The Climate Issue

Beyond Catastrophe: A New Climate Reality Is Coming Into View

By David Wallace-Wells Oct. 26, 2022

  • Share full article

Beyond Catastrophe A New Climate Reality Is Coming Into View By David Wallace-Wells

scoop

You can never really see the future, only imagine it, then try to make sense of the new world when it arrives.

Just a few years ago, climate projections for this century looked quite apocalyptic, with most scientists warning that continuing “business as usual” would bring the world four or even five degrees Celsius of warming — a change disruptive enough to call forth not only predictions of food crises and heat stress, state conflict and economic strife, but, from some corners, warnings of civilizational collapse and even a sort of human endgame. (Perhaps you’ve had nightmares about each of these and seen premonitions of them in your newsfeed.)

Now, with the world already 1.2 degrees hotter, scientists believe that warming this century will most likely fall between two or three degrees . (A United Nations report released this week ahead of the COP27 climate conference in Sharm el Sheikh, Egypt, confirmed that range.) A little lower is possible, with much more concerted action; a little higher, too, with slower action and bad climate luck. Those numbers may sound abstract, but what they suggest is this: Thanks to astonishing declines in the price of renewables, a truly global political mobilization, a clearer picture of the energy future and serious policy focus from world leaders, we have cut expected warming almost in half in just five years.

Listen to This Article

For decades, visions of possible climate futures have been anchored by, on the one hand, Pollyanna-like faith that normality would endure, and on the other, millenarian intuitions of an ecological end of days, during which perhaps billions of lives would be devastated or destroyed. More recently, these two stories have been mapped onto climate modeling: Conventional wisdom has dictated that meeting the most ambitious goals of the Paris agreement by limiting warming to 1.5 degrees could allow for some continuing normal, but failing to take rapid action on emissions, and allowing warming above three or even four degrees, spelled doom.

scoop

Neither of those futures looks all that likely now, with the most terrifying predictions made improbable by decarbonization and the most hopeful ones practically foreclosed by tragic delay. The window of possible climate futures is narrowing, and as a result, we are getting a clearer sense of what’s to come: a new world, full of disruption but also billions of people, well past climate normal and yet mercifully short of true climate apocalypse.

Over the last several months, I’ve had dozens of conversations — with climate scientists and economists and policymakers, advocates and activists and novelists and philosophers — about that new world and the ways we might conceptualize it. Perhaps the most capacious and galvanizing account is one I heard from Kate Marvel of NASA, a lead chapter author on the fifth National Climate Assessment: “The world will be what we make it.” Personally, I find myself returning to three sets of guideposts, which help map the landscape of possibility.

First, worst-case temperature scenarios that recently seemed plausible now look much less so, which is inarguably good news and, in a time of climate panic and despair, a truly underappreciated sign of genuine and world-shaping progress.

Second, and just as important, the likeliest futures still lie beyond thresholds long thought disastrous, marking a failure of global efforts to limit warming to “safe” levels. Through decades of only minimal action, we have squandered that opportunity. Perhaps even more concerning, the more we are learning about even relatively moderate levels of warming, the harsher and harder to navigate they seem. In a news release accompanying its report, the United Nations predicted that a world more than two degrees warmer would lead to “endless suffering.”

Third, humanity retains an enormous amount of control — over just how hot it will get and how much we will do to protect one another through those assaults and disruptions. Acknowledging that truly apocalyptic warming now looks considerably less likely than it did just a few years ago pulls the future out of the realm of myth and returns it to the plane of history: contested, combative, combining suffering and flourishing — though not in equal measure for every group.

The New World Take a visual tour of life after climate change .

It isn’t easy to process this picture very cleanly, in part because climate action remains an open question, in part because it is so hard to balance the scale of climate transformation against possible human response and in part because we can no longer so casually use those handy narrative anchors of apocalypse and normality. But in narrowing our range of expected climate futures, we’ve traded one set of uncertainties, about temperature rise, for another about politics and other human feedbacks. We know a lot more now about how much warming to expect, which makes it more possible to engineer a response. That response still begins with cutting emissions, but it is no longer reasonable to believe that it can end there. A politics of decarbonization is evolving into a politics beyond decarbonization, incorporating matters of adaptation and finance and justice (among other issues). If the fate of the world and the climate has long appeared to hinge on the project of decarbonization, a clearer path to two or three degrees of warming means that it also now depends on what is built on the other side. Which is to say: It depends on a new and more expansive climate politics.

“We live in a terrible world, and we live in a wonderful world,” Marvel says. “It’s a terrible world that’s more than a degree Celsius warmer. But also a wonderful world in which we have so many ways to generate electricity that are cheaper and more cost-effective and easier to deploy than I would’ve ever imagined. People are writing credible papers in scientific journals making the case that switching rapidly to renewable energy isn’t a net cost; it will be a net financial benefit,” she says with a head-shake of near-disbelief. “If you had told me five years ago that that would be the case, I would’ve thought, wow, that’s a miracle.”

How did it happen? To begin with, the world started to shift away from coal.

In 2014, the energy researcher and podcast producer Justin Ritchie was a Ph.D. student wondering why many climate models were predicting that the 21st century would look like a coal boom. Everyone knew about the decades of coal-powered economic growth in China, but those working closely on the future of energy had already grown somewhat skeptical that the same model would be deployed across the developing world — and even more skeptical that the rich nations of the world would ever return to coal in a sustained way.

But that perspective was nowhere to be seen in the huge set of models, mixing economic and demographic and material assumptions about the trajectory of the future, which climate scientists used to project impacts later this century, including for the United Nations Intergovernmental Panel on Climate Change (I.P.C.C.). The most conspicuous example was an emissions pathway called RCP8.5, which required at least a fivefold growth of coal use over the course of the 21st century. Because it was the darkest available do-nothing path, RCP8.5 was reflexively called, in the scientific literature and by journalists covering it, “business as usual.” When Ritchie and his doctoral adviser published their research in Energy Economics in 2017, they chose a leading subtitle : “Are Cases of Vastly Expanded Future Coal Combustion Still Plausible?” The world’s current path appears to offer a quite simple answer: no.

Questions about the future course of coal had been circulating for years, often raised by the same people who would point out that projections for renewable energy kept also comically underestimating the growth of wind and solar power. But to a striking degree, broad skepticism about high-end emissions scenarios has come from a small handful of people who read Ritchie’s work and took to Twitter with it: Ritchie’s sometime co-author Roger Pielke Jr., a professor of environmental studies and frequent Republican witness at congressional climate hearings; the outspoken British investor Michael Liebreich, who founded a clean-energy advisory group bought by Michael Bloomberg, and who spent a good deal of 2019 yelling on social media that “RCP8.5 is bollox”; and the more mild-mannered climate scientists Zeke Hausfather and Glen Peters, who together published a 2020 comment in Nature declaring that “the ‘business as usual’ story is misleading.” (I published a piece the previous year picking up the same bread crumbs.)

