that need to be reviewed in the vertical left column and rate their  performance in the column alongside. Keep a track of  total recommendations received in the term for each of the departments. The last column will enable you to segregate the addressed and incomplete recommendations. Download now

Summary of Internal Audit Team Findings with Rating PPT Template

Template 4: Summary of Audit Team Findings by Severity PPT Template

The internal audit teams ensure systematic reviews that enhance operational efficiency, risk management, and regulatory compliance, fostering transparency and accountability. With this tool they can summarize their findings and highlight the severity of the action plan. Users can design a  priority list of tasks and make this template ultra-useful.  Rate the issues in the range of extreme, high, medium, to low. Get ready to act, download now!

Summary of Internal Audit Team Findings with Rating PPT Template

Template 5: Summary of Key Findings and Recommendations Matrix PPT Template 

Use this Template to highlight issues that require actions to be taken care of. Write in category the issue and record the related findings and recommendation. This  Summary PPT Template  has a matrix that plots the severity of the issue against the effort to implement the contingency plan. This will enable you to plan out actions and budgets for the upcoming term, while ensuring company sustainability. Download Now! 

Summary of Key Findings and Recommendations Matrix PPT Template

KEEP IT SHORT AND SWEET!

A summary of the findings template presents key information about the most important outcomes of a project or operation, including the best effect estimate and the certainty of the evidence for each outcome. An interactive summary of findings presentation enables users to view more or fewer outcomes and more or less information about each outcome as per requirement. Compile summaries in your preferred format with these hands-on templates that offer practical, actionable and implementable information.

Related posts:

  • How to Design the Perfect Service Launch Presentation [Custom Launch Deck Included]
  • Quarterly Business Review Presentation: All the Essential Slides You Need in Your Deck
  • [Updated 2023] How to Design The Perfect Product Launch Presentation [Best Templates Included]
  • 99% of the Pitches Fail! Find Out What Makes Any Startup a Success

Liked this blog? Please recommend us

research summary of findings example

This form is protected by reCAPTCHA - the Google Privacy Policy and Terms of Service apply.

digital_revolution_powerpoint_presentation_slides_Slide01

--> Digital revolution powerpoint presentation slides

sales_funnel_results_presentation_layouts_Slide01

--> Sales funnel results presentation layouts

3d_men_joinning_circular_jigsaw_puzzles_ppt_graphics_icons_Slide01

--> 3d men joinning circular jigsaw puzzles ppt graphics icons

Business Strategic Planning Template For Organizations Powerpoint Presentation Slides

--> Business Strategic Planning Template For Organizations Powerpoint Presentation Slides

Future plan powerpoint template slide

--> Future plan powerpoint template slide

project_management_team_powerpoint_presentation_slides_Slide01

--> Project Management Team Powerpoint Presentation Slides

Brand marketing powerpoint presentation slides

--> Brand marketing powerpoint presentation slides

Launching a new service powerpoint presentation with slides go to market

--> Launching a new service powerpoint presentation with slides go to market

agenda_powerpoint_slide_show_Slide01

--> Agenda powerpoint slide show

Four key metrics donut chart with percentage

--> Four key metrics donut chart with percentage

Engineering and technology ppt inspiration example introduction continuous process improvement

--> Engineering and technology ppt inspiration example introduction continuous process improvement

Meet our team representing in circular format

--> Meet our team representing in circular format

Google Reviews

  • +254728776317
  • info@masomomsingi.com

Masomo Msingi Desktop App

MASOMO MSINGI PUBLISHERS

MASOMO MSINGI PUBLISHERS

KASNEB|KNEC|KISM

SUMMARY OF FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the whole research process. It first provides a brief summary of the whole study with particular reference to the research problem, research methodology, results, the main contributions of the research and recommendations for future work. It provides a summary of the main findings of the study, conclusions and recommendations. This chapter should be reasonably short.

The readers would want to know whether the objectives of the study were achieved, and whether the work has contributed to knowledge. Therefore, when compiling this chapter, a researcher should focus on answering these questions.

Any conclusions drawn should be those resulting from the study. A researcher should make relevant references to chapters that support the listed findings and may also refer to the work of others for comparison. However, one should not discuss the stu1y’s results here.

Summary of the Main Findings

In summarizing, a researcher should identify the findings of the study and discuss them briefly. In addition, the methodological problems encountered should be outlined so that future/other researchers may take the relevant precautions. The researcher should clearly pinpoint if the study objectives were achieved or not. An effective summary has the following qualities:

  • It bases on results from the study.
  • It is brief, all statements are concise, and pinpoint to the contributions that the researcher has made.

