offer

How to Write an Impressive Thesis Results Section

master thesis results chapter

After collecting and analyzing your research data, it’s time to write the results section. This article explains how to write and organize the thesis results section, the differences in reporting qualitative and quantitative data, the differences in the thesis results section across different fields, and the best practices for tables and figures.

What is the thesis results section?

The thesis results section factually and concisely describes what was observed and measured during the study but does not interpret the findings. It presents the findings in a logical order.

What should the thesis results section include?

  • Include all relevant results as text, tables, or figures
  • Report the results of subject recruitment and data collection
  • For qualitative research, present the data from all statistical analyses, whether or not the results are significant
  • For quantitative research, present the data by coding or categorizing themes and topics
  • Present all secondary findings (e.g., subgroup analyses)
  • Include all results, even if they do not fit in with your assumptions or support your hypothesis

What should the thesis results section not include?

  • If the study involves the thematic analysis of an interview, don’t include complete transcripts of all interviews. Instead, add these as appendices
  • Don’t present raw data. These may be included in appendices
  • Don’t include background information (this should be in the introduction section )
  • Don’t speculate on the meaning of results that do not support your hypothesis. This will be addressed later in the discussion and conclusion sections.
  • Don’t repeat results that have been presented in tables and figures. Only highlight the pertinent points or elaborate on specific aspects

How should the thesis results section be organized?

The opening paragraph of the thesis results section should briefly restate the thesis question. Then, present the results objectively as text, figures, or tables.

Quantitative research presents the results from experiments and  statistical tests , usually in the form of tables and figures (graphs, diagrams, and images), with any pertinent findings emphasized in the text. The results are structured around the thesis question. Demographic data are usually presented first in this section.

For each statistical test used, the following information must be mentioned:

  • The type of analysis used (e.g., Mann–Whitney U test or multiple regression analysis)
  • A concise summary of each result, including  descriptive statistics   (e.g., means, medians, and modes) and  inferential statistics   (e.g., correlation, regression, and  p  values) and whether the results are significant
  • Any trends or differences identified through comparisons
  • How the findings relate to your research and if they support or contradict your hypothesis

Qualitative research   presents results around key themes or topics identified from your data analysis and explains how these themes evolved. The data are usually presented as text because it is hard to present the findings as figures.

For each theme presented, describe:

  • General trends or patterns observed
  • Significant or representative responses
  • Relevant quotations from your study subjects

Relevant characteristics about your study subjects

Differences among the results section in different fields of research

Nevertheless, results should be presented logically across all disciplines and reflect the thesis question and any hypotheses that were tested.

The presentation of results varies considerably across disciplines. For example, a thesis documenting how a particular population interprets a specific event and a thesis investigating customer service may both have collected data using interviews and analyzed it using similar methods. Still, the presentation of the results will vastly differ because they are answering different thesis questions. A science thesis may have used experiments to generate data, and these would be presented differently again, probably involving statistics. Nevertheless, results should be presented logically across all disciplines and reflect the thesis question and any  hypotheses that were tested.

Differences between reporting thesis results in the Sciences and the Humanities and Social Sciences (HSS) domains

In the Sciences domain (qualitative and experimental research), the results and discussion sections are considered separate entities, and the results from experiments and statistical tests are presented. In the HSS domain (qualitative research), the results and discussion sections may be combined.

There are two approaches to presenting results in the HSS field:

  • If you want to highlight important findings, first present a synopsis of the results and then explain the key findings.
  • If you have multiple results of equal significance, present one result and explain it. Then present another result and explain that, and so on. Conclude with an overall synopsis.

Best practices for using tables and figures

The use of figures and tables is highly encouraged because they provide a standalone overview of the research findings that are much easier to understand than wading through dry text mentioning one result after another. The text in the results section should not repeat the information presented in figures and tables. Instead, it should focus on the pertinent findings or elaborate on specific points.

Some popular software programs that can be used for the analysis and presentation of statistical data include  Statistical Package for the Social Sciences (SPSS ) ,  R software ,  MATLAB , Microsoft Excel,  Statistical Analysis Software (SAS) ,  GraphPad Prism , and  Minitab .

The easiest way to construct tables is to use the  Table function in Microsoft Word . Microsoft Excel can also be used; however, Word is the easier option.

General guidelines for figures and tables

  • Figures and tables must be interpretable independent from the text
  • Number tables and figures consecutively (in separate lists) in the order in which they are mentioned in the text
  • All tables and figures must be cited in the text
  • Provide clear, descriptive titles for all figures and tables
  • Include a legend to concisely describe what is presented in the figure or table

Figure guidelines

  • Label figures so that the reader can easily understand what is being shown
  • Use a consistent font type and font size for all labels in figure panels
  • All abbreviations used in the figure artwork should be defined in the figure legend

Table guidelines

  • All table columns should have a heading abbreviation used in tables should be defined in the table footnotes
  • All numbers and text presented in tables must correlate with the data presented in the manuscript body

Quantitative results example : Figure 3 presents the characteristics of unemployed subjects and their rate of criminal convictions. A statistically significant association was observed between unemployed people <20 years old, the male sex, and no household income.

master thesis results chapter

Qualitative results example: Table 5 shows the themes identified during the face-to-face interviews about the application that we developed to anonymously report corruption in the workplace. There was positive feedback on the app layout and ease of use. Concerns that emerged from the interviews included breaches of confidentiality and the inability to report incidents because of unstable cellphone network coverage.

Table 5. Themes and selected quotes from the evaluation of our app designed to anonymously report workplace corruption.

Tips for writing the thesis results section

  • Do not state that a difference was present between the two groups unless this can be supported by a significant  p-value .
  • Present the findings only . Do not comment or speculate on their interpretation.
  • Every result included  must have a corresponding method in the methods section. Conversely, all methods  must have associated results presented in the results section.
  • Do not explain commonly used methods. Instead, cite a reference.
  • Be consistent with the units of measurement used in your thesis study. If you start with kg, then use the same unit all throughout your thesis. Also, be consistent with the capitalization of units of measurement. For example, use either “ml” or “mL” for milliliters, but not both.
  • Never manipulate measurement outcomes, even if the result is unexpected. Remain objective.

Results vs. discussion vs. conclusion

Results are presented in three sections of your thesis: the results, discussion, and conclusion.

  • In the results section, the data are presented simply and objectively. No speculation or interpretation is given.
  • In the discussion section, the meaning of the results is interpreted and put into context (e.g., compared with other findings in the literature ), and its importance is assigned.
  • In the conclusion section, the results and the main conclusions are summarized.

A thesis is the most crucial document that you will write during your academic studies. For professional thesis editing and thesis proofreading services , visit Enago Thesis Editing for more information.

Editor’s pick

Get free updates.

Subscribe to our newsletter for regular insights from the research and publishing industry!

Review Checklist

Have you  completed all data collection procedures and analyzed all results ?

Have you  included all results relevant to your thesis question, even if they do not support your hypothesis?

Have you reported the results  objectively , with no interpretation or speculation?

For quantitative research, have you included both  descriptive and  inferential statistical results and stated whether they support or contradict your hypothesis?

Have you used  tables and figures to present all results?

In your thesis body, have you presented only the pertinent results and elaborated on specific aspects that were presented in the tables and figures?

Are all tables and figures  correctly labeled and cited in numerical order in the text?

Frequently Asked Questions

What file formats do you accept +.

We accept all file formats, including Microsoft Word, Microsoft Excel, PDF, Latex, etc.

How to identify whether paraphrasing is required? +

We provide a report entailing recommendations for a single Plagiarism Check service. You can also write to us at [email protected] for further assistance as paraphrasing is sold offline and has a relatively high conversion in most geographies. 

What information do i need to provide? +

Please upload your research manuscript when you place the order. If you want to include the tables, charts, and figure legends in the plagiarism check, please ensure that all content is in editable formats and in one single document. 

Is repetition percentage of 25-30% considered acceptable by the journal for my manuscript? +

Acceptable repetition rate varies by journal but aim for low percentages (usually <5%). Avoid plagiarism, cite sources, and use detection tools. High plagiarism can lead to rejection, reputation damage, and serious consequences. Consult your institution for guidance on addressing plagiarism concerns.

Do you offer help to rewrite and paraphrase the plagiarized text in my manuscript? +

We can certainly help you rewrite and paraphrase text in your manuscript to ensure it is not plagiarized under our Developmental Content rewriting service.  You can provide specific passages or sentences that you suspect may be plagiarized, and we can assist you in rephrasing them to ensure originality. 

Which international languages does iThenticate have content for in its database? +

iThenticate searches for content matches in the following 30 languages: Chinese (Simplified and Traditional), Japanese, Thai, Korean, Catalan, Croatian, Czech, Danish, Dutch, Finnish, French, German, Hungarian, Italian, Norwegian (Bokmal, Nynorsk), Polish, Portuguese, Romanian, Serbian, Slovak, Slovenian, Spanish, Swedish, Arabic, Greek, Hebrew, Farsi, Russian, and Turkish. Please note that iThenticate will match your text with text of the same language.

Welcome to Student Learning Te Taiako

Writing the results chapter.

The results section describes the data that you gathered and the outcomes of the analysis of that data.

In this section, you will typically find:

  • graphs, tables, and charts supported by written descriptions and made identifiable by a title or legend ​
  • key findings emphasized—qualitative research often includes historical sources or interview excerpts, while quantitative research will often include measurements or observations from experiments
  • in-text citations are infrequent or absent.

This chapter of your thesis lays the foundations for your Discussion chapter where you can elaborate on the implications of your results for theory or practice in your discipline.

Presenting your data will involve making decisions about what is most important for your reader to understand about how you have addressed your research questions. Make decisions about what specific data to present in this section by thinking back to your research question or your research aims.

You might think of the metaphor of the carpenter who has more than enough wood to build with but will only succeed by selecting what is most suitable for the particular task:

“[Data] is a resource you can use to support the claims you want to make. Carpenters don’t try to use all the wood in the woodshed to make a particular table. They don’t see the variety of materials they have available as a problem to be solved... Think of the abundance of your data in the same way.” —from Inframethodology

Video resource

The video below details the features of a good results chapter and the process that goes into preparing it.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • How to Write a Results Section | Tips & Examples

How to Write a Results Section | Tips & Examples

Published on 27 October 2016 by Bas Swaen . Revised on 25 October 2022 by Tegan George.

A results section is where you report the main findings of the data collection and analysis you conducted for your thesis or dissertation . You should report all relevant results concisely and objectively, in a logical order. Don’t include subjective interpretations of why you found these results or what they mean – any evaluation should be saved for the discussion section .

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

How to write a results section, reporting quantitative research results, reporting qualitative research results, results vs discussion vs conclusion, checklist: research results, frequently asked questions about results sections.

When conducting research, it’s important to report the results of your study prior to discussing your interpretations of it. This gives your reader a clear idea of exactly what you found and keeps the data itself separate from your subjective analysis.

Here are a few best practices:

  • Your results should always be written in the past tense.
  • While the length of this section depends on how much data you collected and analysed, it should be written as concisely as possible.
  • Only include results that are directly relevant to answering your research questions . Avoid speculative or interpretative words like ‘appears’ or ‘implies’.
  • If you have other results you’d like to include, consider adding them to an appendix or footnotes.
  • Always start out with your broadest results first, and then flow into your more granular (but still relevant) ones. Think of it like a shoe shop: first discuss the shoes as a whole, then the trainers, boots, sandals, etc.

The only proofreading tool specialized in correcting academic writing

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

master thesis results chapter

Correct my document today

If you conducted quantitative research , you’ll likely be working with the results of some sort of statistical analysis .

Your results section should report the results of any statistical tests you used to compare groups or assess relationships between variables . It should also state whether or not each hypothesis was supported.

The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share:

  • A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression ). A more detailed description of your analysis should go in your methodology section.
  • A concise summary of each relevant result, both positive and negative. This can include any relevant descriptive statistics (e.g., means and standard deviations ) as well as inferential statistics (e.g., t scores, degrees of freedom , and p values ). Remember, these numbers are often placed in parentheses.
  • A brief statement of how each result relates to the question, or whether the hypothesis was supported. You can briefly mention any results that didn’t fit with your expectations and assumptions, but save any speculation on their meaning or consequences for your discussion  and conclusion.

A note on tables and figures

In quantitative research, it’s often helpful to include visual elements such as graphs, charts, and tables , but only if they are directly relevant to your results. Give these elements clear, descriptive titles and labels so that your reader can easily understand what is being shown. If you want to include any other visual elements that are more tangential in nature, consider adding a figure and table list .

As a rule of thumb:

  • Tables are used to communicate exact values, giving a concise overview of various results
  • Graphs and charts are used to visualise trends and relationships, giving an at-a-glance illustration of key findings

Don’t forget to also mention any tables and figures you used within the text of your results section. Summarise or elaborate on specific aspects you think your reader should know about rather than merely restating the same numbers already shown.

Example of using figures in the results section

Figure 1: Intention to donate to environmental organisations based on social distance from impact of environmental damage.

In qualitative research , your results might not all be directly related to specific hypotheses. In this case, you can structure your results section around key themes or topics that emerged from your analysis of the data.

For each theme, start with general observations about what the data showed. You can mention:

  • Recurring points of agreement or disagreement
  • Patterns and trends
  • Particularly significant snippets from individual responses

Next, clarify and support these points with direct quotations. Be sure to report any relevant demographic information about participants. Further information (such as full transcripts , if appropriate) can be included in an appendix .

‘I think that in role-playing games, there’s more attention to character design, to world design, because the whole story is important and more attention is paid to certain game elements […] so that perhaps you do need bigger teams of creative experts than in an average shooter or something.’

Responses suggest that video game consumers consider some types of games to have more artistic potential than others.

Your results section should objectively report your findings, presenting only brief observations in relation to each question, hypothesis, or theme.

It should not  speculate about the meaning of the results or attempt to answer your main research question . Detailed interpretation of your results is more suitable for your discussion section , while synthesis of your results into an overall answer to your main research question is best left for your conclusion .

I have completed my data collection and analyzed the results.

I have included all results that are relevant to my research questions.

I have concisely and objectively reported each result, including relevant descriptive statistics and inferential statistics .

I have stated whether each hypothesis was supported or refuted.

I have used tables and figures to illustrate my results where appropriate.

All tables and figures are correctly labelled and referred to in the text.

There is no subjective interpretation or speculation on the meaning of the results.

You've finished writing up your results! Use the other checklists to further improve your thesis.

The results chapter of a thesis or dissertation presents your research results concisely and objectively.