Adjustments to the input assumptions of energy models are perhaps not the sexiest signs of climate action, but Hausfather estimates that about half of our perceived progress has come from revising these trajectories downward, with the other half coming from technology, markets and public policy.

Let’s take technology first. Among energy nerds, the story is well known, but almost no one outside that insular world appreciates just how drastic and rapid the cost declines of renewable technologies have been — a story almost as astonishing and perhaps as consequential as the invention within weeks and rollout within months of new mRNA vaccines to combat a global pandemic.

Since 2010, the cost of solar power and lithium-battery technology has fallen by more than 85 percent, the cost of wind power by more than 55 percent. The International Energy Agency recently predicted that solar power would become “the cheapest source of electricity in history,” and a report by Carbon Tracker found that 90 percent of the global population lives in places where new renewable power would be cheaper than new dirty power. The price of gas was under $3 per gallon in 2010, which means these decreases are the equivalent of seeing gas-station signs today advertising prices of under 50 cents a gallon.

The markets have taken notice. This year, investment in green energy surpassed that in fossil fuels, despite the scramble for gas and the “return to coal” prompted by Russia’s invasion of Ukraine. After a decade of declines, supply-chain issues have nudged up the cost of renewable manufacturing, but overall the trends are clear enough that you can read them without glasses: Globally, there are enough solar-panel factories being built to produce the necessary energy to limit warming to below two degrees, and in the United States, planned solar farms now exceed today’s total worldwide operating capacity. Liebreich has taken to speculating about a “renewable singularity,” beyond which the future of energy is utterly transformed.

The world looks almost as different for politics and policy. Five years ago, almost no one had heard of Greta Thunberg or the Fridays for Future school strikers, Extinction Rebellion or the Sunrise Movement. There wasn’t serious debate about the Green New Deal or the European Green Deal, or even whispers of Fit for 55 or the Inflation Reduction Act or the Chinese promise to peak emissions by 2030. There were climate-change skeptics in some very conspicuous positions of global power. Hardly any country in the world was talking seriously about eliminating emissions, only reducing them, and many weren’t even talking all that seriously about that. Today more than 90 percent of the world’s G.D.P. and over 80 percent of global emissions are now governed by net-zero pledges of various kinds, each promising thorough decarbonization at historically unprecedented speeds.

scoop

At this point, they are mostly paper pledges, few of them binding enough in the short term to look like real action plans rather than strategies of smiling delay. And yet it still marks a new era for climate action that a vast majority of world leaders have felt pressed to make them — by the force of protest, public anxiety and voter pressure, and increasingly by the powerful logic of national self-interest. What used to look like a moral burden is now viewed increasingly as an opportunity, so much so that it has become a source of geopolitical rivalry. As prime minister, Boris Johnson talked about making the United Kingdom the “Saudi Arabia of wind power,” and the Inflation Reduction Act was written to supercharge American competitiveness on green energy. China, which is already installing nearly as much renewable capacity as the rest of the world combined, is also manufacturing 85 percent of the world’s solar panels (and selling about half of all electric vehicles purchased worldwide). According to one recent paper on the energy transition published in Joule , a faster decarbonization path could make the world trillions of dollars richer by 2050.

You can’t take these projections to the bank. But they have already put us on a different path. The Stanford scientist Marshall Burke, who has produced some distressing research about the costs of warming — that global G.D.P. could be cut by as much as a quarter, compared with a world without climate change — says he has had to update the slides he uses to teach undergraduates, revising his expectations from just a few years ago. “The problem is a result of human choices, and our progress on it is also the result of human choices,” he says. “And those should be celebrated. It’s not yet sufficient. But it is amazing.”

In Your Inbox Subscribe to David Wallace-Wells’s newsletter .

Matthew Huber of Purdue University, the climate scientist who helped introduce the idea of a temperature and humidity limit to human survival, likewise describes himself as considerably less worried than he used to be, though he believes, drawing on inferences from the deep history of the planet, that a future of two degrees warming is less likely than a world of three. “Some of my colleagues are looking at three degrees and going, oh, my God, this is the worst thing ever — we’re failing!” he says. “And then someone like me is saying, well, I used to think we were heading to five. So three looks like a win.”

A very bruising win. “The good news is we have implemented policies that are significantly bringing down the projected global average temperature change,” says the Canadian atmospheric scientist Katharine Hayhoe, a lead chapter author on several National Climate Assessments and an evangelical Christian who has gained a reputation as a sort of climate whisperer to the center-right. The bad news, she says, is that we have been “systematically underestimating the rate and magnitude of extremes.” Even if temperature rise is limited to two degrees, she says, “the extremes might be what you would have projected for four to five.”

“Things are coming through faster and more severely,” agrees the British economist Nicholas Stern, who led a major 2006 review of climate risk. In green technology, he says, “we hold the growth story of the 21st century in our hands.” But he worries about the future of the Amazon, the melting of carbon-rich permafrost in the northern latitudes and the instability of the ice sheets — each a tipping point that “could start running away from us.” “Each time you get an I.P.C.C. report, it’s still worse than you thought, even though you thought it was very bad,” he says. “The human race doesn’t, as it were, collapse at two degrees, but you probably will see a lot of death, a lot of movement of people, a lot of conflict over space and water.”

“I mean, we’re at not even one and a half now, and a third of Pakistan is underwater, right?” says the Nigerian American philosopher Olufemi O. Taiwo, who has spent much of the last few years writing about climate justice in the context of reparations for slavery and colonialism. “What we’re seeing now at less than two degrees — there’s nothing optimistic about that.”

All of which suggests an entirely different view of the near future, equally true. The world will keep warming, and the impacts will grow more punishing, even if decarbonization accelerates enough to meet the world’s most ambitious goals: nearly halving global emissions by 2030 and getting to net-zero just two decades later. “These dates — 2030, 2050 — they are meaningless,” says Gail Bradbrook, one of the British founders of Extinction Rebellion. “What matters is the amount of carbon in the atmosphere, and there is already way too much. The dates can be excuses to kick the problem into the long grass. But the important thing is that we’re doing harm, right now, and that we should stop absolutely as soon as possible with any activities that are making the situation worse.”