Recommendations

  • All statements are factual.

One way to present the summary is to use one paragraph for each idea. Alternatively, the researcher can use a point-by-point format.

The Conclusion section should be very brief, about half a page. It should indicate what the study results reaffirm. It should also briefly discuss some of the strategies highlighted by the respondents. In this section, the researcher should clearly state how the study has contributed to knowledge.

The recommendations section is important in research. This section often exposes further problems and introduces more questions. As a researcher, there is a time limit to the research project, so it is unlikely that the study would have solved all the problems associated with the area of study. The researcher is therefore expected to make suggestions about how his/her work can be improved, and also based on the study findings, point out whether there are areas that deserve further investigation. This section will indicate whether a researcher has a firm appreciation of his/her work, and whether he/ she has given sufficient thought to its implications, not only within the narrow confines of the research topic but to related fields. This section reflects the researcher’s foresightedness and creativity.

' src=

Written by  MJ

Examples

AI Generator

research summary of findings example

Research is a systematic investigation to establish facts and reach new conclusions. It involves collecting and analyzing data, often using a research questionnaire , and presenting findings to expand knowledge in a specific field. Key aspects include adhering to research ethics and exploring crisis communication research topics to manage and communicate effectively during crises.

What is Research?

Research is a systematic investigation and study of materials, sources, and data to establish facts and reach new conclusions. It involves gathering information, analyzing it critically, and presenting findings in a structured manner to increase knowledge in a specific field or address a particular problem. This process is fundamental in various disciplines, including science, humanities, and social sciences, and it helps to develop theories, inform policy, and contribute to the advancement of society.

Examples of Research

Examples of Research

  • Medical Research
  • Educational Research
  • Environmental Research
  • Psychological Research
  • Market Research
  • Historical Research
  • Sociological Research
  • Technological Research
  • Crisis Communication Research
  • Agricultural Research
  • Economic Research
  • Political Research
  • Linguistic Research
  • Public Health Researc h
  • Cultural Research
  • Genetic Research
  • Behavioral Research
  • Engineering Research
  • Legal Research
  • Anthropological Research

Examples of Research in a Sentence

  • The research conducted by the university scientists led to a breakthrough in renewable energy technology.
  • She spent several months doing research for her thesis on ancient Greek literature.
  • Our team is currently engaged in market research to understand consumer preferences better.
  • The research findings were published in a prestigious medical journal.
  • He was awarded a grant to continue his research on climate change and its impact on coastal ecosystems.
  • Before launching the new product, the company conducted extensive research to ensure its success.
  • Her research into the effects of sleep deprivation on cognitive function provided valuable insights.
  • The research project aims to develop more effective treatments for Alzheimer’s disease.
  • During the conference, many scholars presented their research on the latest advancements in artificial intelligence.
  • The research paper highlighted the importance of early childhood education in academic achievement.

Research Examples for Students

  • Science Fair Projects: Students conduct experiments to test hypotheses, such as examining the effects of different fertilizers on plant growth.
  • History Papers: Students research a historical event, like the Civil Rights Movement, analyzing primary and secondary sources to understand its impact.
  • Environmental Studies: Students investigate local water sources to assess pollution levels and propose solutions for improvement.
  • Literature Analysis: Students research the themes and symbols in a novel, such as analyzing the use of symbolism in “To Kill a Mockingbird” by Harper Lee.
  • Social Studies Projects: Students explore different cultures by researching their customs, traditions, and societal structures.
  • Health Studies: Students study the effects of nutrition on adolescent health, conducting surveys and reviewing scientific literature.
  • Technology Projects: Students research the development of artificial intelligence and its potential impacts on various industries.
  • Business Studies: Students analyze market trends and consumer behavior to develop a marketing plan for a hypothetical product.
  • Psychology Experiments: Students conduct research on human behavior, such as studying the effects of sleep on memory retention.
  • Creative Arts: Students research different art movements, like Impressionism, and create a presentation showcasing key artists and their works.