In quantitative research , for each question or hypothesis , state:

  • The type of analysis used
  • Relevant results in the form of descriptive and inferential statistics
  • Whether or not the alternative hypothesis was supported

In qualitative research , for each question or theme, describe:

  • Recurring patterns
  • Significant or representative individual responses
  • Relevant quotations from the data

Don’t interpret or speculate in the results chapter.

Results are usually written in the past tense , because they are describing the outcome of completed actions.

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Swaen, B. (2022, October 25). How to Write a Results Section | Tips & Examples. Scribbr. Retrieved 20 May 2024, from https://www.scribbr.co.uk/thesis-dissertation/results-section/

Is this article helpful?

Bas Swaen

Other students also liked

What is a research methodology | steps & tips, how to write a discussion section | tips & examples, how to write a thesis or dissertation conclusion.

SkillsYouNeed

  • LEARNING SKILLS
  • Writing a Dissertation or Thesis
  • Results and Discussion

Search SkillsYouNeed:

Learning Skills:

  • A - Z List of Learning Skills
  • What is Learning?
  • Learning Approaches
  • Learning Styles
  • 8 Types of Learning Styles
  • Understanding Your Preferences to Aid Learning
  • Lifelong Learning
  • Decisions to Make Before Applying to University
  • Top Tips for Surviving Student Life
  • Living Online: Education and Learning
  • 8 Ways to Embrace Technology-Based Learning Approaches
  • Critical Thinking Skills
  • Critical Thinking and Fake News
  • Understanding and Addressing Conspiracy Theories
  • Critical Analysis
  • Study Skills
  • Exam Skills
  • How to Write a Research Proposal
  • Ethical Issues in Research
  • Dissertation: The Introduction
  • Researching and Writing a Literature Review
  • Writing your Methodology
  • Dissertation: Results and Discussion
  • Dissertation: Conclusions and Extras

Writing Your Dissertation or Thesis eBook

Writing a Dissertation or Thesis

Part of the Skills You Need Guide for Students .

  • Research Methods
  • Teaching, Coaching, Mentoring and Counselling
  • Employability Skills for Graduates

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

Writing your Dissertation:  Results and Discussion

When writing a dissertation or thesis, the results and discussion sections can be both the most interesting as well as the most challenging sections to write.

You may choose to write these sections separately, or combine them into a single chapter, depending on your university’s guidelines and your own preferences.

There are advantages to both approaches.

Writing the results and discussion as separate sections allows you to focus first on what results you obtained and set out clearly what happened in your experiments and/or investigations without worrying about their implications.This can focus your mind on what the results actually show and help you to sort them in your head.

However, many people find it easier to combine the results with their implications as the two are closely connected.

Check your university’s requirements carefully before combining the results and discussions sections as some specify that they must be kept separate.

Results Section

The Results section should set out your key experimental results, including any statistical analysis and whether or not the results of these are significant.

You should cover any literature supporting your interpretation of significance. It does not have to include everything you did, particularly for a doctorate dissertation. However, for an undergraduate or master's thesis, you will probably find that you need to include most of your work.

You should write your results section in the past tense: you are describing what you have done in the past.

Every result included MUST have a method set out in the methods section. Check back to make sure that you have included all the relevant methods.

Conversely, every method should also have some results given so, if you choose to exclude certain experiments from the results, make sure that you remove mention of the method as well.

If you are unsure whether to include certain results, go back to your research questions and decide whether the results are relevant to them. It doesn’t matter whether they are supportive or not, it’s about relevance. If they are relevant, you should include them.

Having decided what to include, next decide what order to use. You could choose chronological, which should follow the methods, or in order from most to least important in the answering of your research questions, or by research question and/or hypothesis.

You also need to consider how best to present your results: tables, figures, graphs, or text. Try to use a variety of different methods of presentation, and consider your reader: 20 pages of dense tables are hard to understand, as are five pages of graphs, but a single table and well-chosen graph that illustrate your overall findings will make things much clearer.

Make sure that each table and figure has a number and a title. Number tables and figures in separate lists, but consecutively by the order in which you mention them in the text. If you have more than about two or three, it’s often helpful to provide lists of tables and figures alongside the table of contents at the start of your dissertation.

Summarise your results in the text, drawing on the figures and tables to illustrate your points.

The text and figures should be complementary, not repeat the same information. You should refer to every table or figure in the text. Any that you don’t feel the need to refer to can safely be moved to an appendix, or even removed.

Make sure that you including information about the size and direction of any changes, including percentage change if appropriate. Statistical tests should include details of p values or confidence intervals and limits.

While you don’t need to include all your primary evidence in this section, you should as a matter of good practice make it available in an appendix, to which you should refer at the relevant point.

For example:

Details of all the interview participants can be found in Appendix A, with transcripts of each interview in Appendix B.

You will, almost inevitably, find that you need to include some slight discussion of your results during this section. This discussion should evaluate the quality of the results and their reliability, but not stray too far into discussion of how far your results support your hypothesis and/or answer your research questions, as that is for the discussion section.

See our pages: Analysing Qualitative Data and Simple Statistical Analysis for more information on analysing your results.

Discussion Section

This section has four purposes, it should:

  • Interpret and explain your results
  • Answer your research question
  • Justify your approach
  • Critically evaluate your study

The discussion section therefore needs to review your findings in the context of the literature and the existing knowledge about the subject.

You also need to demonstrate that you understand the limitations of your research and the implications of your findings for policy and practice. This section should be written in the present tense.

The Discussion section needs to follow from your results and relate back to your literature review . Make sure that everything you discuss is covered in the results section.

Some universities require a separate section on recommendations for policy and practice and/or for future research, while others allow you to include this in your discussion, so check the guidelines carefully.

Starting the Task

Most people are likely to write this section best by preparing an outline, setting out the broad thrust of the argument, and how your results support it.

You may find techniques like mind mapping are helpful in making a first outline; check out our page: Creative Thinking for some ideas about how to think through your ideas. You should start by referring back to your research questions, discuss your results, then set them into the context of the literature, and then into broader theory.

This is likely to be one of the longest sections of your dissertation, and it’s a good idea to break it down into chunks with sub-headings to help your reader to navigate through the detail.

Fleshing Out the Detail

Once you have your outline in front of you, you can start to map out how your results fit into the outline.

This will help you to see whether your results are over-focused in one area, which is why writing up your research as you go along can be a helpful process. For each theme or area, you should discuss how the results help to answer your research question, and whether the results are consistent with your expectations and the literature.

The Importance of Understanding Differences

If your results are controversial and/or unexpected, you should set them fully in context and explain why you think that you obtained them.

Your explanations may include issues such as a non-representative sample for convenience purposes, a response rate skewed towards those with a particular experience, or your own involvement as a participant for sociological research.

You do not need to be apologetic about these, because you made a choice about them, which you should have justified in the methodology section. However, you do need to evaluate your own results against others’ findings, especially if they are different. A full understanding of the limitations of your research is part of a good discussion section.

At this stage, you may want to revisit your literature review, unless you submitted it as a separate submission earlier, and revise it to draw out those studies which have proven more relevant.

Conclude by summarising the implications of your findings in brief, and explain why they are important for researchers and in practice, and provide some suggestions for further work.

You may also wish to make some recommendations for practice. As before, this may be a separate section, or included in your discussion.

The results and discussion, including conclusion and recommendations, are probably the most substantial sections of your dissertation. Once completed, you can begin to relax slightly: you are on to the last stages of writing!

Continue to: Dissertation: Conclusion and Extras Writing your Methodology

See also: Writing a Literature Review Writing a Research Proposal Academic Referencing What Is the Importance of Using a Plagiarism Checker to Check Your Thesis?

master thesis results chapter

Writing the Dissertation - Guides for Success: The Results and Discussion

  • Writing the Dissertation Homepage
  • Overview and Planning
  • The Literature Review
  • The Methodology
  • The Results and Discussion
  • The Conclusion
  • The Abstract
  • The Difference
  • What to Avoid

Overview of writing the results and discussion

The results and discussion follow on from the methods or methodology chapter of the dissertation. This creates a natural transition from how you designed your study, to what your study reveals, highlighting your own contribution to the research area.

Disciplinary differences

Please note: this guide is not specific to any one discipline. The results and discussion can vary depending on the nature of the research and the expectations of the school or department, so please adapt the following advice to meet the demands of your project and department. Consult your supervisor for further guidance; you can also peruse our  Writing Across Subjects guide .

Guide contents

As part of the Writing the Dissertation series, this guide covers the most common conventions of the results and discussion chapters, giving you the necessary knowledge, tips and guidance needed to impress your markers! The sections are organised as follows:

  • The Difference  - Breaks down the distinctions between the results and discussion chapters.
  • Results  - Provides a walk-through of common characteristics of the results chapter.
  • Discussion - Provides a walk-through of how to approach writing your discussion chapter, including structure.
  • What to Avoid  - Covers a few frequent mistakes you'll want to...avoid!
  • FAQs  - Guidance on first- vs. third-person, limitations and more.
  • Checklist  - Includes a summary of key points and a self-evaluation checklist.

Training and tools

  • The Academic Skills team has recorded a Writing the Dissertation workshop series to help you with each section of a standard dissertation, including a video on writing the results and discussion   (embedded below).
  • The dissertation planner tool can help you think through the timeline for planning, research, drafting and editing.
  • iSolutions offers training and a Word template to help you digitally format and structure your dissertation.

Introduction

The results of your study are often followed by a separate chapter of discussion. This is certainly the case with scientific writing. Some dissertations, however, might incorporate both the results and discussion in one chapter. This depends on the nature of your dissertation and the conventions within your school or department. Always follow the guidelines given to you and ask your supervisor for further guidance.

As part of the Writing the Dissertation series, this guide covers the essentials of writing your results and discussion, giving you the necesary knowledge, tips and guidance needed to leave a positive impression on your markers! This guide covers the results and discussion as separate – although interrelated – chapters, as you'll see in the next two tabs. However, you can easily adapt the guidance to suit one single chapter – keep an eye out for some hints on how to do this throughout the guide.

Results or discussion - what's the difference?

To understand what the results and discussion sections are about, we need to clearly define the difference between the two.

The results should provide a clear account of the findings . This is written in a dry and direct manner, simply highlighting the findings as they appear once processed. It’s expected to have tables and graphics, where relevant, to contextualise and illustrate the data.

Rather than simply stating the findings of the study, the discussion interprets the findings  to offer a more nuanced understanding of the research. The discussion is similar to the second half of the conclusion because it’s where you consider and formulate a response to the question, ‘what do we now know that we didn’t before?’ (see our Writing the Conclusion   guide for more). The discussion achieves this by answering the research questions and responding to any hypotheses proposed. With this in mind, the discussion should be the most insightful chapter or section of your dissertation because it provides the most original insight.

Across the next two tabs of this guide, we will look at the results and discussion chapters separately in more detail.

Writing the results

The results chapter should provide a direct and factual account of the data collected without any interpretation or interrogation of the findings. As this might suggest, the results chapter can be slightly monotonous, particularly for quantitative data. Nevertheless, it’s crucial that you present your results in a clear and direct manner as it provides the necessary detail for your subsequent discussion.

Note: If you’re writing your results and discussion as one chapter, then you can either:

1) write them as distinctly separate sections in the same chapter, with the discussion following on from the results, or...

2) integrate the two throughout by presenting a subset of the results and then discussing that subset in further detail.

Next, we'll explore some of the most important factors to consider when writing your results chapter.

How you structure your results chapter depends on the design and purpose of your study. Here are some possible options for structuring your results chapter (adapted from Glatthorn and Joyner, 2005):

  • Chronological – depending on the nature of the study, it might be important to present your results in order of how you collected the data, such as a pretest-posttest design.
  • Research method – if you’ve used a mixed-methods approach, you could isolate each research method and instrument employed in the study.
  • Research question and/or hypotheses – you could structure your results around your research questions and/or hypotheses, providing you have more than one. However, keep in mind that the results on their own don’t necessarily answer the questions or respond to the hypotheses in a definitive manner. You need to interpret the findings in the discussion chapter to gain a more rounded understanding.
  • Variable – you could isolate each variable in your study (where relevant) and specify how and whether the results changed.

Tables and figures

For your results, you are expected to convert your data into tables and figures, particularly when dealing with quantitative data. Making use of tables and figures is a way of contextualising your results within the study. It also helps to visually reinforce your written account of the data. However, make sure you’re only using tables and figures to supplement , rather than replace, your written account of the results (see the 'What to avoid' tab for more on this).

Figures and tables need to be numbered in order of when they appear in the dissertation, and they should be capitalised. You also need to make direct reference to them in the text, which you can do (with some variation) in one of the following ways:

Figure 1 shows…

The results of the test (see Figure 1) demonstrate…

The actual figures and tables themselves also need to be accompanied by a caption that briefly outlines what is displayed. For example:

Table 1. Variables of the regression model

Table captions normally appear above the table, whilst figures or other such graphical forms appear below, although it’s worth confirming this with your supervisor as the formatting can change depending on the school or discipline. The style guide used for writing in your subject area (e.g., Harvard, MLA, APA, OSCOLA) often dictates correct formatting of tables, graphs and figures, so have a look at your style guide for additional support.

Using quotations

If your qualitative data comes from interviews and focus groups, your data will largely consist of quotations from participants. When presenting this data, you should identify and group the most common and interesting responses and then quote two or three relevant examples to illustrate this point. Here’s a brief example from a qualitative study on the habits of online food shoppers:

Regardless of whether or not participants regularly engage in online food shopping, all but two respondents commented, in some form, on the convenience of online food shopping:

"It’s about convenience for me. I’m at work all week and the weekend doesn’t allow much time for food shopping, so knowing it can be ordered and then delivered in 24 hours is great for me” (Participant A).

"It fits around my schedule, which is important for me and my family” (Participant D).

"In the past, I’ve always gone food shopping after work, which has always been a hassle. Online food shopping, however, frees up some of my time” (Participant E).

As shown in this example, each quotation is attributed to a particular participant, although their anonymity is protected. The details used to identify participants can depend on the relevance of certain factors to the research. For instance, age or gender could be included.

Writing the discussion

The discussion chapter is where “you critically examine your own results in the light of the previous state of the subject as outlined in the background, and make judgments as to what has been learnt in your work” (Evans et al., 2014: 12). Whilst the results chapter is strictly factual, reporting on the data on a surface level, the discussion is rooted in analysis and interpretation , allowing you and your reader to delve beneath the surface.