A lot, then, depends on perspective: The climate future looks darker than today but brighter than many expected not that long ago. The world is moving faster to decarbonize than it once seemed responsible to imagine, and yet not nearly fast enough to avert real turbulence. Even the straightest path to two degrees looks tumultuous, with disruptions from the natural world sufficient to call into question many of the social and political continuities that have been taken for granted for generations.

scoop

For me, the last few years provide arguments for both buoyant optimism and abject despair. They have made me more mindful of the inescapable challenge of uncertainty when it comes to projecting the future, and the necessity of nevertheless operating within it.

In 2017, I wrote a long and bleak magazine article about worst-case scenarios for the climate, focused on a range of possible futures that began at four degrees Celsius of warming and went up from there. In 2019, I published a book about the disruptions and transformations projected by scientists for lower but still “catastrophic” levels of warming — between two degrees and four. I was called an alarmist, and rightly so — like a growing number of people following the news, I was alarmed.

I am still. How could I not be? How could you not be? In Delhi this spring, there were 78 days when temperatures breached 100 degrees Fahrenheit, a monthslong heat event made 30 times more likely by climate change. Drought across the Northern Hemisphere was made 20 times more likely, resulting in dried-up riverbeds from the Yangtze to the Danube to the Colorado, exposing corpses dumped in Lake Mead and dinosaur footprints in Texas and live World War II munitions in Germany and a “Spanish Stonehenge” in Guadalperal, and baking crops in agricultural regions on multiple continents to the point of at least partial failure. Hundreds died of heat just in Phoenix, more than a thousand each in England and Portugal and Spain.

Monsoon flooding in Pakistan covered a third of the country for weeks, displacing tens of millions of people, destroying the country’s cotton and rice yields and producing conditions ripe for migration, conflict and infectious disease within an already struggling state — a state that has generated in its entire industrial history about the same carbon emissions as the United States belched out this year alone. In the Caribbean and the Pacific, tropical storms grew into intense cyclones in under 36 hours.

In China, there were months of intense heat for which, as one meteorologist memorably put it, “there is nothing in world climatic history which is even minimally comparable.” As it did through the pandemic, China tried to hide most of the disruptions to daily life, but industrial shutdowns meant the rest of the world felt the effects in the supply chains for semiconductors, pharmaceuticals, photovoltaic cells, iPhones and Teslas — all pinched briefly closed by warming of just 1.2 degrees.

What will the world look like at two degrees? There will be extreme weather even more intense and much more frequent. Disruption and upheaval, at some scale, at nearly every level, from the microbial to the geopolitical. Suffering and injustice for hundreds of millions of people, because the benefits of industrial activity have accumulated in parts of the world that will also be spared the worst of its consequences. Innovation, too, including down paths hard to imagine today, and some new prosperity, if less than would have been expected in the absence of warming. Normalization of larger and more costly disasters, and perhaps an exhaustion of empathy in the face of devastation in the global south, leading to the kind of sociopathic distance that enables parlor-game conversations like this one.

scoop

At two degrees, in many parts of the world, floods that used to hit once a century would come every single year , and those that came once a century would be beyond all historical experience. Wildfire risk would grow, and wildfire smoke, too. (The number of people exposed to extreme smoke days in the American West has already grown 27-fold in the last decade.) Extreme heat events could grow more than three times more likely, globally, and the effects would be uneven: In India, by the end of the century, there would be 30 times as many severe heat waves as today, according to one estimate . Ninety-three times as many people would be exposed there to dangerous heat.

This is what now counts as progress. Today, at just 1.2 degrees, the planet is already warmer than it has been in the entire history of human civilization, already beyond the range of temperatures that gave rise to everything we have ever known as a species. Passing 1.5 and then two degrees of warming will plot a course through a truly foreign climate, bringing a level of environmental disruption that scientists have called “dangerous” when they are being restrained. Island nations of the world have called it “genocide,” and African diplomats have called it “certain death.” It is that level that the world’s scientists had in mind when they warned, in the latest I.P.C.C. report , published in February, that “any further delay in concerted global action will miss a brief and rapidly closing window to secure a livable future.”

What would we get if that window closes? The temptations of apocalyptic thinking aside, it would nevertheless be a world in which we would still be living — navigating larger and more damaging climate intrusions, and doing so with some yet-to-be-determined mix of success and failure, grief and opportunity.

“The West has always had a problem with millenarianism — the fall, Christianity, all that,” says Tim Sahay, a Mumbai-born climate-policy wonk and co-founder of the new Polycrisis journal . “It’s ineradicable — all we see are the possibilities for doom and gloom.” The challenges are real and large and fall disproportionately on the developing world, he says, but they are not deterministic, or need not be. “We’re riding down the dark mountain,” he says. “That’s scary in ways, of course, but there are also so many possible outcomes. I find it all exciting. What kind of cities will Brazil build? What will Indonesia be?”

In some places, climate rhetoric has begun to soften — or perhaps it is better to say harden, with existential abstractions thickening into something more like high-stakes realism. Mohamed Nasheed, the former president of Maldives who asked, at the Copenhagen climate conference in 2009, “How can you ask my country to go extinct?” has been lately talking in more practical terms. He has raised the need to secure climate finance — support from development banks and institutions of the global north to enable a green transition and local resilience — and theorized about the possible need for debt strikes to extract meaningful relief. He has also encouraged the work of scientists to genetically modify local coral to make it more resilient in the face of warming water.

Mia Mottley, the prime minister of Barbados, is fighting in the weeds with the International Monetary Fund and the World Bank, and trying to get other vulnerable nations to play hardball too. Greta Thunberg , the unyielding face of climate alarm, recently affirmed her support for at least existing nuclear power, and Rupert Read, once the spokesman for Extinction Rebellion, has taken to calling for a “moderate flank” of the climate movement. In the United States, the climate bill that emerged finally into law was not a Green New Deal, a punitive carbon tax or a program of demand reduction but an expansive, incentive-based approach to decarbonizing that included support for nuclear power and even carbon capture, long an anathema to the climate left.

This may look like a growing consensus, which to a certain extent it is. But the world it points to is still a quite unresolved mess. Over the last year, the economic historian Adam Tooze has popularized the word “polycrisis” to describe the cascade of large-scale challenges to the basic stability and continuity of the global order. President Emmanuel Macron of France, who embodies the slim-fit optimism of neoliberalism, has declared the current period of tumult “the end of abundance.” Josep Borrell, the former head of the European Parliament, chose the phrase “radical uncertainty,” later comparing Europe to a “garden” and the rest of the world to a “jungle” and warning that “the jungle could invade the garden.” John Kerry, the American climate envoy, has acknowledged, perhaps inadvertently, that the cost of climate damage in the global south is already in the “trillions” — a number he cited not to illustrate the need for support but to explain why nations in the global north wouldn’t pay. (He added that he refused to feel guilty about it.) The author and activist Bill McKibben worries that although the transition is accelerating to once-unimaginable speeds, it still won’t come fast enough. “The danger is that you have a world that runs on sun and wind but is still an essentially broken planet.” Now the most pressing question is whether it can be fixed — whether we can manage those disruptions and protect the many millions of people who might be hurt by them.

scoop

Next month, at the United Nations climate conference in Sharm el Sheikh, Egypt, known as COP27, world leaders will take up that question, which often goes by the name “adaptation.” Having engineered global ecological disruption, can we engineer our way out of its path?