Quantitative Research Examples

  • Survey on Consumer Preferences: A company surveys 1,000 customers to quantify their preferences for different product features, such as color, size, and price.
  • Medical Trials: A pharmaceutical company conducts a clinical trial involving 500 participants to measure the effectiveness of a new drug.
  • Educational Achievement Study: Researchers collect standardized test scores from 10,000 students across various schools to analyze the impact of different teaching methods on student performance.
  • Market Analysis: An economist analyzes sales data from 50 retail stores to identify trends and predict future sales patterns.
  • Census Data Analysis: Government agencies use census data to quantify population growth, demographic changes, and housing needs over a decade.
  • Customer Satisfaction Survey: A restaurant chain distributes a survey to 2,000 customers to measure satisfaction levels and identify areas for improvement.
  • Behavioral Economics Study: Researchers conduct an experiment with 300 participants to quantify the effects of different incentives on saving behaviors.
  • Workplace Productivity Study: A company tracks the productivity levels of 1,200 employees over six months to assess the impact of flexible working hours.
  • Public Health Research: Health researchers analyze data from 20,000 participants to determine the correlation between exercise frequency and incidence of chronic diseases.
  • Political Polling: Pollsters survey 5,000 voters to predict election outcomes and understand voter preferences and behavior.

Qualitative Research Examples

  • Interview Studies: Researchers conduct in-depth interviews with participants to explore their experiences and perspectives on a specific topic, such as the impact of remote learning on student engagement.
  • Focus Groups: A group of participants discusses a particular issue, like consumer attitudes towards sustainable fashion, allowing researchers to gather diverse opinions and insights.
  • Ethnography: Researchers immerse themselves in a community or organization to observe and document cultural practices, social interactions, and daily routines, such as studying the work culture in a tech startup.
  • Case Studies: An in-depth analysis of an individual, group, or event, like examining the recovery process of a patient with a rare medical condition, to understand the complexities involved.
  • Narrative Research: Collecting and analyzing stories from individuals to understand how they make sense of their experiences, such as exploring the life stories of immigrants adapting to a new country.
  • Phenomenological Research: Investigating the lived experiences of individuals regarding a particular phenomenon, such as the experiences of first-time mothers during childbirth.
  • Grounded Theory: Developing a theory based on data collected from participants, like studying the coping mechanisms of people living with chronic pain to formulate a new psychological model.
  • Content Analysis: Analyzing texts, media, or documents to identify patterns and themes, such as examining newspaper articles to understand media representation of climate change.
  • Action Research: Collaborating with participants to address a problem and implement solutions, such as working with teachers to develop and test new classroom management strategies.
  • Discourse Analysis: Studying communication patterns, language use, and social interactions within a specific context, like analyzing political speeches to understand how leaders frame policy issues.

Types of Research with Examples

Research is a systematic investigation aimed at discovering new information, understanding existing phenomena, and solving problems. There are several types of research, each with its own methodologies and purposes. Below are the main types of research with examples.

1. Basic Research

Basic research, also known as pure or fundamental research, is conducted to increase knowledge and understanding of fundamental principles. It is not aimed at solving immediate practical problems but rather at gaining a deeper insight into the subject. Example: A study investigating the molecular structure of proteins to understand how they function in the human body.

2. Applied Research

Applied research is designed to solve practical problems and improve the human condition. It uses the knowledge gained from basic research to develop new products, processes, or techniques. Example: Developing a new medication to treat Alzheimer’s disease based on findings from basic research on brain cell functions.

3. Quantitative Research

Quantitative research involves the systematic empirical investigation of observable phenomena via statistical, mathematical, or computational techniques. It seeks to quantify data and typically uses surveys, questionnaires, or experiments. Example: Conducting a survey to measure customer satisfaction levels among users of a new smartphone.

4. Qualitative Research

Qualitative research aims to understand human behavior and the reasons that govern such behavior. It involves collecting non-numerical data, such as interviews, observations, and open-ended surveys. Example: Interviewing patients to understand their experiences and feelings about a new healthcare program.

5. Descriptive Research

Descriptive research seeks to describe characteristics of a population or phenomenon being studied. It does not answer questions about how/when/why the characteristics occurred, but rather “what” is happening. Example: A study detailing the demographics of students in a particular school district.

6. Experimental Research

Experimental research is used to establish cause-and-effect relationships among variables. It involves manipulating one variable to determine if changes in one variable cause changes in another variable. Example: Testing the effectiveness of a new drug by administering it to one group of patients and a placebo to another group.

7. Correlational Research

Correlational research investigates the relationship between two or more variables without manipulating them. It identifies patterns, trends, and associations between variables. Example: Studying the correlation between hours of study and academic performance among high school students.

8. Exploratory Research

Exploratory research is conducted to explore a problem or a new area where little information exists. It is often the initial research conducted before more conclusive research. Example: Exploring the potential uses of a newly discovered plant with medicinal properties.