Next, we will review some of the most important factors to consider when writing your discussion chapter.

Like the results, there is no single way to structure your discussion chapter. As always, it depends on the nature of your dissertation and whether you’re dealing with qualitative, quantitative or mixed-methods research. It’s good to be consistent with the results chapter, so you could structure your discussion chapter, where possible, in the same way as your results.

When it comes to structure, it’s particularly important that you guide your reader through the various points, subtopics or themes of your discussion. You should do this by structuring sections of your discussion, which might incorporate three or four paragraphs around the same theme or issue, in a three-part way that mirrors the typical three-part essay structure of introduction, main body and conclusion.

Cycle of introduction (topic sentence), to main body (analysis), to conclusion (takeaways). Graphic at right shows cycle repeating 3, 5, and 4 times for subtopics A, B, and C.

Figure 1: The three-part cycle that embodies a typical essay structure and reflects how you structure themes or subtopics in your discussion.

This is your topic sentence where you clearly state the focus of this paragraph/section. It’s often a fairly short, declarative statement in order to grab the reader’s attention, and it should be clearly related to your research purpose, such as responding to a research question.

This constitutes your analysis where you explore the theme or focus, outlined in the topic sentence, in further detail by interrogating why this particular theme or finding emerged and the significance of this data. This is also where you bring in the relevant secondary literature.

This is the evaluative stage of the cycle where you explicitly return back to the topic sentence and tell the reader what this means in terms of answering the relevant research question and establishing new knowledge. It could be a single sentence, or a short paragraph, and it doesn’t strictly need to appear at the end of every section or theme. Instead, some prefer to bring the main themes together towards the end of the discussion in a single paragraph or two. Either way, it’s imperative that you evaluate the significance of your discussion and tell the reader what this means.

A note on the three-part structure

This is often how you’re taught to construct a paragraph, but the themes and ideas you engage with at dissertation level are going to extend beyond the confines of a short paragraph. Therefore, this is a structure to guide how you write about particular themes or patterns in your discussion. Think of this structure like a cycle that you can engage in its smallest form to shape a paragraph; in a slightly larger form to shape a subsection of a chapter; and in its largest form to shape the entire chapter. You can 'level up' the same basic structure to accommodate a deeper breadth of thinking and critical engagement.

Using secondary literature

Your discussion chapter should return to the relevant literature (previously identified in your literature review ) in order to contextualise and deepen your reader’s understanding of the findings. This might help to strengthen your findings, or you might find contradictory evidence that serves to counter your results. In the case of the latter, it’s important that you consider why this might be and the implications for this. It’s through your incorporation of secondary literature that you can consider the question, ‘What do we now know that we didn’t before?’

Limitations

You may have included a limitations section in your methodology chapter (see our Writing the Methodology guide ), but it’s also common to have one in your discussion chapter. The difference here is that your limitations are directly associated with your results and the capacity to interpret and analyse those results.

Think of it this way: the limitations in your methodology refer to the issues identified before conducting the research, whilst the limitations in your discussion refer to the issues that emerged after conducting the research. For example, you might only be able to identify a limitation about the external validity or generalisability of your research once you have processed and analysed the data. Try not to overstress the limitations of your work – doing so can undermine the work you’ve done – and try to contextualise them, perhaps by relating them to certain limitations of other studies.

Recommendations

It’s often good to follow your limitations with some recommendations for future research. This creates a neat linearity from what didn’t work, or what could be improved, to how other researchers could address these issues in the future. This helps to reposition your limitations in a positive way by offering an action-oriented response. Try to limit the amount of recommendations you discuss – too many can bring the end of your discussion to a rather negative end as you’re ultimately focusing on what should be done, rather than what you have done. You also don’t need to repeat the recommendations in your conclusion if you’ve included them here.

What to avoid

This portion of the guide will cover some common missteps you should try to avoid in writing your results and discussion.

Over-reliance on tables and figures

It’s very common to produce visual representations of data, such as graphs and tables, and to use these representations in your results chapter. However, the use of these figures should not entirely replace your written account of the data. You don’t need to specify every detail in the data set, but you should provide some written account of what the data shows, drawing your reader’s attention to the most important elements of the data. The figures should support your account and help to contextualise your results. Simply stating, ‘look at Table 1’, without any further detail is not sufficient. Writers often try to do this as a way of saving words, but your markers will know!

Ignoring unexpected or contradictory data

Research can be a complex process with ups and downs, surprises and anomalies. Don’t be tempted to ignore any data that doesn’t meet your expectations, or that perhaps you’re struggling to explain. Failing to report on data for these, and other such reasons, is a problem because it undermines your credibility as a researcher, which inevitably undermines your research in the process. You have to do your best to provide some reason to such data. For instance, there might be some methodological reason behind a particular trend in the data.

Including raw data

You don’t need to include any raw data in your results chapter – raw data meaning unprocessed data that hasn’t undergone any calculations or other such refinement. This can overwhelm your reader and obscure the clarity of the research. You can include raw data in an appendix, providing you feel it’s necessary.

Presenting new results in the discussion

You shouldn’t be stating original findings for the first time in the discussion chapter. The findings of your study should first appear in your results before elaborating on them in the discussion.

Overstressing the significance of your research

It’s important that you clarify what your research demonstrates so you can highlight your own contribution to the research field. However, don’t overstress or inflate the significance of your results. It’s always difficult to provide definitive answers in academic research, especially with qualitative data. You should be confident and authoritative where possible, but don’t claim to reach the absolute truth when perhaps other conclusions could be reached. Where necessary, you should use hedging (see definition) to slightly soften the tone and register of your language.

Definition: Hedging refers to 'the act of expressing your attitude or ideas in tentative or cautious ways' (Singh and Lukkarila, 2017: 101). It’s mostly achieved through a number of verbs or adverbs, such as ‘suggest’ or ‘seemingly.’

Q: What’s the difference between the results and discussion?

A: The results chapter is a factual account of the data collected, whilst the discussion considers the implications of these findings by relating them to relevant literature and answering your research question(s). See the tab 'The Differences' in this guide for more detail.

Q: Should the discussion include recommendations for future research?

A: Your dissertation should include some recommendations for future research, but it can vary where it appears. Recommendations are often featured towards the end of the discussion chapter, but they also regularly appear in the conclusion chapter (see our Writing the Conclusion guide   for more). It simply depends on your dissertation and the conventions of your school or department. It’s worth consulting any specific guidance that you’ve been given, or asking your supervisor directly.

Q: Should the discussion include the limitations of the study?

A: Like the answer above, you should engage with the limitations of your study, but it might appear in the discussion of some dissertations, or the conclusion of others. Consider the narrative flow and whether it makes sense to include the limitations in your discussion chapter, or your conclusion. You should also consult any discipline-specific guidance you’ve been given, or ask your supervisor for more. Be mindful that this is slightly different to the limitations outlined in the methodology or methods chapter (see our Writing the Methodology guide vs. the 'Discussion' tab of this guide).

Q: Should the results and discussion be in the first-person or third?

A: It’s important to be consistent , so you should use whatever you’ve been using throughout your dissertation. Third-person is more commonly accepted, but certain disciplines are happy with the use of first-person. Just remember that the first-person pronoun can be a distracting, but powerful device, so use it sparingly. Consult your lecturer for discipline-specific guidance.

Q: Is there a difference between the discussion and the conclusion of a dissertation?

A: Yes, there is a difference. The discussion chapter is a detailed consideration of how your findings answer your research questions. This includes the use of secondary literature to help contextualise your discussion. Rather than considering the findings in detail, the conclusion briefly summarises and synthesises the main findings of your study before bringing the dissertation to a close. Both are similar, particularly in the way they ‘broaden out’ to consider the wider implications of the research. They are, however, their own distinct chapters, unless otherwise stated by your supervisor.

The results and discussion chapters (or chapter) constitute a large part of your dissertation as it’s here where your original contribution is foregrounded and discussed in detail. Remember, the results chapter simply reports on the data collected, whilst the discussion is where you consider your research questions and/or hypothesis in more detail by interpreting and interrogating the data. You can integrate both into a single chapter and weave the interpretation of your findings throughout the chapter, although it’s common for both the results and discussion to appear as separate chapters. Consult your supervisor for further guidance.

Here’s a final checklist for writing your results and discussion. Remember that not all of these points will be relevant for you, so make sure you cover whatever’s appropriate for your dissertation. The asterisk (*) indicates any content that might not be relevant for your dissertation. To download a copy of the checklist to save and edit, please use the Word document, below.

  • Results and discussion self-evaluation checklist

Decorative

  • << Previous: The Methodology
  • Next: The Conclusion >>
  • Last Updated: Apr 19, 2024 12:38 PM
  • URL: https://library.soton.ac.uk/writing_the_dissertation

How Do I Write the Discussion Chapter?

Reflecting on and Comparing Your Data, Recognising the Strengths and Limitations

  • First Online: 19 October 2023

Cite this chapter

master thesis results chapter

  • Sue Reeves   ORCID: orcid.org/0000-0002-3017-0559 3 &
  • Bartek Buczkowski   ORCID: orcid.org/0000-0002-4146-3664 4  

391 Accesses

The Discussion chapter brings an opportunity to write an academic argument that contains a detailed critical evaluation and analysis of your research findings. This chapter addresses the purpose and critical nature of the discussion, contains a guide to selecting key results to discuss, and details how best to structure the discussion with subsections and paragraphs. We also present a list of points to do and avoid when writing the discussion together with a Discussion chapter checklist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Braun V, Clarke V (2013) Successful qualitative research: a practical guide for beginners. SAGE Publications, London

Google Scholar  

McGregor SLT (2018) Understanding and evaluating research: a critical guide. SAGE Publications, Los Angeles, CA

Book   Google Scholar  

PLOS (2023) Author resources. How to write discussions and conclusions. Accessed Mar 3, 2023, from https://plos.org/resource/how-to-write-conclusions/ . Accessed 3 Mar 2023

Further Reading

Cottrell S (2017) Critical thinking skills: effective analysis, argument and reflection, 3rd edn. Palgrave, London

Download references

Author information

Authors and affiliations.

University of Roehampton, London, UK

Manchester Metropolitan University, Manchester, UK

Bartek Buczkowski

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Reeves, S., Buczkowski, B. (2023). How Do I Write the Discussion Chapter?. In: Mastering Your Dissertation. Springer, Cham. https://doi.org/10.1007/978-3-031-41911-9_9

Download citation

DOI : https://doi.org/10.1007/978-3-031-41911-9_9

Published : 19 October 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-41910-2

Online ISBN : 978-3-031-41911-9

eBook Packages : Biomedical and Life Sciences Biomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

Guide on How to Write the Results Section of a Dissertation

dissertation results writing

The dissertation results chapter can be written once data has been collected and analyzed. In this section, the main findings of the research are reported and their relation to hypotheses or research questions are observed briefly. This chapter is among the most crucial parts of a study. It is here that statistical analysis is accurately performed, findings reported and explained, and assumptions examined. After this analysis, results are presented in a manner that shows non-support or support of the stated hypothesis.

Writing a thesis results section requires statistical expertise to present and defend the findings effectively. What’s more, the core findings should be presented logically without interpretation or bias from the writer. This section should set up the read for evaluation or interpretation of the findings in the discussion chapter .

When writing the thesis results chapter, the author should break down the findings into simple sentences. Essentially, this section should tell readers what the author found in the research.

What to Include in the Dissertation Results Chapter

The results chapter of a dissertation should include the core findings of a study. Essentially, only the findings of a specific study should be included in this section. These include:

  • Data presented in graphs, tables, charts, and figures
  • Data collection recruitment, collection, and/or participants
  • Secondary findings like subgroup analyses and secondary outcomes
  • Contextual data analysis and explanation of the meaning
  • Information that corresponds to research questions

It’s crucial to consider the scope of your research when writing up dissertation results. That’s because a study with many variables or a broader scope can yield different results. In that case, only the most relevant results should be stated. Any data that doesn’t present direct outcomes or findings of a study should not be included in this section.

What are the Five Chapters of a Dissertation?

Traditionally, a dissertation has five major chapters. The results section is one of the most important chapters because it summarizes and presents the collected and analyzed data. The major chapters of this paper are:

  • Introduction
  • Literature review
  • Methodology

The methodology section can vary depending on whether the author conducted qualitative research or quantitative research or a mixed study. However, the methodology section is also very important because the used methods can influence how the gathered results will be presented. For instance, you can use a questionnaire to gather information. If you don’t know how to analyze questionnaire results dissertation paper might not impress your readers. Therefore, choose your research methods wisely to make writing the findings or results section easier.

How to Write a Dissertation Results Chapter

Every research project is unique. As such, learners should not take a one-size-fits-all approach when writing results for a dissertation. The layout and content of this chapter should be determined by your research area, study design, and the chosen methodologies. Also, consider the target journal guidelines and editors.

But, when writing the results section dissertation authors can follow certain steps, especially for scientific studies. Those steps are as follows.

  • Check the Target Journal’s Instructions or GuidelinesDifferent journals outline the requirements, instructions, or guidelines that authors should follow when writing the findings or results section. A journal can also provide a dissertation results section example to guide authors. It’s crucial that you note the content length limitations, scope, and aims that the journal requires dissertation authors to consider.
  • Consider How Your Results Relate to the Catalogue and Requirements of the JournalConsider your findings or experimental results that are relevant to the research objectives or questions. Include even the findings that don’t support your hypothesis or are unexpected. Also, catalog the findings of your research using subheadings to clarify and streamline your report. That way, you can avoid peripheral and excessive details and make your findings easy to understand.It’s important to decide on the results structure. For instance, you can match the hypothesis or research questions to the results. You can also arrange them the way they are ordered in your Methods section. Alternatively, use the importance hierarchy or chronological order. Most importantly, consider your evidence, audience, and objectives of the study when deciding on the dissertation structure for the results section.
  • Design Tables and Figures for Illustrating Your DataNumber your figures and tables in the order that you use to mention them in main the paper text. Make sure that your figures have self-explanatory information. Also, include the necessary information, such as definitions in the design to make the findings data easy to understand. Essentially, readers should understand your tables and figures without reading the text.Additionally, make your figures and tables the focal point of this section. Ensure that they tell an informative and clear story about the study without repetition. However, always remember that figures should enhance and clarify your text, not replace it.