The tools are many — in fact, close to infinite. Given that most of the world’s infrastructure was built for climate conditions we have already left behind, protecting ourselves against new conditions would require something like a global construction project: defenses against flooding — both natural, like mangrove and wetland restoration, and more interventionist, like dikes and levees and sea walls and sea gates. We’ll need stronger housing codes; more resilient building materials and more weather-conscious urban planning; heat-resistant rail lines and asphalt and all other kinds of infrastructure; better forecasting and more universal warning systems; less wasteful water management, including across very large agricultural regions like the American West; cooling centers and drought-resistant crops and much more effective investments in emergency response for what Juliette Kayyem, a former official at the Department of Homeland Security, calls our new “age of disasters.”

Damage from storms is increasing, in large part because we keep building and moving right into what is often called the expanding bull’s-eye of extreme weather, with the same distressing pattern observed in boom towns along the Florida coast and in the floodplains of Bangladesh. More and more people are flocking into harm’s way, not all of them out of true ignorance.

Some more sanguine climate observers often point out that even as we put ourselves in the path of extreme weather, deaths from natural disasters are not, in fact, growing — indeed, they have fallen , by an astonishing degree, from as much as an average of 500,000 deaths each year a century ago to about 50,000 deaths each year today (even as climate- and weather-related natural disasters have increased fivefold, according to the World Meteorological Organization ).

But whether those mortality trends would continue in a two-degree world is unclear. With Hurricane Ian, for instance, a wealthy and well-prepared corner of the global north just endured its deadliest hurricane since 1935. Most of that drastic drop in disaster mortality happened, in fact, between the 1920s and the 1970s, when such deaths fell to just under 100,000. The declines have been smaller over the last 50 years, as global warming began to destabilize our weather, and even smaller — perhaps even nonexistent, depending on the data set and how you want to look at it — over the last three decades, as temperature rise became more pronounced and warming pushed the world outside the “Goldilocks” climate range that had governed all of human history.

Perhaps this means the world has harvested much of the obvious low-hanging fruit of adaptation. Better meteorology and early warning systems, for instance, which have drastically reduced the death toll of recent monsoons in Bangladesh and hurricanes in Florida, are already in place. The cost of global climate damage has already run into the trillions, and the bill for adaptation in the developing world could reach $300 billion annually by 2030. Galveston, Texas, is undertaking the construction of a $31 billion “Ike Dike” project to protect its harbor; New York City is considering a system of storm-surge gates, priced at $52 billion. In other words, warming is already making adaptation harder and more expensive, and extending the gains achieved last century into the next one may prove difficult or even impossible.

The latest I.P.C.C. report , published in February, emphasized that “progress in adaptation planning and implementation” had been made but also warned that “many initiatives prioritize immediate and near-term climate risk reduction which reduces the opportunity for transformational adaptation,” meaning that resources devoted to repair and retrofitting aren’t being spent on new infrastructure or resettlement. “Hard limits to adaptation have already been reached in some ecosystems,” the I.P.C.C. wrote, adding that “with increasing global warming, losses and damages will increase and additional natural and human systems will reach adaptation limits.”

“For me, what we are witnessing at the present level of warming, it is already challenging the limits to adaptation for humans,” says Fahad Saeed of Climate Analytics. Over the last six months, Saeed, a Pakistani scientist based in Islamabad, has watched the country endure months of extreme heat, crop failures and monsoon flooding that submerged a third of the nation, destroyed a million homes, displaced 30 million people and inflicted damage estimated at $40 billion or above — 11 percent of Pakistan’s 2021 G.D.P. “One can’t believe what would happen at 1.5 degrees,” he says. “Anything beyond that? It would even be more devastating.”

“Two degrees is a lot better than four degrees,” says the climate scientist Michael Oppenheimer, one of those who delivered now-legendary warnings about the risks of warming to the U.S. Senate in 1988. “And one-and-a-half degrees is even better than two degrees. But none of those levels means there’s nothing to do.”

Oppenheimer has spent the last few years increasingly focused on the question of what to do, and how to judge our progress on adaptation. “How good are we today at dealing with the situation where hundred-year floods happen?” he asks. “Not very good.” He argues that we should try to hold ourselves to higher standards than normalizing more than a hundred deaths in a Florida hurricane. Extreme events are arriving now much more quickly, meaning that “the measure of success is no longer just how well you did in preparing for some bad event and then recovering from it. It’s also how quickly you do it.” He mentions the I.P.C.C.’s 2019 report on the oceans , which found that what were once called “hundred-year flood levels” would be reached, in many parts of the world, every single year by 2050. “And so you’ve got to get back in shape before the next one happens, when the next one might happen the same year — in the worst cases, the same month. Eventually, in some places, it happens just with the high tide.”

“You’re not going to just recover the way we think of recovery now,” Oppenheimer says. “You have to either be living in a totally different situation, which accepts something close to perpetual flooding in some places, or you fulfill the dreams some people have about adaptation, where the regularity of life is just totally different. The very structure of infrastructure and manufacturing, it’s all different.”

scoop

Talk enough about adaptation, and you drift into technical-seeming matters: Can new dikes be built, or the most vulnerable communities resettled? Can crop lands be moved, and new drought-resistant seeds developed? Can cooling infrastructure offset the risks of new heat extremes, and early warning systems protect human life from natural disaster? How much help can innovation be expected to provide in dealing with environmental challenges never seen before in human history?

But perhaps the more profound questions are about distribution: Who gets those seeds? Who manages to build those dikes? Who is exposed when they fail or go unbuilt? And what is the fate of those most frontally assaulted by warming? The political discourse orbiting these issues is known loosely as “climate justice”: To what extent will climate change harden and deepen already unconscionable levels of global inequality, and to what degree can the countries of the global south engineer and exit from the already oppressive condition that the scholar Farhana Sultana has called “climate coloniality”?

“The big thing politically that’s going to happen on a massive scale is movement,” says Taiwo, the philosopher. “The numbers I’ve seen for displacement — both internal displacement and cross-border displacement at two degrees — are at least in the tens if not the hundreds of millions. And I don’t think we have a political context for what that means.”