9. Longitudinal Research

Longitudinal research involves repeated observations of the same variables over a period of time. It is useful for studying changes and developments over time. Example: Following a group of children from kindergarten through high school to study the impact of early education on later academic success.

10. Cross-sectional Research

Cross-sectional research analyzes data from a population, or a representative subset, at a specific point in time. It provides a snapshot of the variables of interest. Example: A survey assessing the health status of a community at a single point in time.

11. Case Study Research

Case study research involves an in-depth, detailed examination of a single subject, group, or event. It provides a comprehensive understanding of the case being studied. Example: Analyzing the business strategies of a successful startup to understand the factors contributing to its success.

12. Action Research

Action research is conducted to solve an immediate problem or improve p Example: Implementing and assessing a new teaching method in a classroom to improve student engagement and learning outcomes.

Types of Research Methods and Example

  • Method: Distributing questionnaires or online surveys to collect data from a large group of people.
  • Example: Conducting a national survey to assess public opinion on climate change policies.
  • Method: Manipulating one or more variables to determine their effect on another variable in a controlled environment.
  • Example: Testing the impact of a new educational program on student performance by comparing test scores of participants and non-participants.
  • Method: Observing subjects in their natural environment without interference.
  • Example: Studying children’s behavior in playgrounds to understand social interactions and play patterns.
  • Method: Conducting an in-depth analysis of a single subject or a small group of subjects.
  • Example: Analyzing the business strategies of a successful startup to identify key factors contributing to its growth.
  • Method: Systematically examining texts, media, and documents to identify patterns and themes.
  • Example: Analyzing social media posts to understand public sentiment during a major political event.

What are the Characteristics of Research?

  • Research follows a structured and organized approach, involving specific steps and methodologies to ensure consistency and reliability.
  • Research includes control mechanisms to minimize bias and external variables that may influence the results, especially in experimental studies.
  • Research relies on observable and measurable evidence. Data is collected through direct or indirect observation and experimentation.
  • Research is based on logical reasoning and sound theoretical frameworks. Conclusions are drawn from data analysis and established principles.
  • Research can be repeated by other researchers to verify results. Replication helps to confirm the validity and reliability of findings.
  • Research aims to be unbiased and impartial. The researcher’s personal beliefs and opinions should not influence the study’s outcomes.
  • Research involves critical analysis and interpretation of data. Researchers seek to understand patterns, relationships, and causality within the data.
  • Research can involve numerical data (quantitative) or non-numerical data (qualitative), depending on the nature of the study and the research questions.
  • Research adheres to ethical standards, ensuring the rights and well-being of participants are protected. Informed consent, confidentiality, and integrity are essential.
  • Research seeks to explore new ideas, develop new theories, and discover new knowledge. It often addresses gaps in existing literature.

Importance of Research

Research is crucial in various fields, offering numerous benefits and advancing knowledge in significant ways. Here are some key reasons why research is important:

1. Advancement of Knowledge

Research pushes the boundaries of what is known and explores new areas of inquiry. It helps to uncover new facts, theories, and insights that contribute to the collective understanding of a subject.

2. Informed Decision-Making

Research provides reliable data and evidence that guide decisions in fields such as healthcare, business, education, and public policy. For example, medical research can lead to the development of new treatments and drugs.

3. Problem-Solving

Research identifies and analyzes problems, proposing effective solutions. For instance, environmental research can help address climate change by finding sustainable practices and technologies.

4. Innovation and Development

Research fosters innovation by developing new products, technologies, and processes. Technological advancements, such as smartphones and renewable energy sources, are direct results of extensive research.

5. Economic Growth

Research drives economic development by creating new industries and improving existing ones. It leads to job creation, enhances productivity, and contributes to a nation’s economic stability.

6. Educational Enrichment

Research enhances educational content and teaching methods. It provides a deeper understanding of subjects, helping educators develop better curricula and instructional strategies.

FAQ’s

What is a hypothesis in research.

A hypothesis is a testable prediction about the relationship between two or more variables. It guides the research process.

How do you choose a research topic?

Select a topic that interests you, fills a gap in existing literature, and is feasible in terms of resources and time.

What is a literature review?

A literature review is a comprehensive summary of previous research on a topic. It identifies trends, gaps, and key findings.

What is the difference between primary and secondary data?

Primary data is collected firsthand by the researcher. Secondary data is gathered from existing sources like books, articles, and reports.

What are research ethics?

Research ethics involve principles like honesty, integrity, and respect for participants. Ethical guidelines ensure research is conducted responsibly.