Checklist for the Results Chapter

Once you have written this section, go through it carefully to ensure the following:

  • All findings that are relevant to the research questions have been included.
  • Each result has been reported objectively and concisely, including relevant inferential statistics and descriptive statistics.
  • You have stated whether the study findings refuted or supported every hypothesis.
  • You have used figures and tables to illustrate your results appropriately.
  • All figures and tables are referred to and labeled correctly in the text.
  • The presented results do not include speculations or subjective interpretation

You may come across many tips on how to write the results section of a dissertation. However, the most important tip is to ensure that the results that you present in this section are relevant to your study questions or hypotheses. If this sounds too complicated, you can ask us “ do my thesis for me “, and we’ll take care of it. Anyways, you have to remember that relevance is the most important thing regardless of whether the results support or do not support the hypotheses. Also, decide on the order to use when presenting the results of your study. This is very important because it makes it easier for your readers to understand them. Including figures, tables, and graphs makes the information in this section easier to understand.

Leave a Reply Cancel reply

Current students

  • Staff intranet
  • Find an event

Research skills for HDR students

  • Overview and planning
  • Theses including publications
  • Originality
  • Structuring your thesis
  • Literature reviews

Writing up results

  • Interpreting results

The results section in an empirical thesis describes your findings that can be used to answer your research question, or confirm, partially confirm, or disprove your hypotheses. It functions as a stepping-stone to the discussion and may be combined with your discussion section, or have elements of discussion included.

In the results section, you present your findings in figures (graphs and diagrams), tables and written text. Figures and tables present the complete findings in numerical, visual or graphical terms, while the written text helps the reader to focus on the most important aspects of the results and to interpret them.

Generally, there are four stages to a results section.

  • Background information so that the reader can place your results in the context of other research.
  • Tables and/or figures presenting your results. These are located and identified through numbers (for example, ‘Table 1’) and captions.
  • Text accompanying and referring to the tables or figures, describing the aspects of the results you are focusing on.
  • Comments on the results. For example, generalisations arising from the results, explanations of possible reasons for the results or a comparison of the results with other studies.

Sometimes results can be presented together, with an accompanying general comment. Other times each result requires its own comment.

As well as presenting your findings, the results section forms a basis for the discussion. The discussion is a set of arguments about the relevance, usefulness and possibilities or limitations of your findings. In the discussion you may have to explain the significance of your research, explain unexpected outcomes, refer to previous research, give examples, relate your results to your hypothesis, and make recommendations.

Not all of the elements above are included in all theses – there is considerable variation among different disciplines, particularly in the humanities.

This material was developed by the Learning Hub (Academic Language and Learning), which offers workshops, face-to-face consultations and resources to support your learning. Find out more about how they can help you develop your communication, research and study skills .

See our handout on Writing a thesis proposal (pdf, 341KB) .

Related links

  • Learning Hub (Academic Language and Learning)
  • Learning Hub (Academic Language and Learning) workshops
  • Prepare your thesis
  • Website feedback

Your feedback has been sent.

Sorry there was a problem sending your feedback. Please try again

You should only use this form to send feedback about the content on this webpage – we will not respond to other enquiries made through this form. If you have an enquiry or need help with something else such as your enrolment, course etc you can contact the Student Centre.

  • Find an expert
  • Media contacts

Student links

  • How to log in to University systems
  • Class timetables
  • Our rankings
  • Faculties and schools
  • Research centres
  • Campus locations
  • Find a staff member
  • Careers at Sydney
  • Emergencies and personal safety

Group Of Eight

  • Accessibility
  • Privacy Policy

Research Method

Home » Dissertation Methodology – Structure, Example and Writing Guide

Dissertation Methodology – Structure, Example and Writing Guide

  • Table of Contents

Dissertation Methodology

Dissertation Methodology

In any research, the methodology chapter is one of the key components of your dissertation. It provides a detailed description of the methods you used to conduct your research and helps readers understand how you obtained your data and how you plan to analyze it. This section is crucial for replicating the study and validating its results.

Here are the basic elements that are typically included in a dissertation methodology:

  • Introduction : This section should explain the importance and goals of your research .
  • Research Design : Outline your research approach and why it’s appropriate for your study. You might be conducting an experimental research, a qualitative research, a quantitative research, or a mixed-methods research.
  • Data Collection : This section should detail the methods you used to collect your data. Did you use surveys, interviews, observations, etc.? Why did you choose these methods? You should also include who your participants were, how you recruited them, and any ethical considerations.
  • Data Analysis : Explain how you intend to analyze the data you collected. This could include statistical analysis, thematic analysis, content analysis, etc., depending on the nature of your study.
  • Reliability and Validity : Discuss how you’ve ensured the reliability and validity of your study. For instance, you could discuss measures taken to reduce bias, how you ensured that your measures accurately capture what they were intended to, or how you will handle any limitations in your study.
  • Ethical Considerations : This is where you state how you have considered ethical issues related to your research, how you have protected the participants’ rights, and how you have complied with the relevant ethical guidelines.
  • Limitations : Acknowledge any limitations of your methodology, including any biases and constraints that might have affected your study.
  • Summary : Recap the key points of your methodology chapter, highlighting the overall approach and rationalization of your research.

Types of Dissertation Methodology

The type of methodology you choose for your dissertation will depend on the nature of your research question and the field you’re working in. Here are some of the most common types of methodologies used in dissertations:

Experimental Research

This involves creating an experiment that will test your hypothesis. You’ll need to design an experiment, manipulate variables, collect data, and analyze that data to draw conclusions. This is commonly used in fields like psychology, biology, and physics.

Survey Research

This type of research involves gathering data from a large number of participants using tools like questionnaires or surveys. It can be used to collect a large amount of data and is often used in fields like sociology, marketing, and public health.

Qualitative Research

This type of research is used to explore complex phenomena that can’t be easily quantified. Methods include interviews, focus groups, and observations. This methodology is common in fields like anthropology, sociology, and education.

Quantitative Research

Quantitative research uses numerical data to answer research questions. This can include statistical, mathematical, or computational techniques. It’s common in fields like economics, psychology, and health sciences.

Case Study Research

This type of research involves in-depth investigation of a particular case, such as an individual, group, or event. This methodology is often used in psychology, social sciences, and business.

Mixed Methods Research

This combines qualitative and quantitative research methods in a single study. It’s used to answer more complex research questions and is becoming more popular in fields like social sciences, health sciences, and education.

Action Research

This type of research involves taking action and then reflecting upon the results. This cycle of action-reflection-action continues throughout the study. It’s often used in fields like education and organizational development.

Longitudinal Research

This type of research involves studying the same group of individuals over an extended period of time. This could involve surveys, observations, or experiments. It’s common in fields like psychology, sociology, and medicine.

Ethnographic Research

This type of research involves the in-depth study of people and cultures. Researchers immerse themselves in the culture they’re studying to collect data. This is often used in fields like anthropology and social sciences.

Structure of Dissertation Methodology

The structure of a dissertation methodology can vary depending on your field of study, the nature of your research, and the guidelines of your institution. However, a standard structure typically includes the following elements:

  • Introduction : Briefly introduce your overall approach to the research. Explain what you plan to explore and why it’s important.
  • Research Design/Approach : Describe your overall research design. This can be qualitative, quantitative, or mixed methods. Explain the rationale behind your chosen design and why it is suitable for your research questions or hypotheses.
  • Data Collection Methods : Detail the methods you used to collect your data. You should include what type of data you collected, how you collected it, and why you chose this method. If relevant, you can also include information about your sample population, such as how many people participated, how they were chosen, and any relevant demographic information.
  • Data Analysis Methods : Explain how you plan to analyze your collected data. This will depend on the nature of your data. For example, if you collected quantitative data, you might discuss statistical analysis techniques. If you collected qualitative data, you might discuss coding strategies, thematic analysis, or narrative analysis.
  • Reliability and Validity : Discuss how you’ve ensured the reliability and validity of your research. This might include steps you took to reduce bias or increase the accuracy of your measurements.
  • Ethical Considerations : If relevant, discuss any ethical issues associated with your research. This might include how you obtained informed consent from participants, how you ensured participants’ privacy and confidentiality, or any potential conflicts of interest.
  • Limitations : Acknowledge any limitations in your research methodology. This could include potential sources of bias, difficulties with data collection, or limitations in your analysis methods.
  • Summary/Conclusion : Briefly summarize the key points of your methodology, emphasizing how it helps answer your research questions or hypotheses.

How to Write Dissertation Methodology

Writing a dissertation methodology requires you to be clear and precise about the way you’ve carried out your research. It’s an opportunity to convince your readers of the appropriateness and reliability of your approach to your research question. Here is a basic guideline on how to write your methodology section:

1. Introduction

Start your methodology section by restating your research question(s) or objective(s). This ensures your methodology directly ties into the aim of your research.

2. Approach

Identify your overall approach: qualitative, quantitative, or mixed methods. Explain why you have chosen this approach.

  • Qualitative methods are typically used for exploratory research and involve collecting non-numerical data. This might involve interviews, observations, or analysis of texts.
  • Quantitative methods are used for research that relies on numerical data. This might involve surveys, experiments, or statistical analysis.
  • Mixed methods use a combination of both qualitative and quantitative research methods.

3. Research Design

Describe the overall design of your research. This could involve explaining the type of study (e.g., case study, ethnography, experimental research, etc.), how you’ve defined and measured your variables, and any control measures you’ve implemented.

4. Data Collection

Explain in detail how you collected your data.

  • If you’ve used qualitative methods, you might detail how you selected participants for interviews or focus groups, how you conducted observations, or how you analyzed existing texts.
  • If you’ve used quantitative methods, you might detail how you designed your survey or experiment, how you collected responses, and how you ensured your data is reliable and valid.

5. Data Analysis

Describe how you analyzed your data.

  • If you’re doing qualitative research, this might involve thematic analysis, discourse analysis, or grounded theory.
  • If you’re doing quantitative research, you might be conducting statistical tests, regression analysis, or factor analysis.

Discuss any ethical issues related to your research. This might involve explaining how you obtained informed consent, how you’re protecting participants’ privacy, or how you’re managing any potential harms to participants.

7. Reliability and Validity

Discuss the steps you’ve taken to ensure the reliability and validity of your data.

  • Reliability refers to the consistency of your measurements, and you might discuss how you’ve piloted your instruments or used standardized measures.
  • Validity refers to the accuracy of your measurements, and you might discuss how you’ve ensured your measures reflect the concepts they’re supposed to measure.

8. Limitations

Every study has its limitations. Discuss the potential weaknesses of your chosen methods and explain any obstacles you faced in your research.

9. Conclusion

Summarize the key points of your methodology, emphasizing how it helps to address your research question or objective.

Example of Dissertation Methodology

An Example of Dissertation Methodology is as follows:

Chapter 3: Methodology

  • Introduction

This chapter details the methodology adopted in this research. The study aimed to explore the relationship between stress and productivity in the workplace. A mixed-methods research design was used to collect and analyze data.

Research Design

This study adopted a mixed-methods approach, combining quantitative surveys with qualitative interviews to provide a comprehensive understanding of the research problem. The rationale for this approach is that while quantitative data can provide a broad overview of the relationships between variables, qualitative data can provide deeper insights into the nuances of these relationships.

Data Collection Methods

Quantitative Data Collection : An online self-report questionnaire was used to collect data from participants. The questionnaire consisted of two standardized scales: the Perceived Stress Scale (PSS) to measure stress levels and the Individual Work Productivity Questionnaire (IWPQ) to measure productivity. The sample consisted of 200 office workers randomly selected from various companies in the city.

Qualitative Data Collection : Semi-structured interviews were conducted with 20 participants chosen from the initial sample. The interview guide included questions about participants’ experiences with stress and how they perceived its impact on their productivity.

Data Analysis Methods

Quantitative Data Analysis : Descriptive and inferential statistics were used to analyze the survey data. Pearson’s correlation was used to examine the relationship between stress and productivity.

Qualitative Data Analysis : Interviews were transcribed and subjected to thematic analysis using NVivo software. This process allowed for identifying and analyzing patterns and themes regarding the impact of stress on productivity.

Reliability and Validity

To ensure reliability and validity, standardized measures with good psychometric properties were used. In qualitative data analysis, triangulation was employed by having two researchers independently analyze the data and then compare findings.

Ethical Considerations

All participants provided informed consent prior to their involvement in the study. They were informed about the purpose of the study, their rights as participants, and the confidentiality of their responses.

Limitations

The main limitation of this study is its reliance on self-report measures, which can be subject to biases such as social desirability bias. Moreover, the sample was drawn from a single city, which may limit the generalizability of the findings.

Where to Write Dissertation Methodology

In a dissertation or thesis, the Methodology section usually follows the Literature Review. This placement allows the Methodology to build upon the theoretical framework and existing research outlined in the Literature Review, and precedes the Results or Findings section. Here’s a basic outline of how most dissertations are structured:

  • Acknowledgements
  • Literature Review (or it may be interspersed throughout the dissertation)
  • Methodology
  • Results/Findings
  • References/Bibliography

In the Methodology chapter, you will discuss the research design, data collection methods, data analysis methods, and any ethical considerations pertaining to your study. This allows your readers to understand how your research was conducted and how you arrived at your results.

Advantages of Dissertation Methodology

The dissertation methodology section plays an important role in a dissertation for several reasons. Here are some of the advantages of having a well-crafted methodology section in your dissertation:

  • Clarifies Your Research Approach : The methodology section explains how you plan to tackle your research question, providing a clear plan for data collection and analysis.
  • Enables Replication : A detailed methodology allows other researchers to replicate your study. Replication is an important aspect of scientific research because it provides validation of the study’s results.
  • Demonstrates Rigor : A well-written methodology shows that you’ve thought critically about your research methods and have chosen the most appropriate ones for your research question. This adds credibility to your study.
  • Enhances Transparency : Detailing your methods allows readers to understand the steps you took in your research. This increases the transparency of your study and allows readers to evaluate potential biases or limitations.
  • Helps in Addressing Research Limitations : In your methodology section, you can acknowledge and explain the limitations of your research. This is important as it shows you understand that no research method is perfect and there are always potential weaknesses.
  • Facilitates Peer Review : A detailed methodology helps peer reviewers assess the soundness of your research design. This is an important part of the publication process if you aim to publish your dissertation in a peer-reviewed journal.
  • Establishes the Validity and Reliability : Your methodology section should also include a discussion of the steps you took to ensure the validity and reliability of your measurements, which is crucial for establishing the overall quality of your research.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Delimitations

Delimitations in Research – Types, Examples and...

Research Design

Research Design – Types, Methods and Examples

What is a Hypothesis

What is a Hypothesis – Types, Examples and...