The range of estimates is huge, and its size is among the best indicators we have that, however much we know about the climate future, an enormous amount of the complex and cascading effects of warming remains shrouded in the inevitable uncertainty of human response. Indeed, the I.P.C.C. says that, in the near term, migration will most likely be driven more by socioeconomic conditions and governance issues. “There will be, let’s say, socioecological pressure on a scale that is an order of magnitude larger than the scale of what we’re seeing now,” Taiwo says. “Whether that translates into movement within borders and across borders, whether it translates into large-scale adaptation strategies that we don’t have a political context for, whether it translates into simply mass death we don’t have a context for, either, or some mix of those things — it’s anybody’s guess. And I wouldn’t trust a climate model to tell me which of those things, or which mix of those things, is going to happen.”

Taiwo says his mind drifts intuitively toward one scenario. “If the far right wins,” he says, “I see copycat agencies that are much like ICE operating in much of the global north and in some emerging states. I see a gradual integration of domestic policing and, for lack of a better term, border policing — which I think we’re seeing now anyway, a much more openly authoritarian development of those institutions, increasingly operating autonomously. I expect the militaries of nation states to increasingly be wedded to those operations. And I expect that to become ‘government’ for a substantial percentage of the world’s population. I likewise expect that to be a political shift that we do not have a context for.” Unless you’ve studied colonialism, he laughs.

“But maybe there’s another version of what that mix of pressures looks like at two degrees Celsius,” Taiwo says, one that produces more local resilience and sustainability, along with innovation in energy and politics, agriculture and culture. “And partially because of the success of a few of these measures,” he says, “you get markedly lower than predicted displacement numbers.”

For a generation now, climate-vulnerable countries have issued a series of variations on a simple exhortatory theme: For this damage, the rich world must pay. The call has gone by different names, each describing slightly different forms of support: “climate finance,” “loss and damage,” “reparations” and now “debt relief.” In 2009, in Copenhagen, the rich nations of the world formalized a promise to deliver $100 billion annually in climate funding to the global south, a promise that has yet to be fulfilled, even as climate-vulnerable nations have raised their request to $700 billion or more.

“It’s not only about adapting,” says the Kenyan climate activist Elizabeth Wathuti, “because you cannot ask people to adapt to losing their homes — their homes are being washed away, their livestock and their children are being carried away. They’re dying — how would they adapt to that? And crop failure — how would you adapt to that? How would you adapt to starvation? If you have not had a meal in two days, you will not adapt to that.”

“For years and years — decades and decades — people have been begging,” Taiwo says. “The deciding thing will be, what is it that global south countries are prepared to do if these demands aren’t met.”

Sahay, of the Polycrisis journal, offers one answer, describing a world in which climate-exacerbated great power rivalry means that alliances of underdeveloped states could play rich nations against one another, in a sort of spiritual extension of the Non-Aligned Movement, led by Indonesia, during the Cold War. Sahay calls the emerging nonalignment alliance built around Brazil, Russia, India and China (BRIC) a “new bargaining chip,” floating the possibility that a new group of “electro-states” could succeed the last century’s petro-states and aggressively broker access to their own mineral resources. The scholar Thea Riofrancos has similarly imagined a “Lithium OPEC,” and though she doubts it will come entirely to pass, she believes that a harder and more nationalistic resource geopolitics surely will.

“Westerners take it for granted that people in the global south, if they’re badly hit by some climate-change event, will attack fossil fuels,” says the Indian novelist Amitav Ghosh, also the author of several piercing meditations on the injustices of warming. “But that’s a complete fantasy. In the global south, everybody understands that energy access is the difference between poverty and not poverty. Nobody sees fossil fuels as the basic problem. They see the West’s profligate use of fossil fuels as the basic problem.”

“Throughout this whole crisis in Pakistan, have you heard of anyone talking about attacking fossil fuels? No — it’s laughable to even ask. Everything I see being mentioned about Pakistan is about reparations, it’s about global inequality, it’s about historic government injustices. It’s not at all about fossil fuels. This is one of the really big divides between the global south and the global north,” Ghosh says. “If people are going to attack anything — let’s say in Pakistan or India after a heat wave or some other catastrophic event — it won’t be the fossil-fuel infrastructure. It will be the consulates of the rich countries, just as it’s been over many other things in the past.”

scoop

“We live in an unimaginable future,” says the writer Rebecca Solnit, who has grown increasingly focused on the political and social challenges of climate change. “Things thought impossible or inconceivable or unlikely not very long ago are accepted norms now.” Today, as a result, “a lot of my hope is just radical uncertainty,” she says. “You see that the world can’t go on as it is — that is true. But it doesn’t mean the world can’t go on. It means that the world will go on, not as it is but in some unimaginably transformed way.”

In 2017, looking back at decades of ineffectual organizing, I didn’t think the political mobilization of the last five years was even possible, and if you had told me then about the radical acceleration of renewable technology to come, I would’ve been more credulous but still surprised. But signs of optimism are not arguments for complacency — quite the opposite, because the new range of expectations is not just a marker of how much has changed over the last five years but of how much might over the next five, the next 25 or the next 50.

Two degrees is not inevitable; both better and worse outcomes are possible. Most recent analyses project paths forward from current policy about half a degree warmer, meaning much more must be done to meet that goal, and even more to keep the world below the two-degree threshold — as was promised under the Paris agreement. (Because of delay and inaction, even the I.P.C.C. scenario designed to limit warming to 1.5 degrees now predicts we’ll trespass it as soon as the next decade.) And because decarbonization might stall and the climate may prove more sensitive than expected, temperatures above three degrees, though less likely than they recently seemed, remain possible, too.

Overall emissions have not yet begun to decline, and it’s a long way from peak down to zero, making all these changes to expectations mostly notional, for now — a different set of lines being drawn naïvely on a whiteboard and waiting to be made real. New emissions peaks are expected both this year and next, which means that more damage is being done to the future climate of the planet right now than at any previous point in history. Things will get worse before they even stabilize.

But we are getting a clearer map of climate change, and however intimidating it looks, that new world must be made navigable — through action to limit the damage and adaptation to defend what can’t be stopped. At four degrees, the impacts of warming appeared overwhelming, but at two degrees, the impacts would not be the whole of our human fate, only the landscape on which a new future will be built.