What is a research design?

A research design is a plan that outlines how to collect and analyze data. It includes methods, sampling, and procedures.

What is sampling in research?

Sampling is selecting a subset of individuals from a population to represent the entire group. It can be random or non-random.

What is data analysis?

Data analysis involves processing and interpreting data to draw meaningful conclusions. Techniques vary based on the research type.

How do you write a research paper?

A research paper includes an introduction, literature review, methodology, results, discussion, and conclusion. Follow a clear and logical structure.

What is peer review?

Peer review is a process where experts evaluate a researcher’s work for quality, accuracy, and validity before publication.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

IMAGES

  1. (PDF) CHAPTER 4-ANALYSIS OF FINDINGS-Summary of findings

    research summary of findings example

  2. 7+ Research Report Templates

    research summary of findings example

  3. Research Summary

    research summary of findings example

  4. Summary of findings during the research.

    research summary of findings example

  5. 1:-Summary of the previous research findings

    research summary of findings example

  6. Summary of Findings template

    research summary of findings example

VIDEO

  1. Tips to Write Summary Findings, Discussion Conclusions and Recommendations

  2. Write a Summary of your Research Findings (REMY8412

  3. PR 1 Summary Findings, Conclusions and Recommendations part 4

  4. Research Summary

  5. Session 5 Qualitative Research Methods 2

  6. meaning of research

COMMENTS

  1. Research Summary

    Research Summary. Definition: A research summary is a brief and concise overview of a research project or study that highlights its key findings, main points, and conclusions. It typically includes a description of the research problem, the research methods used, the results obtained, and the implications or significance of the findings.

  2. (PDF) CHAPTER 5 SUMMARY, CONCLUSIONS, IMPLICATIONS AND ...

    5.3 Summary of Findings . ... The findings for Research Question 4 revealed ... A short presentation based on the first 2 Research Questions from my PhD thesis and examples of some of my findings.

  3. Chapter 14: Completing 'Summary of findings' tables and ...

    Figure 14.1.a provides an example of a 'Summary of findings' table. Figure 15.1.b provides an alternative format that may further facilitate users' understanding and interpretation of the review's findings. Evidence evaluating different formats suggests that the 'Summary of findings' table should include a risk difference as a ...

  4. PDF How to Summarize a Research Article

    A research article usually has seven major sections: Title, Abstract, Introduction, Method, Results, Discussion, and References. The first thing you should do is to decide why you need to summarize the article. If the purpose of the summary is to take notes to later remind yourself about the article you may want to write a longer summary ...

  5. How To Write A Research Summary

    So, follow the steps below to write a research summary that sticks. 1. Read the parent paper thoroughly. You should go through the research paper thoroughly multiple times to ensure that you have a complete understanding of its contents. A 3-stage reading process helps.

  6. Research Findings

    Conclusion: This section provides a summary of the key findings and the main conclusions of the study. ... Following is a Research Findings Example sample for students: Title: The Effects of Exercise on Mental Health. Sample: 500 participants, both men and women, between the ages of 18-45.

  7. Research Paper Summary: How to Write a Summary of a Research ...

    A summary must be coherent and cogent and should make sense as a stand-alone piece of writing. It is typically 5% to 10% of the length of the original paper; however, the length depends on the length and complexity of the article and the purpose of the summary. Accordingly, a summary can be several paragraphs or pages, a single paragraph, or ...

  8. How to Write a Summary

    Table of contents. When to write a summary. Step 1: Read the text. Step 2: Break the text down into sections. Step 3: Identify the key points in each section. Step 4: Write the summary. Step 5: Check the summary against the article. Other interesting articles. Frequently asked questions about summarizing.

  9. How to Write Discussions and Conclusions

    Begin with a clear statement of the principal findings. This will reinforce the main take-away for the reader and set up the rest of the discussion. Explain why the outcomes of your study are important to the reader. Discuss the implications of your findings realistically based on previous literature, highlighting both the strengths and ...

  10. Research Summary: What is it & how to write one

    A research summary is a piece of writing that summarizes your research on a specific topic. Its primary goal is to offer the reader a detailed overview of the study with the key findings. A research summary generally contains the article's structure in which it is written. You must know the goal of your analysis before you launch a project.

  11. How to Write a Conclusion for Research Papers (with Examples)

    A research paper conclusion is not just a summary of your study, but a synthesis of the key findings that ties the research together and places it in a broader context. A research paper conclusion should be concise, typically around one paragraph in length.