Dissertation

Dissertation – Format, Example and Template

Dissertation vs Thesis

Dissertation vs Thesis – Key Differences

Ethical Considerations

Ethical Considerations – Types, Examples and...

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 15 May 2024

Arresting failure propagation in buildings through collapse isolation

  • Nirvan Makoond   ORCID: orcid.org/0000-0002-5203-6318 1 ,
  • Andri Setiawan   ORCID: orcid.org/0000-0003-2791-6118 1 ,
  • Manuel Buitrago   ORCID: orcid.org/0000-0002-5561-5104 1 &
  • Jose M. Adam   ORCID: orcid.org/0000-0002-9205-8458 1  

Nature volume  629 ,  pages 592–596 ( 2024 ) Cite this article

7570 Accesses

201 Altmetric

Metrics details

  • Civil engineering
  • Mechanical engineering

Several catastrophic building collapses 1 , 2 , 3 , 4 , 5 occur because of the propagation of local-initial failures 6 , 7 . Current design methods attempt to completely prevent collapse after initial failures by improving connectivity between building components. These measures ensure that the loads supported by the failed components are redistributed to the rest of the structural system 8 , 9 . However, increased connectivity can contribute to collapsing elements pulling down parts of a building that would otherwise be unaffected 10 . This risk is particularly important when large initial failures occur, as tends to be the case in the most disastrous collapses 6 . Here we present an original design approach to arrest collapse propagation after major initial failures. When a collapse initiates, the approach ensures that specific elements fail before the failure of the most critical components for global stability. The structural system thus separates into different parts and isolates collapse when its propagation would otherwise be inevitable. The effectiveness of the approach is proved through unique experimental tests on a purposely built full-scale building. We also demonstrate that large initial failures would lead to total collapse of the test building if increased connectivity was implemented as recommended by present guidelines. Our proposed approach enables incorporating a last line of defence for more resilient buildings.

Similar content being viewed by others

master thesis results chapter

Frequent disturbances enhanced the resilience of past human populations

master thesis results chapter

High-resolution impact-based early warning system for riverine flooding

master thesis results chapter

Long-term exposure to residential greenness and decreased risk of depression and anxiety

Disasters recorded from 2000 to 2019 are estimated to have caused economic losses of US$2.97 trillion and claimed approximately 1.23 million lives 11 . Most of these losses can be attributed to building collapses 12 , which are often characterized by the propagation of local-initial failures 13 that can arise because of extreme or abnormal events such as earthquakes 13 , 14 , 15 , 16 , floods 17 , 18 , 19 , 20 , storms 21 , 22 , landslides 23 , 24 , explosions 25 , vehicle impacts 26 and even construction or design errors 6 , 26 . As the world faces increasing trends in the frequency and intensity of extreme events 27 , 28 , it is arguably now more important than ever to design robust structures that are insensitive to initial damage 13 , 29 , irrespective of the underlying threat causing it.

Most robustness design approaches used at present 8 , 9 , 30 , 31 aim to completely prevent collapse initiation after a local failure by providing extensive connectivity within a structural system. Although these measures can ensure that the load supported by a failed component is redistributed to the rest of the structure, they are neither viable nor sustainable when considering larger initial failures 13 , 25 , 32 . In these situations, the implementation of these approaches can even result in collapsing parts of the building pulling down the rest of the structure 10 . The fact that several major collapses have occurred because of large initial failures 6 raises serious concerns about the inadequacy of the current robustness measures.

Traditionally, research in this area has focused on preventing collapse initiation after initial failures rather than on preventing collapse propagation. This trend dates back to the first impactful studies in the field of structural robustness, which were performed after a lack of connectivity enabled the progressive collapse of part of the Ronan Point tower in 1968 (ref.  33 ). Although completely preventing any collapse is certainly preferable to limiting the extent of a collapse, the occurrence of unforeseeable incidents is inevitable 34 and major building collapses keep occurring 1 , 2 , 3 .

Here we present an original approach for designing buildings to isolate the collapse triggered by a large initial failure. The approach, which is based on controlling the hierarchy of failures in a structural system, is inspired by how lizards shed their tails to escape predators 35 . The proposed hierarchy-based collapse isolation design ensures sufficient connectivity for operational conditions and after local-initial failures for which collapse initiation can be completely prevented through load redistribution. These local-initial failures can even be greater than those considered by building codes. Simultaneously, the structural system is also designed to separate into different parts and isolate a collapse when its propagation would otherwise be inevitable. As in the case of lizard tail autotomy 35 , this is achieved by promoting controlled fracture along predefined segment borders to limit failure propagation. In this work, hierarchy-based collapse isolation is applied to framed building structures. Developing this approach required a precise characterization of the collapse propagation mechanisms that need to be controlled. This was achieved using computational simulations that were validated through a specifically designed partial collapse test of a full-scale building. The obtained results demonstrate the viability of incorporating hierarchy-based collapse isolation in building design.

Hierarchy-based collapse isolation

Hierarchy-based collapse isolation design makes an important distinction between two types of initial failures. The first, referred to as small initial failures, includes all failures for which it is feasible to completely prevent the initiation of collapse by redistributing loads to the remaining structural system. The second type of initial failure, referred to as large initial failures, includes more severe failures that inevitably trigger at least a partial collapse.

The proposed design approach aims to (1) arrest unimpeded collapse propagation caused by large initial failures and (2) ensure the ability of a building to develop alternative load paths (ALPs) to prevent collapse initiation after small initial failures. This is achieved by prioritizing a specific hierarchy of failures among the components on the boundary of a moving collapse front.

Buildings are complex three-dimensional structural systems consisting of different components with very specific functions for transferring loads to the ground. Among these, vertical load-bearing components such as columns are the most important for ensuring global structural stability and integrity. Therefore, hierarchy-based collapse isolation design prevents the successive failure of columns, which would otherwise lead to catastrophic collapse. Although the exact magnitude of dynamic forces transmitted to columns during a collapse process is difficult to predict, these forces are eventually limited by the connections between columns and floor systems. In the proposed approach, partial-strength connections are designed to limit the magnitude of transmitted forces to values that are lower than the capacity of columns to resist unbalanced forces (see section ‘ Building design ’). This requirement guarantees a specific hierarchy of failures during collapse, whereby connection failures always occur before column failures. As a result, the collapse following a large initial failure is always restricted to components immediately adjacent to those directly involved in the initial failure. However, it is still necessary to ensure a lower bound on connection strengths to activate ALPs after small initial failures. Therefore, cost-effective implementation of hierarchy-based collapse isolation design requires finding an optimal balance between reducing the strength of connections and increasing the capacity of columns.

To test and verify the application of our proposed approach, we designed a real 15 m × 12 m precast reinforced concrete building with two 2.6-m-high floors. This basic geometry represents a building size that can be built and tested at full-scale while still being representative of current practices in the construction sector. The structural type was selected because of the increasing use of prefabricated construction for erecting high-occupancy buildings such as hospitals and malls because of several advantages in terms of quality, efficiency and sustainability 36 .

The collapse behaviour of possible design options (Extended Data Fig. 1 ) subjected to both small and large initial failures was investigated using high-fidelity collapse simulations (Fig. 1 ) based on the applied element method (AEM; see section ‘ Modelling strategy ’). The ability of these simulations to accurately represent collapse phenomena for the type of building being studied was later validated by comparing its predictions to the structural response observed during a purposely designed collapse test of a full-scale building (Extended Data Fig. 2 and Supplementary Video  7 ).

figure 1

a , Partial-strength beam–column connection optimized for hierarchy-based collapse isolation. b , Partial collapse of a building designed for hierarchy-based collapse isolation (design H) after the loss of a corner column and two penultimate-edge columns. c , Total collapse of conventional building design (design C) after the same large initial failure scenario.

Following the preliminary design of a structure to resist loads suitable for office buildings, two building design options considering different robustness criteria were further investigated (see section ‘ Building design ’). The first option, design H (hierarchy-based), uses optimized partial-strength connections and enhanced columns (Fig. 1a ) to fulfil the requirements of hierarchy-based collapse isolation design. The second option, design C (conventional), is strictly based on code requirements and provides a benchmark comparison for evaluating the effectiveness of the proposed approach. It uses full-strength connections to improve robustness as recommended in current guidelines 37 and building codes 8 , 9 .

Simulations predicted that both design H and design C could develop stable ALPs that are able to completely prevent the initiation of collapse after small initial failure scenarios that are more severe than those considered in building codes 8 , 9 (Extended Data Fig. 3 ).

When subjected to a larger initial failure, simulations predict that design H can isolate the collapse to only the region directly affected by the initial failure (Fig. 1b ). By contrast, design C, with increased connectivity, causes collapsing elements to pull down the rest of the structure, leading to total collapse (Fig. 1c ). These two distinct outcomes demonstrate that the prevention of unimpeded collapse propagation can only be ensured when hierarchy-based collapse isolation is implemented (Extended Data Fig. 4 and Supplementary Video  1 ).

Testing a full-scale precast building

To confirm the expected performance improvement that can be achieved with the hierarchy-based collapse isolation design, a full-scale building specimen corresponding to design H was purposely built and subjected to two phases of testing as part of this work (Fig. 2a and Supplementary Information  Sections 1 and 2 ). The precast structure was constructed with continuous columns cast together with corbels (Supplementary Video  4 ). The columns were cast with prepared dowel bars and sleeves for placing continuous top beam reinforcement bars through columns (Fig. 2b,c ). The bars used for these two types of reinforcing element (Fig. 1a ) were specifically selected to produce partial-strength connections. These connections are strong enough for the development of ALPs after small initial failures but weak enough to enable hierarchy-based collapse isolation after large initial failures.

figure 2

a , Full-scale precast concrete structure and columns removed in different testing phases. The label used for each column is shown. The location of beams connecting the different columns is indicated by the dotted lines above the second-floor level. The expected collapse area in the second phase of testing is indicated. b , Typical first-floor connection before placement of beams during construction. c , Typical second-floor connection after placement of precast beams during construction. Both b and c show columns with two straight precast beams on either side (C2, C3, C6, C7, C10 and C11). d , Device used for quasi-static removal of two columns in the first phase of testing. e , Three-hinged mechanism used for dynamic removal of corner column in the second phase of testing.

After investigating different column-removal scenarios from different regions of the test building (see section ‘ Experiment and monitoring design ’, Extended Data Fig. 5 and Supplementary Video  2 ), two phases of testing were defined to capture relevant collapse-related phenomena and validate the effectiveness of hierarchy-based collapse isolation. Separating the test into two phases allowed two different aspects to be analysed: (1) the prevention of collapse initiation after small initial failures and (2) the isolation of collapse after large initial failures.

Phase 1 involved the quasi-static removal of two penultimate-edge columns using specifically designed removable supports (Fig. 2d and Extended Data Fig. 6 ). This testing phase corresponds to a small initial failure scenario for which design H was able to develop ALPs to prevent collapse initiation. Phase 2 reproduced a large initial failure through the dynamic removal of the corner column found between the two previously removed columns using a three-hinged collapsible column (Fig. 2e ).

During both testing phases, a distributed load (11.8 kN m −2 ) corresponding to almost twice the magnitude specified in Eurocodes 38 for accidental design situations (6 kN m −2 ) was imposed on bays expected to collapse in phase 2 (Fig. 2a and Supplementary Video  5 ). Predictive simulations indicated that the failure mode and overall collapse would be almost identical when comparing this partial loading configuration with that in which the entire building is loaded (Supplementary Video  3 ). However, the partial loading configuration turns out to be more demanding for the part of the structure expected to remain upright as evidenced by the greater drifts it produces during collapse (see section ‘ Experiment and monitoring design ’ and Extended Data Fig. 7 ). The structural response during all phases of testing was extensively monitored with an array of different sensors (see section ‘ Experiment and monitoring design ’ and Supplementary Information Section 3 ) that provided the information used as a basis for the analyses presented in the following sections.

Preventing collapse initiation

Collapse initiation was completely prevented after the removal of two penultimate-edge columns in phase 1 of testing (Fig. 3a ), demonstrating that design H complies with the robustness requirements included in current building standards 8 , 9 , 39 . As this initial failure scenario is more severe than those considered by standardized design methods 8 , 9 , 30 , it represents an extreme case for which ALPs are still effective. As such, the outcome of phase 1 demonstrates that implementing hierarchy-based collapse isolation design does not impair the ability of this structure to prevent collapse initiation.

figure 3

a , Test building during phase 1 of testing after removal of columns C8 and C11. The beam depth ( h ) used to compute the ratio plotted in b is shown and the location of the strain measurement plotted in c is indicated. b , Evolution of beam deflection expressed as a ratio of beam depth at the location of removed column C11. The chord rotation of the beams bridging over this removed column is also indicated using a secondary vertical axis. c , Strain increase in continuity reinforcement in the second-floor beam between C12 and C11.

Source Data

Analysis of the structural response during phase 1 (Supplementary Information Section 4 ) shows that collapse was prevented because of the redistribution of loads through the beams (Fig. 3b,c ), columns (Extended Data Fig. 8 ) and slabs (Supplementary Report 4 ) adjacent to the removed columns. The beams bridging over the removed columns sustained loads through flexural action, as evidenced by the magnitude of the vertical displacement recorded at the removal locations (Fig. 3b ). These values were far too small to allow the development of catenary forces, which only begin to appear when displacements exceed the depth of the beam 40 .

The flexural response of the structure after the loss of two penultimate-edge columns was only able to develop because of the specific reinforcement detailing introduced in the design. This was verified by the increase in tensile strains recorded in the continuous beam reinforcement close to the removed column (Fig. 3c ) and in ties placed between the precast hollow-core planks in the floor system close to column C7 (Supplementary Information Section 4 ). The latter also proves that the slabs contributed notably to load redistribution after column removal.

In general, the structure experienced only small movements and suffered very little permanent damage during phase 1 (Supplementary Information Section 4 ), despite the high imposed loads used for testing. The only reinforcement bars showing some signs of yielding were the continuous reinforcement bars of beams close to the removed columns (Fig. 3c ).

Arresting collapse propagation

Following the removal of two penultimate-edge columns in phase 1, the sudden removal of the C12 corner column in phase 2 triggered a collapse that was arrested along the border delineated by columns C3, C7, C6 and C10 (Fig. 4a–d and Supplementary Video  6 ). Thus, the viability of hierarchy-based collapse isolation design is confirmed.

figure 4

a , Collapse sequence during phase 2 of testing. b , Partial collapse of full-scale test building (design H) after the removal of three columns. The segment border in which collapse propagation was arrested is indicated. The axes shown at column C9 correspond to those used in f to indicate the changing direction of the resultant drift measured at this location. c , Failure of beam–column connections at collapse border. d , Debonding of reinforcement in the floor at collapse border. e , Change in average axial strains measured in column C7. A negative change represents an increase in compressive strains. f , Magnitude of resultant drift measured at C9. g , Change in direction of resultant drift measured at C9. The initial drift after phase 1 of testing and the residual drift after the upright part of the building stabilized are also shown in the plot.