Normalization is a form of adaptation, too, however cruel and unfortunate a form it may appear in theory or ahead of time. Indeed, already we can say a given heat wave was made 30 times more likely by climate change, or that it was a few degrees hotter than it would have been without climate change, and both would be true. We’ll be able to talk about the contributions of warming to disasters that buckle whole nations, as the recent monsoon flooding in Pakistan has, or about the human contributions to such vulnerability. And as we do today, we will often reach for the past when trying to judge the present, reckoning with how the world got where it is and who was responsible and whether the result of the fight against warming counts as progress or failure or both. History is our handiest counterfactual, however poor a standard it sets for a world that could have been much better still. “We’ve come a long way, and we’ve still got a long way to go,” says Hayhoe, the Canadian scientist, comparing the world’s progress to a long hike. “We’re halfway there. Look at the great view behind you. We actually made it up halfway, and it was a hard slog. So take a breather, pat yourself on the back, but then look up — that’s where we have to go. So let’s keep on going.”

Opening photo: With more than 3,000 turbines, the Tehachapi Pass wind farms around Mojave, Calif., are some of the largest wind-energy generators in the state.

Drone assistance for aerial photograph of solar farm by Jordan Vonderhaar.

Additional design and development by Jacky Myint.

David Wallace-Wells is a columnist for the magazine and an Opinion writer for The New York Times, as well as the author of the international best seller “The Uninhabitable Earth: Life After Warming,” published in 2019. Sign up for his Times newsletter here .

Charley Locke is a writer who often covers youth, including for The New York Times for Kids. She last wrote about the $190 billion in Covid aid that went to American schools.

Devin Oktar Yalkin is a photographer based in Los Angeles who has previously covered Joe Biden, dirt-track racing, live music and falcons for the magazine. He currently has a solo exhibition, Obsidian, at Evin Sanat Gallery in Istanbul.

Read the companion piece:

The new world envisioning life after climate change by david wallace-wells.

An earlier version of this article referred incorrectly to the origins of the Non-Aligned Movement. It began in the early years of the Cold War, not in the last decades of the Cold War.

An earlier version of a picture caption with this article misidentified plants grown by Upward Farms. They are microgreens, not sprouts.

An earlier version of this article referred incorrectly to the United Nations Intergovernmental Panel on Climate Change’s prediction on warming. It predicts that warming could surpass 1.5 degrees Celsius as soon as the next decade, not 2 degrees Celsius.

Our Coverage of Climate and the Environment

News and Analysis

The deaths of dozens of howler monkeys  in Mexico amid brutal heat may be the latest sign of the danger extreme temperatures pose to wildlife around the world.

The world’s highest court dealing with the oceans issued a groundbreaking opinion  that said excessive greenhouse gases were pollutants that could cause irreversible harm to the marine environment and must be cut back.

The Great Salt Lake, a predictor of the risks of climate change, had a recent increase in its levels , but still remains below healthy levels. Experts worry that conservation efforts will be reduced as a result.

A Cosmic Perspective:  Alarmed by the climate crisis and its impact on their work, a growing number of astronomers  are using their expertise to fight back.

Struggling N.Y.C. Neighborhoods:  New data projects are linking social issues with global warming. Here’s what that means for five communities in New York .

Biden Environmental Rules:  The Biden administration has rushed to finalize 10 major environmental regulations  to meet its self-imposed spring deadline.

F.A.Q.:  Have questions about climate change? We’ve got answers .

Advertisement

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

The IPCC Climate Change 2022 Impacts Report: Why it matters

Large-scale reduction in carbon dioxide pollution key to climate change response, scientists say.

This week some 270 top scientists from 67 countries, including two NOAA scientists, are completing the final details of a large-scale report: Climate Change 2022: Impacts, Adaptation & Vulnerability, the second part of the Sixth Assessment Report offsite link . The report will describe how climate change is already affecting the world’s human and natural systems.

Arctic landscape showing a view of Alaska's Chukchi Borderlands.

View of the Chukchi Borderlands where the Arctic, Pacific and Atlantic ocean basins meet. (Image credit: Caitlin Bailey/Global Foundation for Ocean Exploration)

Additional Resources

United Nations Intergovernmental Panel on Climate Change offsite link

NOAA’s Climate.gov

NOAA’s Ocean Acidification Program

NOAA’s Alaska Fisheries Science Center

On Monday, February 28, the United Nations Intergovernmental Panel on Climate Change offsite link (IPCC) will release its latest report, which will focus on climate solutions and regional and local adaptation. It will also assess the feasibility of various adaptation strategies to curb current and predicted impacts of climate change.

The IPCC was established 34 years ago to provide actionable information on climate change for decision makers. IPCC reports are the result of a unique collaboration of scientific expertise and political consensus. The new report will reaffirm that the science pertaining to climate change is settled, and the most important response to climate change is large-scale reduction in carbon dioxide pollution that drives global warming.

...we have to act, we need a whole of society approach, no one can be left out, no household, no businesses, no government... Debra Roberts , Co-chair of the IPCC Working Group II report

To learn more about why this new report matters and what went into creating it, NOAA interviewed NOAA authors, Libby Jewett, director of the NOAA’s Ocean Acidification Program, and Kirstin Holsman, a research scientist from NOAA’s Alaska Fisheries Science Center. They served on an international team of authors who assessed scientific literature to prepare the new IPCC report’s chapter on North America.

The authors underwent a rigorous selection process offsite link , and have spent three years working with fellow scientists to provide the best available science on climate change impacts, vulnerabilities and adaptation in North America. Holsman is also an author of the report’s cross-chapter paper on Polar Regions.

Watch: The below video interview features NOAA scientists Libby Jewett and Kirstin Holsman  — contributors to the latest IPCC report.

In a recent briefing on the new report, Debra Roberts, co-chair of the IPCC Working Group II report and head of Sustainable and Resilient City Initiatives in eThekwini Municipality in Durban, South Africa, said the report will tell a story about how today’s civilization has been built on ways of life that have accelerated the decline of nature to the detriment of humans and ecosystems. The report’s authors will lay out a clear case for a major turnaround that will better integrate the world’s economic and environmental systems for a sustainable future.

Hans-Otto Pörtner, co-chair of the IPCC report and an expert on climate impacts on natural systems, said the report would call out the major barriers to creating a sustainable future in the face of rising temperatures and accelerating climate change impacts on every sector and every person on Earth.

“We have an education gap and an implementation gap,” Pörtner said. “The traffic rules to move toward more sustainable lives are not reaching people.” 

Added Roberts: “There is a strong message across all the IPCC reports that we have to act, we need a whole of society approach, no one can be left out, no household, no businesses, no government, and it's that whole of society scale that we haven’t put in place that is urgently needed.”

Media contact

Monica Allen,  monica.allen@noaa.gov , (202) 379-6693

Related Features //

A fish-eye view of the wake of a ship out at sea. Here's an ocean fact: The surface layer of the ocean is teeming with photosynthetic plankton. Though they're invisible to the naked eye, they produce more oxygen than the largest redwood trees.