  12. Writing a Research Paper Conclusion

    Table of contents. Step 1: Restate the problem. Step 2: Sum up the paper. Step 3: Discuss the implications. Research paper conclusion examples. Frequently asked questions about research paper conclusions.

  13. PDF Research-to-Practice How-to-Summarize Guide

    E. Research Methodology (Summary) In paragraph form, describe the basic elements of your research design. Use words that lay practitioners will understand. Word Limit: About 200 words for each separate experiment or study that is described (up to 500 words if three or more experiments or separate studies were conducted).

  14. Research Summary: What Is It & How To Write One

    A research summary is a piece of writing that summarizes the research of a specific topic into bite-size easy-to-read and comprehend articles. The primary goal is to give the reader a detailed outline of the key findings of a research. It is an unavoidable requirement in colleges and universities. To write a good research summary, you must ...

  15. PDF Preparing Summary of Findings (SoF) Tables

    A Summary of Findings (SoF) table provides a summary of the main results of a review together with an assessment of the quality or certainty1 of the evidence (assessed using the GRADE tool) upon which these results are based. Assessing the certainty of the evidence for each outcome using GRADE is now compulsory in all new and updated reviews.

  16. How to Write a Research Paper Summary

    A typical research summary includes the following key sections: introduction (including the research question or objective), methodology (briefly describing the research design and methods), results (summarizing the key findings), discussion (highlighting the implications and significance of the findings), and conclusion (providing a summary of ...

  17. Scientific Journal Article Summary Example: Best Practices

    Focus on what findings reveal about the research problem. Capture enough detail to convey original intent. Synthesize using clear, concise language ... Summary of a Research Article Example. Here is an example summary incorporating the best practices covered in this article: Smith et al. (2021) set out to understand the effects of climate ...

  18. How to present an informative summary of findings table for systematic

    More information on completing summary of findings tables and grading the certainty of the evidence can be found in Chapter 14 of The Cochrane Handbook for Systematic Reviews of Interventions . Cochrane Training has produced a micro-learning module on creating informative summary of findings tables to accompany this article ( https://links ...

  19. How to Write the Discussion Section of a Research Paper

    The discussion section provides an analysis and interpretation of the findings, compares them with previous studies, identifies limitations, and suggests future directions for research. This section combines information from the preceding parts of your paper into a coherent story. By this point, the reader already knows why you did your study ...

  20. How to Write a Literature Review

    Tip If you are writing the literature review as part of your dissertation or thesis, reiterate your central problem or research question and give a brief summary of the scholarly context. You can emphasize the timeliness of the topic ("many recent studies have focused on the problem of x") or highlight a gap in the literature ("while ...

  21. Chapter 5 Summary, Findings, and Recommendations

    A more complete description of the design process, the parameters used in the design process, and typical values for the parameters is presented In the "Proposed Design Guidelines for Improving Pavement Surface Drainage" (2) alla in Appendix A. fIN1)INGS The following findings are based on the research accomplished during the project, a survey ...

  22. Top 5 Summary of Findings Templates with Samples and Examples

    Template 1: Summary of Key Findings PPT Deck. The PPT Deck has over five templates to sort and structure your data. The first layout has a priority table to categorize tasks based on their recommendation and location. There are infographics like odometers to depict real-time data such as customer recognition, enhanced sales, and competitive edge.

  23. Research Summary

    Here's a few steps on how to make a first draft: First, state the research question in the introduction of your summary. This holds the ground as to the summary's direction. Provide an explanation why your research is interesting and how it can help your target recipients. Second, state the hypothesis you wish to prove.

  24. Summary of Findings, Conclusions and Recommendations

    An effective summary has the following qualities: It bases on results from the study. It is brief, all statements are concise, and pinpoint to the contributions that the researcher has made. Recommendations. All statements are factual. One way to present the summary is to use one paragraph for each idea. Alternatively, the researcher can use a ...

  25. PDF CHAPTER 6 Summary of findings, conclusions and recommendations

    The presses publish research monographs, undergraduate texts, school textbooks, professional books, trade books, reference works and research journals. The main publishing categories are undergraduate textbooks and research monographs. Table 5.4 gives the summary of categories published by each press. 5. Are they actually sold, if so in what ...

  26. Research

    Research is a systematic investigation to establish facts and reach new conclusions. It involves collecting and analyzing data, often using a research questionnaire, and presenting findings to expand knowledge in a specific field.Key aspects include adhering to research ethics and exploring crisis communication research topics to manage and communicate effectively during crises.