During the initial stages following the removal of C12, the collapsing bays next to this column pulled up the columns on the opposite corner of the building (columns C1, C3 and C6). During this process, column C7 behaves like a pivot point, experiencing a significant increase in compressive forces (Fig. 4e and Supplementary Information Section 5 ). This phenomenon was enabled by the connectivity between collapsing parts and the rest of the structure. If allowed to continue, this could have led to successive column failures and unimpeded collapse propagation. However, during the test, the rupture of continuous reinforcement bars (Fig. 4c ) occurred as the connections failed and halted the transmission of forces to columns. These connection failures occurred before any column failures, as intended by the hierarchy-based collapse isolation design of the structural system. Specifically, this type of connection failure occurred at the junctions with the two columns (C7 and C10) immediately adjacent to the failure origin (around C8, C11 and C12), effectively segmenting the structure along the border shown in Fig. 4b . Segmentation along this border was completed by the total separation of the floor system, which was enabled by the debonding of slab reinforcements at the segment border (Fig. 4d and Supplementary Video  8 ).

Observing the building drift measured at the top of column C9 (Fig. 4f ) enabled us to better understand the nature of forces acting on the building further away from the collapsing region. The initial motion shows the direction of pulling forces generated by the collapsing elements (Fig. 4g ). This drift peaks very shortly after the point in time when separation of the collapsing parts occurs (Fig. 4f ). After this peak, the upright part of the structure recoiled backwards and experienced an attenuated oscillatory motion before finding a new stable equilibrium (Fig. 4g ). The magnitude of the measured peak drift is comparable to the drift limits considered in seismic regions when designing against earthquakes with a 2,500-year return period 41 (Supplementary Information Section 5 ). This indicates that the upright part of the structure was subjected to strong dynamic horizontal forces as it was effectively tugged by the collapsing elements falling to the ground. The building would have failed because of these unbalanced forces had hierarchy-based collapse isolation design not been implemented.

The upright building segment suffered permanent damages as evidenced by the residual drift recorded at the top of column C9 (Fig. 4g ). This is further corroborated by the fact that several reinforcement bars in this part of the structure yielded, particularly in areas close to the segment border (Supplementary Report 5 ). Despite the observed level of damage, safe evacuation and rescue of people from this building segment would still be possible after an extreme event, saving lives that would have been lost had a more conventional robustness design (design C) been used instead.

Discussion and future outlook

Our results demonstrate that the extensive connectivity adopted in conventional robustness design can lead to catastrophic collapse after large initial failures. To address this risk, we have developed and tested a collapse isolation design approach based on controlling the hierarchy of failures occurring during the collapse. Specifically, it is ensured that connection failures occur before column failures, mitigating the risk of collapse propagation throughout the rest of the structural system. The proposed approach has been validated through the partial collapse test of a full-scale precast building, showing that propagating collapses can be arrested at low cost without impairing the ability of the structure to completely prevent collapse initiation after small initial failures.

The reported findings show a last line of defence against major building collapses due to extreme events. This paves the way for the proposed solution to be developed, tested and implemented in different building types with different building elements. This discovery opens opportunities for robustness design that will lead to a new generation of solutions for avoiding catastrophic building collapses.

Building design

Our hierarchy-based collapse isolation approach ensures buildings have sufficient connectivity for operational conditions and small initial failures, yet separate into different parts and isolate a collapse after large initial failures. We chose a precast construction as our main structural system for our case study. A notable particularity of precast systems compared with cast-in-place buildings is that the required construction details can be implemented more precisely. We designed and systematically investigated two precast building designs: designs H and C.

Design H is our building design in which the hierarchy-based collapse isolation approach is applied. Design H was achieved after several preliminary iterations by evaluating various connections and construction details commonly adopted in precast structures. The final design comprises precast columns with corbels connected to a floor system (partially precast beams and hollow-core slabs) through partial-strength beam–column connections (Extended Data Fig. 1 and Supplementary Information Section 1 ). This partial-strength connection was achieved by (1) connecting the bottom part of the beam (precast) to optimally designed dowel bars anchored to the column corbels and (2) passing continuous top beam bars through the columns. With this partial-strength connection, we have more direct control over the magnitude of forces being transferred from the floor system to the columns, which is a key aspect for achieving hierarchy-based collapse isolation. The hierarchy of failures was initially implemented through the beam–column connections (local level) and later verified at the system (global) level.

At the local level, three main components are designed according to the hierarchy-based concept: (1) top continuity bars of the beams; (2) dowel bars connecting beams to corbels; and (3) columns.

Top continuity bars of beams: To allow the structural system to redistribute the loads after small initial failures, top reinforcement bars in all beams were specifically designed to fulfil structural robustness requirements (Extended Data Fig. 3 ). Particularly, we adopted the prescriptive tying rules (referred to as Tie Forces) of UFC 4-023-03 (ref.  9 ) to perform the design of the ties. The required tie strength F i in both the longitudinal and transverse directions for the internal beams is expressed as

For the peripheral beams, the required tie strength F P is expressed as

where  w F  = floor load (in kN m −2 );  D  = dead load (in kN m −2 );  L  = live load (in kN m −2 );  L 1  = greater of the distances between the centres of the columns, frames or walls supporting any two adjacent floor spaces in the direction under consideration (in m);  L P  = 1.0 m; and  W C  = 1.2 times dead load of cladding (neglected in this design).

These required tie strengths are fulfilled with three bars (20 mm diameter) for the peripheral beams and three bars (25 mm diameter) for the internal beams. These required reinforcement dimensions were implemented through the top bars of the beam and installed continuously (lap-spliced, internally, and anchored with couplers at the ends) throughout the building (Extended Data Fig. 1 ).

Dowel bars connecting the beam and corbel of the column: The design of the dowel bars is one of the key aspects in achieving partial-strength connections that fail at a specific threshold to enable segmentation. These dowel bars would control the magnitude of the internal forces between the floor system and column while allowing for some degree of rotational movement. The dowels were designed to resist possible failure modes using expressions proposed in the fib guidelines 37 . Several possible failure modes were checked: splitting of concrete around the dowel bars, shear failure of the dowel bars and forming a plastic hinge in the dowel. The shear capacity of a dowel bar loaded in pure shear can be determined according to the Von Mises yield criterion:

where f yd is the design yield strength of the dowel bar and A s is the cross-sectional area of the dowel bar. In case of concrete splitting failure, the highly concentrated reaction transferred from the dowel bar shall be designed to be safely spread to the surrounding concrete. The strut and tie method is recommended to perform such a design 42 . If shear failure and splitting of concrete do not occur prematurely, the dowel bar will normally yield in bending, indicated by the formation of a plastic hinge. This failure mode is associated with a significant tensile strain at the plastic hinge location of the dowel bar and the crushing of concrete around the compression part of the dowel. The shear resistance achieved at this state for dowel (ribbed) bars across a joint of a certain width (that is, the neoprene bearing) can be expressed as

where α 0 is a coefficient that considers the bearing strength of concrete and can be taken as 1.0 for design purposes, α e is a coefficient that considers the eccentricity, e is the load eccentricity and shall be computed as the half of the joint width (half of the neoprene bearing thickness), Φ and A s are the diameter and the cross-sectional area of the dowel bar, respectively, f cd,max is the design concrete compressive strength at the stronger side, σ sn is the local axial stress of the dowel bar at the interface location, \({f}_{{\rm{yd}},{\rm{red}}}={f}_{{\rm{yd}}}-{\sigma }_{{\rm{sn}}}\) is the design yield strength available for dowel action, f yd is the yield strength of the dowel bar and μ is the coefficient of friction between the concrete and neoprene bearing. By performing the checks on these three possible failure modes, we selected the final (optimum) design with a two dowel bars (20 mm diameter) configuration.

Columns: The proposed hierarchy-based approach requires columns to have adequate capacity to resist the internal forces transmitted by the floor system during a collapse. By fulfilling this strength hierarchy, we can ensure and control that failure happens at the connections first before the columns fail, thus preventing collapse propagation. The columns were initially designed according to the general procedure prescribed by building standards. Then, the resulting capacity was verified using the modified compression field theory (MCFT) 43 to ensure that it was higher than the maximum expected forces transmitted by the connection to the floor system. MCFT was derived to consistently fulfil three main aspects: equilibrium of forces, compatibility and rational stress–strain relationships of cracked concrete expressed as average stresses and strains. The principal compressive stress in the concrete f c 2 is expressed not only as a function of the principal compressive strain ε 2 but also of the co-existing principal tensile strain ε 1 , known as the compression softening effect:

where f c 2max is the peak concrete compressive strength considering the perpendicular tensile strain, \({f}_{c}^{{\prime} }\) is the uniaxial compressive strength, and \({\varepsilon }_{{c}^{{\prime} }}\) is the peak uniaxial concrete compressive strain and can be taken as −0.002. In tension, concrete is assumed to behave linearly until the tensile strength is achieved, followed by a specific decaying function 43 . Regarding aggregate interlock, the shear stress that can be transmitted across cracks v ci is expressed as a function of the crack width w , and the required compressive stress on the crack f ci (ref.  44 ):

where a refers to the maximum aggregate size in mm and the stresses are expressed in MPa. The MCFT analytical model was implemented to solve the sectional and full-member response of beams and columns subjected to axial, bending and shear in Response 2000 software (open access) 45 , 46 . In Response 2000, we input key information, including the geometries of the columns, reinforcement configuration and the material definition for the concrete and the reinforcing bars. Based on this information, we computed the M – V (moment and shear interaction envelope) and M – N (moment and axial interaction envelope) diagrams that represent the capacity of the columns. The results shown in Extended Data Fig. 4 about the verification of the demand and capacity envelopes were obtained using the analytical procedure described here.

At the global level, the initially collapsing regions of the building generate a significant magnitude of dynamic unbalanced forces. The rest of the building system must collectively resist these unbalanced forces to achieve a new equilibrium state. Depending on the design of the structure, this phenomenon can lead to two possible scenarios: (1) major collapse due to failure propagation or (2) partial collapse only of the initially affected regions. The complex interaction between the three-dimensional structural system and its components must be accounted for to evaluate the structural response during collapse accurately. Advanced computational simulations, described in the ‘ Modelling strategy ’ section, were adopted to analyse the global building to verify that major collapse can be prevented. The final design obtained from the local-level analysis (top continuity bars, dowel bars and columns) was used as an input for performing the global computational simulations. Certain large initial failures deemed suitable for evaluating the performance of this building were simulated. In case failure propagation occurs, the original hierarchy-based design must be further adapted. An iterative process is typically required involving several simulations with various building designs to achieve an optimum result that balances the cost and desired collapse performance. The final iteration of design H, which fulfils both the local and global hierarchy checks, is provided in Extended Data Fig. 1 .

Design C is a conventional building design that complies with current robustness standards but does not explicitly fulfil our hierarchy-based approach. The same continuity bars used in design H were used in design C. We adopted a full-strength connection as recommended by the fib guideline 37 . The guideline promotes full connectivity to enhance the development of alternative load paths for preventing collapse initiation. In design C, we used a two dowel bars (32 mm diameter) configuration to ensure full connectivity when the beams are working at their maximum flexural capacity. Another main difference was that the columns in design C were designed according to codes and current practice (optimal solution) without explicitly checking that hierarchy-based collapse isolation criteria are fulfilled. The final design of the columns and connections adopted in design C is provided in Extended Data Fig. 1 .

Modelling strategy

We used the AEM implemented in the Extreme Loading for Structures software to perform all the computational simulations presented in this study 47 (Extended Data Figs. 2 – 5 and 7 and Supplementary Videos  1 , 2 , 3 and 7 ). We chose the AEM for its ability to represent all phases of a structural collapse efficiently and accurately, including element separation (fracture), contact and collision 47 . The method discretizes a continuum into small, finite-size elements (rigid bodies) connected using multiple normal and shear springs distributed across each element face. Each element has six degrees of freedom, three translational and three rotational, at its centre, whereas the behaviour of the springs represents all material constitutive models, contact and collision response. Despite the simplifying assumptions in its formulation 48 , its ability to accurately account for large displacements 49 , cyclic loading 50 , as well as the effects of element separation, contact and collision 51 has been demonstrated through many comparisons with experimental and theoretical results 47 .

Geometric and physical representations

We modelled each of the main structural components of the building separately, including the columns, beams, corbels and hollow-core slabs. We adopted a consistent mesh size with an average (representative) size of 150 mm. Adopting this mesh configuration resulted in a total number of 98,611 elements. We defined a specialized interface with no tensile or shear strength between the precast and cast-in-situ parts to allow for localized deformations that occur at these locations. The behaviour of the interface was mainly governed by a friction coefficient of 0.6, which was defined according to concrete design guidelines 52 , 53 , 54 . The normal stiffness of these interfaces corresponded to the stiffness of the concrete cast-in-situ topping. The elastomeric bearing pads supporting the precast beams on top of the corbels were also modelled with a similar interface having a coefficient of friction of 0.5 (ref.  55 ).

Element type and constitutive models

We adopted an eight-node hexahedron (cube) element with the so-called matrix-springs connecting adjacent cubes to model the concrete parts. We adopted the compression model in refs.  56 , 57 to simulate the behaviour of concrete under compression. Three specific parameters are required to define the response envelope: the initial elastic modulus, the fracture parameter and the compressive plastic strain. For the behaviour in tension, the spring stiffness is assumed to be linear (with the initial elastic modulus) until reaching the cracking point. The shear behaviour is considered to remain linear up to the cracking of the concrete. The interaction between normal compressive and shear stress follows the Mohr–Coulomb failure criterion. After reaching the peak, the shear stress is assumed to drop to a certain residual value affected by the aggregate interlock and friction at the cracked surface. By contrast, under tension, both normal and shear stresses drop to zero after the cracking point. The steel reinforcement bars were simulated as a discrete spring element with three force components: the normal spring takes the principal/normal forces parallel to the rebar, and two other springs represent the reinforcement bar in shear (dowelling). Three distinct stages are considered: elastic, yield plateau and strain hardening. A perfect bond behaviour between the concrete and the reinforcement bars was adopted. We assigned the material properties based on the results of the laboratory tests performed on reinforcement bars and concrete cylinders (Supplementary Information Section 2 ).