These are the climate change trends to look out for in 2022

Pollution is a massive factor contributing to climate change.

Pollution is a massive factor contributing to climate change. Image:  REUTERS/Fabrizio Bensch/File Photo

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Beh Lih Yi

climate change essay 2022

.chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} Explore and monitor how .chakra .wef-15eoq1r{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;color:#F7DB5E;}@media screen and (min-width:56.5rem){.chakra .wef-15eoq1r{font-size:1.125rem;}} SDG 13: Climate Action is affecting economies, industries and global issues

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved with our crowdsourced digital platform to deliver impact at scale

Stay up to date:, sdg 13: climate action.

  • Experts predict that certain climate and nature issues will be the top priorities this year such as emissions cuts and paying for climate loss and damage.
  • Projections show global emissions in 2030 will still be roughly twice as high as needed to limit warming to 1.5C, according to an expert.
  • COP15 - together with COP27 - will be "critical turning points" to confront the "triple planetary crisis" of climate change, biodiversity loss and pollution.

From phasing out fossil fuel subsidies to tackling the surging costs of loss and damage caused by climate change impacts, 2022 is likely to see growing pressure for more ambitious action to fight global warming on the ground.

The urgency comes as officials and climate policy analysts warn the most ambitious Paris Agreement target of limiting global warming to 1.5 degrees Celsius (2.7F) is growing harder to reach - despite gaining stronger political backing in 2021.

"2022 is all about shifting into what the (U.N.) secretary-general has called ' emergency mode '," Inger Andersen, executive director of the U.N. Environment Programme (UNEP), told the Thomson Reuters Foundation.

Here are some of the climate and nature issues experts predict will be top priorities this year:

Faster, bigger emissions cuts

Efforts need to be redoubled, especially by major greenhouse gas emitters, to slash carbon pollution this decade, in a bid to stick to the 1.5C warming ceiling and minimise climate-change harm to people and the planet.

bigger emission cuts are needed for climate change

"There has been too much emphasis on net-zero (emissions) targets by mid-century and not enough attention to significant reductions between now and 2030," said Robert Watson, a former chair of the Intergovernmental Panel on Climate Change (IPCC).

"If governments are sincere in their stated goal of achieving the Paris target, then they must bite the bullet in 2022 and significantly strengthen their pledges," he stressed.

This is especially needed from the biggest-emitting countries which include China, the United States, India, Russia, Japan and members of the European Union, Watson noted.

Climate change poses an urgent threat demanding decisive action. Communities around the world are already experiencing increased climate impacts, from droughts to floods to rising seas. The World Economic Forum's Global Risks Report continues to rank these environmental threats at the top of the list.

To limit global temperature rise to well below 2°C and as close as possible to 1.5°C above pre-industrial levels, it is essential that businesses, policy-makers, and civil society advance comprehensive near- and long-term climate actions in line with the goals of the Paris Agreement on climate change.

The World Economic Forum's Climate Initiative supports the scaling and acceleration of global climate action through public and private-sector collaboration. The Initiative works across several workstreams to develop and implement inclusive and ambitious solutions.

This includes the Alliance of CEO Climate Leaders, a global network of business leaders from various industries developing cost-effective solutions to transitioning to a low-carbon, climate-resilient economy. CEOs use their position and influence with policy-makers and corporate partners to accelerate the transition and realize the economic benefits of delivering a safer climate.

Contact us to get involved.

Governments agreed at November's COP26 U.N. climate summit to find ways to strengthen their climate action plans again in a year's time, rather than every five years as stipulated in the Paris pact.

Projections show global emissions in 2030 will still be roughly twice as high as needed to limit warming to 1.5C, according to Niklas Höhne, co-founder of the Germany-based NewClimate Institute, a research group.

"With such a glaring gap, all countries have an obligation to reconsider their choice," he said.

Phasing out fossil fuel funding

Governments will be expected to push ahead on phasing out their backing for fossil fuels at home and in developing nations after agreeing at COP26 to end - though without a deadline - "inefficient" subsidies for oil, gas and coal.

Key countries that have financed polluting energy technology outside their borders, including China, Japan and South Korea, pledged in 2021 to end new overseas coal funding, while a group of donor states made a similar commitment for all fossil fuels.

Fossil fuel subsidies, funding and technical assistance have kept the cost of using oil, gas and coal for energy artificially low, hampering the much-needed switch to renewable sources.

U.N. environment chief Andersen said the transition away from fossil-fuelled economic growth is one of the "elephants in the room" that must be tackled this year.

The International Monetary Fund estimates global fossil fuel subsidies amount to a whopping $6 trillion a year .

"The priority has to be kicking fossil fuel interests out of politics once and for all, and removing their social license just like what happened with Big Tobacco," said Jennifer Morgan, the head of environmental group Greenpeace International.

A worker kneels by one of the solar cell panels over the water surface of Sirindhorn Dam in Ubon Ratchathani, Thailand.

Just transition

As the pressure to cut emissions from fossil fuels and switch to cleaner energy sources rises - in developing as well as wealthy nations - there is growing concern about how this will affect workers who now rely on high-carbon industries for a living.

Governments are increasingly grasping the need to provide support - such as retraining for green jobs and funding to set up new businesses in former coal or oil hubs - to ensure they bring communities along in the shift to cleaner economies.

At COP26, donor governments put billions of dollars into new partnerships to help coal-reliant emerging economies such as South Africa, India, Indonesia and the Philippines kickstart a "just transition" that is green and socially fair, especially for the most vulnerable.

In 2022, there will be strong interest in how those new programmes - backed by governments from Britain to Canada and Germany, as well as international climate funds - shape up.

In the wake of COP26, the International Trade Union Confederation - which represents 200 million union members worldwide - called for an immediate start to talks with workers and communities aimed at producing " just transition " plans.

Accelerating climate change impacts

From deadly Hurricane Ida in the United States to devastating floods in Europe and China, and hunger-inducing drought in East Africa, climate change-fuelled disasters cost tens of billions of dollars in 2021 and caused severe human suffering.

Archive Photo: Women make their way through the flooded village of Godadhar in Faridpur.

A key report from the IPCC, due for publication in late February, is expected to hammer home how the risks to humans and nature are bigger than scientists had expected - even at today's 1.1C of global warming - and will surge beyond 1.5C of warming.

Social and economic inequalities are exacerbating the consequences of climate change for the poorest people, and in turn will be made worse by it, the U.N. climate science panel is likely to say in the second report of its sixth assessment series, aimed at global policy-makers.