Boundary conditions and loading protocol

We assumed that all the ground floor columns are fully restrained in all six degrees of freedom at the base location. This assumption is reasonable, as we expected that the footing would provide sufficient rigidity to constrain any significant deformations. We assigned the reflecting domain boundaries to allow a realistic representation of the collapsing elements (debris) that might fall and rebound after hitting the ground. The ground level was assumed to be at the same elevation at which the column bases are restrained. We applied the additional imposed uniform distributed load as an extra volume of mass assigned to the slabs. To perform the column removal, we used the element removal feature that allows some specific designated elements to be immediately removed at the beginning of the loading stage. This represents a dynamic (sudden) removal, as we expected from the actual test.

Extended Data Tables 1 and 2 summarize all key parameters and assumptions adopted in the modelling process. To validate these assumptions for simulating the precast building designs described previously, it was ensured that the full-scale test performed as part of this work captured all relevant phenomena influencing collapse (large displacements, fracture, contact and collision).

Experiment and monitoring design

We used computational simulations of design H subjected to different initial failure scenarios to define a suitable testing sequence and protocol. The geometry, reinforcement configurations, connection system and construction details of the purpose-built specimen representing design H are provided in Supplementary Information Section 1 and Supplementary Video  4 .

Initial failure scenarios

Initial failure scenarios occurring in edge and corner regions of the building were prioritized for this study because they are usually exposed to a wider range of external threats 58 , 59 , 60 , 61 . After performing a systematic sensitivity study, we identified three critical scenarios (Extended Data Fig. 5 and Supplementary Video  2 ):

Scenario 1: a scenario involving a two-column failure—a corner column and the adjacent edge column. We determined that the required gravity loads to induce collapse equal 11.5 kN m −2 and that partial collapse would occur locally.

Scenario 2: a scenario involving a three-column failure—two corner columns and the edge column in between the two corner columns. We determined that the required gravity loads to induce collapse equal 8.5 kN m −2 and that segmentation (partially collapsing two bays) would take place only across one principal axis of the building.

Scenario 3: a scenario involving a three-column failure: one corner column and two edge columns on both sides of the corner column. We determined that the required gravity loads to induce collapse equal 7.0 kN m −2 and that segmentation (partially collapsing three bays) would take place across both principal axes of the building.

Scenario 3 was ultimately chosen after considering three main aspects: (1) it requires the lowest gravity loads to trigger partial collapse; (2) the failure mode involves activating segmentation mechanisms in two principal axes of the building (more realistic collapse pattern); and (3) the ratio of the area of the intact part and the collapsed part was predicted to be 50:50, leading to the largest collapse area among the three scenarios.

Testing phases

To allow us to investigate the behaviour of the building specimen under small and large initial failures in only one building specimen, we decided to perform two separate testing phases. Phase 1 involved the quasi-static (gradual) removal of two edge columns (C8 and C11), whereas phase 2 involved the sudden removal of the corner column (C12) found between the columns removed in phase 1. A uniformly distributed load of 11.8  kN m −2 was applied only on the bays directly adjacent to these three columns without loading the remaining bays (Supplementary Video  5 ). This was achieved by placing more than 8,000 sandbags in the designated bays on the two floors (the first- and second-floor slabs). We performed additional computational simulations to compare this partial loading configuration and loading of the entire building. The simulations indicated that both would have resulted in almost identical final collapse states (Extended Data Fig. 7 and Supplementary Video  3 ). However, the partial loading configuration introduced a higher magnitude of unbalanced moment to surrounding columns, which induces more demanding bending and shear in columns. Simulations confirmed that the lateral drift of the remaining part of the building would be higher when only three bays are loaded, indicating that its stability would be tested to a greater extent with this loading configuration (Extended Data Fig. 7 ).

Specially designed elements to trigger initial failures

We designed special devices to perform the column removal (Extended Data Fig. 6 ). For phase 1, we constructed two hanging concrete columns (C8 and C11) supported only on a vertical hydraulic jack. The pressure in the jack could be gradually released from a safe distance to remove the vertical reaction supporting the column. In phase 2, a three-steel-hinged column was used as the corner column. The middle part of the column represents a central hinge that was able to rotate if unlocked. During the second testing phase, we unlocked the hinge by pulling the column from outside the building using a forklift to induce a slight destabilization. This resulted in a sudden removal of the corner column C12 and the initiation of the collapse.

Monitoring plan

To monitor the structural behaviour, we heavily instrumented the building specimen with multiple sensors. A total of 57 embedded strain gauges, 17 displacement transducers and 5 accelerometers were placed at key locations in different parts of the structure (Extended Data Fig. 8 and Supplementary Information Section 3 ) during all phases of testing. The data from these sensors (Supplementary Information Sections 4 and 5 ) were complemented by the pictures and videos of the structural response captured by five high-resolution cameras and two drones (Supplementary Videos  6 and 8 ).

Data availability

All experimental data recorded during testing of the full-scale building are available from Zenodo ( https://doi.org/10.5281/zenodo.10698030 ) 62 . Source data are provided with this paper.

National Institute of Standards and Technology (NIST). Champlain Towers South collapse. NIST https://www.nist.gov/disaster-failure-studies/champlain-towers-south-collapse-ncst-investigation (2022).

Jones, M. Nigeria’s Ikoyi building collapse: anger and frustration grows. BBC News (4 November 2021).

Berg, R. Iran building collapse death toll jumps to 26. BBC News (27 May 2022).

Corres Peiretti, H. & Romero Rey, E. Reconstrucción “Módulo D” aparcamiento Madrid Barajas T-4. In IV Congreso de Asociación científico-técnica del hormigón estructural (ACHE) (2008).

Manik, J. A. & Yardley, J. Building collapse in Bangladesh leaves scores dead. The New York Times (24 April 2013).

Caredda, G. et al. Learning from the progressive collapse of buildings. Dev. Built Environ. 15 , 100194 (2023).

Article   Google Scholar  

Adam, J. M., Parisi, F., Sagaseta, J. & Lu, X. Research and practice on progressive collapse and robustness of building structures in the 21st century. Eng. Struct. 173 , 122–149 (2018).

European Committee for Standardization (CEN). EN 1991-1-7:2006: Eurocode 1 - Actions on Structures - Part 1-7: General Actions - Accidental Actions (CEN, 2006).

Department of Defense (DoD). UFC 4-023-03. Design of Buildings to Resist Progressive Collapse , 34–37 (2016).

Loizeaux, M. & Osborn, A. E. Progressive collapse—an implosion contractor’s stock in trade. J. Perform. Constr. Facil. 20 , 391–402 (2006).

United Nations Office for Disaster Risk Reduction (UNDRR). The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019) . (UNDRR, 2020).

Wake, B. Buildings at risk. Nat. Clim. Change   11 , 642 (2021).

Article   ADS   Google Scholar  

Starossek, U. Progressive Collapse of Structures (ICE, 2017).

Moehle, J. P., Elwood, K. J. & Sezen, H. Gravity load collapse of building frames during earthquakes. in SP-197: S.M. Uzumeri Symposium - Behavior and Design of Concrete Structures for Seismic Performance (American Concrete Institute, 2002).

Gurley, C. Progressive collapse and earthquake resistance. Pract. Period. Struct. Des. Constr. 13 , 19–23 (2008).

Lu, X., Lu, X., Guan, H. & Ye, L. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes. Earthq. Eng. Struct. Dyn. 42 , 705–723 (2013).

Tellman, B. et al. Satellite imaging reveals increased proportion of population exposed to floods. Nature 596 , 80–86 (2021).

Article   ADS   CAS   PubMed   Google Scholar  

Rentschler, J. et al. Global evidence of rapid urban growth in flood zones since 1985. Nature 622 , 87–92 (2023).

Cantelmo, C. & Cuomo, G. Hydrodynamic loads on buildings in floods. J. Hydraul. Res. 59 , 61–74 (2021).

Lonetti, P. & Maletta, R. Dynamic impact analysis of masonry buildings subjected to flood actions. Eng. Struct. 167 , 445–458 (2018).

Li, Y. & Ellingwood, B. R. Hurricane damage to residential construction in the US: Importance of uncertainty modeling in risk assessment. Eng. Struct. 28 , 1009–1018 (2006).

Khanduri, A. & Morrow, G. Vulnerability of buildings to windstorms and insurance loss estimation. J. Wind Eng. Ind. Aerodyn. 91 , 455–467 (2003).

Ozturk, U. et al. How climate change and unplanned urban sprawl bring more landslides. Nature 608 , 262–265 (2022).

Luo, H. Y., Zhang, L. L. & Zhang, L. M. Progressive failure of buildings under landslide impact. Landslides 16 , 1327–1340 (2019).

Thöns, S. & Stewart, M. G. On the cost-efficiency, significance and effectiveness of terrorism risk reduction strategies for buildings. Struct. Saf. 85 , 101957 (2020).

Ellingwood, B. et al. NISTIR 7396: Best Practices for Reducing the Potential for Progressive Collapse in Buildings (National Institute of Standards and Technology, 2007).

Rockström, J. et al. A safe operating space for humanity. Nature 461 , 472–475 (2009).

Article   ADS   PubMed   Google Scholar  

Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347 , 1259855 (2015).

Article   PubMed   Google Scholar  

United Nations Office for Disaster Risk Reduction (UNDRR). Principles for Resilient Infrastructure (UNDRR, 2022).

General Services Administration (GSA). Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance (GSA, 2016).

Izzuddin, B. A. & Sio, J. Rational horizontal tying force method for practical robustness design of building structures. Eng. Struct. 252 , 113676 (2022).

Starossek, U. & Wolff, M. Design of collapse-resistant structures. In JCSS and IABSE Workshop on Robustness of Structures (2005).

Russell, J. M., Sagaseta, J., Cormie, D. & Jones, A. E. K. Historical review of prescriptive design rules for robustness after the collapse of Ronan Point. Structures 20 , 365–373 (2019).

Cormie, D. Manual for the Systematic Risk Assessment of High-Risk Structures Against Disproportionate Collapse (The Institution of Structural Engineers, 2013).

Baban, N. S., Orozaliev, A., Kirchhof, S., Stubbs, C. J. & Song, Y.-A. Biomimetic fracture model of lizard tail autotomy. Science 375 , 770–774 (2022).

Article   ADS   MathSciNet   CAS   PubMed   Google Scholar  

Chen, Y., Okudan, G. E. & Riley, D. R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 19 , 235–244 (2010).

fib Commission 6. Guide to Good Practice: Structural Connections for Precast Concrete Buildings, Bulletin 43 (fib, 2008).

European Committee for Standardization (CEN). EN 1990:2002: Eurocode 0 - Basis of Structural Design (CEN, 2002).

American Society of Civil Engineers (ASCE). Standard for Mitigation of Disproportionate Collapse Potential in Buildings and Other Structures (American Society of Civil Engineers, 2023).

Lew, H. S. et al . NIST Technical Note 1720: An Experimental and Computational Study of Reinforcd Concrete Assemblies Under a Column Removal Scenario (NIST, 2011).

American Society of Civil Engineers. ASCE 7-2002: Minimum Design Loads for Buildings and Other Structures (American Society of Civil Engineers, 2002).

fib Commission 2. Design and Assessment With Strut-and-Tie Models and Stress Fields: From Simple Calculations to Detailed Numerical Analysis, Bulletin 100 (fib, 2021).

Vecchio, F. J. & Collins, M. P. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI Struct. J. 83 , 219–231 (1986).

Google Scholar  

Walraven, J. C. Fundamental analysis of aggregate interlock. J. Struct. Div. 107 , 2245–2270 (1981).

Bentz, E. C. Response Manual https://www.hadrianworks.com/about-programs.html (2019).

Bentz, E. C. Sectional Analysis of Reinforced Concrete Members . Doctoral dissertation, Univ. Toronto (2000).

Extreme Loading for Structures. Extreme Loading ® for Structures Theoretical Manual v.9 www.extremeloading.com/wp-content/uploads/els-v9-theoretical-manual.pdf (ASI, 2004).

Meguro, K. & Tagel-Din, H. Applied element method for structural analysis. Doboku Gakkai Ronbunshu 2000 , 31–45 (2000).

Tagel-Din, H. & Meguro, K. Applied element method for dynamic large deformation analysis of structures. Doboku Gakkai Ronbunshu 2000 , 1–10 (2000).

Tagel-Din, H. & Meguro, K. Analysis of a small scale RC building subjected to shaking table tests using applied element method. In 12th World Conference on Earthquake Engineering, Auckland, New Zealand (2000).

Tagel-Din, H. & Meguro, K. Applied element simulation for collapse analysis of structures. Bull. Earthq. Resist. Struct. 32 , 113–123 (1999).

European Committee for Standardization (CEN). EN 1992-1-1: Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings (CEN, 2004).

Precast/Prestressed Concrete Institute. PCI Design Handbook: Precast and Prestressed Concrete 7th edn (2010).

ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI, 2008).

Jun, X., Zhang, Y. & Shan, C. Compressive behavior of laminated neoprene bridge bearing pads under thermal aging condition. AIP Conf. Proc. 1890 , 040018 (2017).

Maekawa, K. The Deformational Behavior and Constitutive Equation of Concrete Based on the Elasto-Plastic and Fracture Model . Doctoral dissertation, Univ. Tokyo (1985).

Okamura, H. & Maekawa, K. Non-linear analysis and constitutive models of reinforced concrete. In Conf. Computer-Aided Analysis and Design of Concrete Structures, Austria (1990).

Makoond, N., Shahnazi, G., Buitrago, M. & Adam, J. M. Corner-column failure scenarios in building structures: current knowledge and future prospects. Structures 49 , 958–982 (2023).

Adam, J. M., Buitrago, M., Bertolesi, E., Sagaseta, J. & Moragues, J. J. Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario. Eng. Struct. 210 , 110414 (2020).

Starossek, U. Progressive Collapse of Structures 2nd edn (ICE, 2017).

Zhao, Z., Guan, H., Li, Y., Xue, H. & Gilbert, B. P. Collapse-resistant mechanisms induced by various perimeter column damage scenarios in RC flat plate structures. Structures 59 , 105716 (2024).

Makoond, N., Setiawan, A., Buitrago, M. & Adam, J. M. Arresting failure propagation in buildings through collapse isolation—experimental dataset. Zenodo https://doi.org/10.5281/zenodo.10698030 (2024).

Download references

Acknowledgements

This article is part of a project (Endure) that has received funding from the European Research Council (ERC) under the Horizon 2020 research and innovation programme of the European Union (grant agreement no. 101000396). We acknowledge the assistance of the following colleagues from the ICITECH-UPV institute in preparing and executing the full-scale building tests: J. J. Moragues, P. Calderón, D. Tasquer, G. Caredda, D. Cetina, M. L. Gerbaudo, L. Marín, M. Oliver and G. Sempértegui. We are also grateful to the Levantina, Ingeniería y Construcción S.L. (LIC) company for providing human resources and access to their facilities for testing. Finally, we thank A. Elfouly and Applied Science International for their support in performing simulations.

Author information

Authors and affiliations.

ICITECH, Universitat Politècnica de València, Valencia, Spain

Nirvan Makoond, Andri Setiawan, Manuel Buitrago & Jose M. Adam

You can also search for this author in PubMed   Google Scholar

Contributions

N.M. prepared the main text, performed the computational simulations and validated the test results. A.S. analysed the experimental data, performed data curation and prepared the Methods section. M.B. contributed to the design of the building specimen, the design of the test and data curation. J.M.A. contributed to the design of the research methodology, supervised the research and was responsible for funding acquisition. N.M., A.S. and M.B. contributed to the execution of the experimental test and to preparing figures, extended data and supplementary information. All authors interpreted the test and simulation results and edited the paper.

Corresponding author

Correspondence to Jose M. Adam .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks Valerio De Biagi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended data fig. 1 summary of building designs..

General building layout, connection details, and reinforcement configurations of Design H (“Hierarchy-based”) and Design C (“Conventional”).

Extended Data Fig. 2 Comparison of measured experimental data and simulation predictions.

a, Location of shown comparisons. All data shown in panels b to d refer to the change in structural response following the sudden removal of column C12 (after having removed columns C8 and C11 in a previous phase). b, Change in axial load in lower part of column C7. c, Change in axial load in lower part of column C9. d , Change in drift measured in both directions parallel to each building side.

Extended Data Fig. 3 Computational simulations of Design H and Design C subjected to small initial failures.

Principal strains and relative vertical displacement at the location of column C11 after removal of columns C8 and C11 from Design H ( a ) and Design C ( b ).

Extended Data Fig. 4 Demand and capacity envelopes of internal forces in Designs H and C subjected to large initial failures.

Evolution of axial loads, bending moments, and shear forces in column C7 compared to lower and upper bounds of its capacity after the removal of columns C8, C11, and C12 from Design H ( a ) and Design C ( b ).

Extended Data Fig. 5 Initial failure scenarios considered for testing.

Simulation of three different initial failure scenarios that were considered for testing. Scenario 3 was selected for the experimental test.

Extended Data Fig. 6 Specially designed removable supports to perform column removals.

Removable supports designed for quasi-static column removals in phase 1 and sudden column removal in phase 2.

Extended Data Fig. 7 Comparison of simulations of fully loaded and partially loaded building specimen.

a, Loaded bays, deformed shape, and principal normal strains following the sudden removal of column C12 (after having removed columns C8 and C11 in a previous phase). b, Horizontal displacement in the east-west and north-south directions at the top of columns C1 and C9 (2nd floor).

Extended Data Fig. 8 Measured redistribution of column axial forces during phase 1.

Maximum change in axial load of columns during phase 1 of testing based on recorded strain measurements.

Supplementary information

Supplementary information.

This file contains a supplementary test report that covers as-built building design, material properties, monitoring plan, structural response in phase 1 of testing and structural response in phase 2 of testing.

Peer Review File

Supplementary video 1.

Structural response of designs H and C.

Supplementary Video 2

Initial failure scenarios.

Supplementary Video 3

Comparison of partial and full loading.

Supplementary Video 4

Construction of the building.

Supplementary Video 5

An aerial view of the building before the test.

Supplementary Video 6

Multiple perspectives of the partial collapse of the building specimen in testing phase 2.

Supplementary Video 7

Experimental and simulation comparison of the partial collapse in testing phase 2.

Supplementary Video 8

Post-collapse inspection drone video.

Source data

Source data fig. 3, source data fig. 4, source data extended data fig. 2, source data extended data fig. 3, source data extended data fig. 4, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Makoond, N., Setiawan, A., Buitrago, M. et al. Arresting failure propagation in buildings through collapse isolation. Nature 629 , 592–596 (2024). https://doi.org/10.1038/s41586-024-07268-5

Download citation

Received : 07 December 2023

Accepted : 05 March 2024

Published : 15 May 2024

Issue Date : 16 May 2024

DOI : https://doi.org/10.1038/s41586-024-07268-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

master thesis results chapter

Grad Coach (R)

What’s Included: Discussion Template

This template covers all the core components required in the discussion/analysis chapter of a typical dissertation or thesis, including:

  • The opening/overview section
  • Overview of key findings
  • Interpretation of the findings
  • Concluding summary

The purpose of each section is explained in plain language, followed by an overview of the key elements that you need to cover. The template also includes practical examples to help you understand exactly what’s required, along with links to additional free resources (articles, videos, etc.) to help you along your research journey.

The cleanly formatted Google Doc can be downloaded as a fully editable MS Word Document (DOCX format), so you can use it as-is or convert it to LaTeX.

PS – if you’d like a high-level template for the entire thesis, you can we’ve got that too .

FAQ: Thesis Discussion Template

What types of dissertations/theses can this template be used for.

The discussion chapter template follows the standard format for academic research projects, which means it will be suitable for the majority of dissertations, theses and research projects (especially those within the sciences).

Keep in mind that the exact requirements for the discussion chapter/section will vary between universities and degree programs. For example, your university may require that the discussion chapter and conclusion chapter are merged into one, or that the results and discussion are covered together (this is often the case with qualitative research). So, be sure to double-check your university’s requirements before you finalise your structure.

Is this template for an undergrad, Master or PhD-level thesis?

This template can be used for a dissertation, thesis or research project at any level of study. Doctoral-level projects typically require the discussion chapter to be more extensive/comprehensive, but the structure will typically remain the same. Again, be sure to check your university’s requirements and norms in terms of document structure.

How long should the discussion chapter be?

This can vary a fair deal, depending on the level of study (undergrad, Master or Doctoral), the field of research, as well as your university’s specific requirements. Therefore, it’s best to check with your university or review past dissertations from your program to get an accurate estimate.

Can I share this template with my friends/colleagues?

Yes, you’re welcome to share this template in its original format (no editing allowed). If you want to post about it on your blog or social media, please reference this page as your source.

What format is the template (DOC, PDF, PPT, etc.)?

The dissertation discussion chapter template is provided as a Google Doc. You can download it in MS Word format or make a copy to your Google Drive. You’re also welcome to convert it to whatever format works best for you, such as LaTeX or PDF.

Do you have templates for the other chapters?

Yes, we do. We are constantly developing our collection of free resources to help students complete their dissertations and theses. You can view all of our template resources here .

Can Grad Coach help me with my discussion/analysis?

Yes, we can provide coaching-based assistance with your discussion chapter (or any other chapter). If you’re interested, get in touch to discuss our private coaching services .

Free Webinar: Research Methodology 101

IMAGES

  1. Writing The Findings Chapter Of A Dissertation

    master thesis results chapter

  2. Phd Thesis Results And Discussion

    master thesis results chapter

  3. Chapter 4 thesis results discussion

    master thesis results chapter

  4. 5: Visual outline of this thesis. Chapters are connected by dotted

    master thesis results chapter

  5. What Is a Master's Thesis & How to Write It: Best Tips

    master thesis results chapter

  6. Master Thesis Results And Discussion

    master thesis results chapter

VIDEO

  1. Master Thesis |Meromorphic function and its application| #thesis #mathematics #@hbmathematics3540

  2. Digital Representation

  3. Master's thesis Vs A PhD dissertation...what is the difference?

  4. HOW TO WRITE RESEARCH/THESIS RESULTS AND DISCUSSIONS, SUMMARY, CONCLUSION, & RECOMMENDATION

  5. How to Write Chapter 1 of a Thesis: The Problem and Its Setting

  6. Master Thesis: The Full Process For Profitable Customer Acquisition In DTC

COMMENTS

  1. How to Write a Results Section

    The results chapter of a thesis or dissertation presents your research results concisely and objectively. In quantitative research, for each question or hypothesis, state: ... Tegan is an American based in Amsterdam, with master's degrees in political science and education administration. While she is definitely a political scientist at heart ...

  2. Dissertation Results/Findings Chapter (Quantitative)

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

  3. How to Write an Impressive Thesis Results Section

    Include all relevant results as text, tables, or figures. Report the results of subject recruitment and data collection. For qualitative research, present the data from all statistical analyses, whether or not the results are significant. For quantitative research, present the data by coding or categorizing themes and topics.

  4. Dissertation Results & Findings Chapter (Qualitative)

    The results chapter in a dissertation or thesis (or any formal academic research piece) is where you objectively and neutrally present the findings of your qualitative analysis (or analyses if you used multiple qualitative analysis methods ). This chapter can sometimes be combined with the discussion chapter (where you interpret the data and ...

  5. Writing the results chapter

    Writing the results chapter. The results section describes the data that you gathered and the outcomes of the analysis of that data. In this section, you will typically find: in-text citations are infrequent or absent. This chapter of your thesis lays the foundations for your Discussion chapter where you can elaborate on the implications of ...

  6. How to Write a Results Section

    The results chapter of a thesis or dissertation presents your research results concisely and objectively. In quantitative research, for each question or hypothesis, state: The type of analysis used; Relevant results in the form of descriptive and inferential statistics; Whether or not the alternative hypothesis was supported

  7. Dissertation/Thesis Results Template (Word Doc

    This template covers all the core components required in the results chapter of a typical dissertation, thesis or research project: The opening/overview section; The body section for qualitative studies; The body section for quantitative studies; Concluding summary; The purpose of each section is explained in plain language, followed by an overview of the key elements that you need to cover.

  8. Dissertation Results Chapter 101: Quantitative Methodology Studies

    Learn how to craft a rock-solid results chapter/section for your quantitative dissertation, thesis or research project. We explain each section of the typica...

  9. Dissertation Writing: Results and Discussion

    When writing a dissertation or thesis, the results and discussion sections can be both the most interesting as well as the most challenging sections to write. You may choose to write these sections separately, or combine them into a single chapter, depending on your university's guidelines and your own preferences.

  10. The Results and Discussion

    Guide contents. As part of the Writing the Dissertation series, this guide covers the most common conventions of the results and discussion chapters, giving you the necessary knowledge, tips and guidance needed to impress your markers! The sections are organised as follows: The Difference - Breaks down the distinctions between the results and discussion chapters.

  11. How Do I Write the Discussion Chapter?

    The Discussion chapter brings an opportunity to write an academic argument that contains a detailed critical evaluation and analysis of your research findings. This chapter addresses the purpose and critical nature of the discussion, contains a guide to selecting key results to discuss, and details how best to structure the discussion with ...

  12. Guide on How to Write the Results Section of a Dissertation

    The results chapter of a dissertation should include the core findings of a study. Essentially, only the findings of a specific study should be included in this section. These include: Data presented in graphs, tables, charts, and figures. Data collection recruitment, collection, and/or participants. Secondary findings like subgroup analyses ...

  13. Dissertation Structure & Layout 101 (+ Examples)

    Time to recap…. And there you have it - the traditional dissertation structure and layout, from A-Z. To recap, the core structure for a dissertation or thesis is (typically) as follows: Title page. Acknowledgments page. Abstract (or executive summary) Table of contents, list of figures and tables.

  14. Writing up results

    Writing up results. The results section in an empirical thesis describes your findings that can be used to answer your research question, or confirm, partially confirm, or disprove your hypotheses. It functions as a stepping-stone to the discussion and may be combined with your discussion section, or have elements of discussion included.

  15. How to Write a Thesis or Dissertation Conclusion

    Step 1: Answer your research question. Step 2: Summarize and reflect on your research. Step 3: Make future recommendations. Step 4: Emphasize your contributions to your field. Step 5: Wrap up your thesis or dissertation. Full conclusion example. Conclusion checklist. Other interesting articles.

  16. HOW TO WRITE YOUR MASTER THESIS: THE EASY HANDBOOK

    minimum of ten days for all members of the thesis committee to review the thesis. Step 1: Prepare the content of your presentation. The content of your presentation is the mirror of your thesis ...

  17. Dissertation Methodology

    In a dissertation or thesis, the Methodology section usually follows the Literature Review. This placement allows the Methodology to build upon the theoretical framework and existing research outlined in the Literature Review, and precedes the Results or Findings section. Here's a basic outline of how most dissertations are structured: Title Page

  18. How To Write A Dissertation Conclusion (Examples

    Step 1: Craft a brief introduction section. As with all chapters in your dissertation or thesis, the conclusions chapter needs to start with a brief introduction. In this introductory section, you'll want to tell the reader what they can expect to find in the chapter, and in what order.

  19. PDF Overview of the Master's Degree and Thesis

    Each chapter has a specific focus and objective. The titles of the five chapters are: (1) Introduction, (2) Review of the Literature, (3) Methods, (4) Results, and (5) Discussion. The structure of the five chapters is the same whether you are conducting a qualitative or quantitative study.

  20. Arresting failure propagation in buildings through collapse ...

    Disasters recorded from 2000 to 2019 are estimated to have caused economic losses of US$2.97 trillion and claimed approximately 1.23 million lives 11.Most of these losses can be attributed to ...

  21. How To Write A Dissertation Discussion Chapter

    What (exactly) is the discussion chapter? The discussion chapter is where you interpret and explain your results within your thesis or dissertation. This contrasts with the results chapter, where you merely present and describe the analysis findings (whether qualitative or quantitative).In the discussion chapter, you elaborate on and evaluate your research findings, and discuss the ...

  22. PDF Thesis Master Degrees- Final Degree Requirements Procedures

    c) The Associate Vice President of Graduate Education formally notifies you of the results of the examination. d) Complete the Online Master's Exit Questionnaire which will be sent to you at the end of the semester by email. 4. Thesis: a) Make an appointment with the Master's Candidacy Advisor for a format review. Appointments are set for

  23. Thesis Discussion Chapter Template (Word Doc + PDF)

    This template covers all the core components required in the discussion/analysis chapter of a typical dissertation or thesis, including: The purpose of each section is explained in plain language, followed by an overview of the key elements that you need to cover. The template also includes practical examples to help you understand exactly what ...