"It talks to us not only of how we are currently adapting to these changes, but what adaptation responses may exist in the future," Debra Roberts, co-chair of the group of scientists that drafted the upcoming IPCC impacts report, said in a statement.

The Paris Agreement established a global goal on adaptation to strengthen resilience and reduce vulnerability to climate change effects, through things like stronger infrastructure, early warning of disasters and crops that can tolerate extremes.

But efforts on the ground lag far behind accelerating climate stresses and weather shocks, with funding to ramp up adaptation tens of billions of dollars short of what is thought to be needed each year, especially in the most at-risk places.

Paying for climate loss and damage

As extreme weather disasters get fiercer and more frequent, wealthy countries responsible for most carbon emissions will come under greater pressure to help cover the rising costs sustained by vulnerable nations on the frontlines.

The issue of " loss and damage " gained important recognition at the COP26 summit, with countries agreeing to launch a new dialogue on how to finance efforts to prevent and repair harm, from destroyed homes and ecosystems to lost cultural heritage.

But a long-standing push by at-risk nations to create a new loss and damage fund did not succeed.

"It is time for the big historic polluters - government and corporate - to pay up," said Greenpeace's Morgan.

"This issue must be at the top of the agenda for developed countries at the COP in Egypt," she added, referring to the U.N. climate conference to be held in late 2022.

The demand for fresh finance to cover "loss and damage" comes on top of a failure so far by the developed world to deliver $100 billion a year from 2020 to help poorer nations adapt to global warming and adopt cleaner energy.

Have you read?

Climate crisis could shift hurricanes toward more populated cities, new deal for nature.

Protecting natural systems, including forests, and halting the rapid decline in biodiversity - both key to the global fight on climate change - are set to be in the limelight this year at a flagship U.N. biodiversity conference known as COP15.

The talks - where countries are tasked with finalising a new global accord to safeguard plants, animals and ecosystems, similar to the Paris climate pact - have already been postponed three times due to the pandemic.

Questions are being raised over whether the COP15 summit, scheduled for April 25-May 8 in the Chinese city of Kunming, will proceed, due to stricter travel restrictions worldwide to curb the spread of the Omicron coronavirus variant .

COP15 - together with the COP27 climate talks in Egypt - will be "critical turning points" to confront the "triple planetary crisis" of climate change, biodiversity loss and pollution, said UNEP's Andersen.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:

The agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} weekly.

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Climate Action .chakra .wef-17xejub{-webkit-flex:1;-ms-flex:1;flex:1;justify-self:stretch;-webkit-align-self:stretch;-ms-flex-item-align:stretch;align-self:stretch;} .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

climate change essay 2022

Translating Critical Raw Material Trade into Development Benefits

climate change essay 2022

Tackling deforestation – 4 reasons companies should take a 'landscape' approach

May 23, 2024

climate change essay 2022

The ‘4 Cs’ of being a Chief Sustainability Officer

Gareth Francis

May 17, 2024

climate change essay 2022

Critical minerals demand has doubled in the past five years – here are some solutions to the supply crunch

Emma Charlton

May 16, 2024

climate change essay 2022

6 ways satellites are helping to monitor our changing planet from space

Andrea Willige

climate change essay 2022

How this country is encouraging green mobility

Anna Paula Brito

May 15, 2024

UN climate report: It’s ‘now or never’ to limit global warming to 1.5 degrees

A young boy collects what little water he can from a dried up river due to severe drought in Somalia.

Facebook Twitter Print Email

A new flagship UN report on climate change out Monday indicating that harmful carbon emissions from 2010-2019 have never been higher in human history, is proof that the world is on a “fast track” to disaster, António Guterres has warned , with scientists arguing that it’s ‘now or never’ to limit global warming to 1.5 degrees.

Reacting to the latest findings of the Intergovernmental Panel on Climate Change ( IPCC ), the UN Secretary-General insisted that unless governments everywhere reassess their energy policies, the world will be uninhabitable.

#LIVE NOW the press conference to present the #IPCC’s latest #ClimateReport, #ClimateChange 2022: Mitigation of Climate Change, the Working Group III contribution to the Sixth Assessment Report. Including a Q&A session with registered media. https://t.co/iIl81zXev7 IPCC IPCC_CH

His comments reflected the IPCC’s insistence that all countries must reduce their fossil fuel use substantially, extend access to electricity, improve energy efficiency and increase the use of alternative fuels, such as hydrogen.

Unless action is taken soon, some major cities will be under water, Mr. Guterres said in a video message, which also forecast “unprecedented heatwaves, terrifying storms, widespread water shortages and the extinction of a million species of plants and animals”.

Horror story

The UN chief added: “This is not fiction or exaggeration. It is what science tells us will result from our current energy policies. We are on a pathway to global warming of more than double the 1.5-degree (Celsius, or 2.7-degrees Fahreinheit) limit ” that was agreed in Paris in 2015.

Providing the scientific proof to back up that damning assessment, the IPCC report – written by hundreds of leading scientists and agreed by 195 countries - noted that greenhouse gas emissions generated by human activity, have increased since 2010 “across all major sectors globally”.

In an op-ed article penned for the Washington Post, Mr. Guterres described the latest IPCC report as "a litany of broken climate promises ", which revealed a "yawning gap between climate pledges, and reality."

He wrote that high-emitting governments and corporations, were not just turning a blind eye, "they are adding fuel to the flames by continuing to invest in climate-choking industries. Scientists warn that we are already perilously close to tipping points that could lead to cascading and irreversible climate effects."

Urban issue

An increasing share of emissions can be attributed to towns and cities , the report’s authors continued, adding just as worryingly, that emissions reductions clawed back in the last decade or so “have been less than emissions increases, from rising global activity levels in industry, energy supply, transport, agriculture and buildings”.

Striking a more positive note - and insisting that it is still possible to halve emissions by 2030 - the IPCC urged governments to ramp up action to curb emissions.

The UN body also welcomed the significant decrease in the cost of renewable energy sources since 2010, by as much as 85 per cent for solar and wind energy, and batteries.

Global net anthropogenic emissions have continued to rise across all major groups of greenhouse gases.

You might also like

  • ‘Lifeline’ of renewable energy can steer world out of climate crisis
  • 8 reasons not to give up hope - and take climate action

Encouraging climate action

“We are at a crossroads. The decisions we make now can secure a liveable future,” said IPCC Chair Hoesung Lee. “ I am encouraged by climate action being taken in many countries . There are policies, regulations and market instruments that are proving effective. If these are scaled up and applied more widely and equitably, they can support deep emissions reductions and stimulate innovation.”

To limit global warming to around 1.5C (2.7°F), the IPCC report insisted that global greenhouse gas emissions would have to peak “before 2025 at the latest, and be reduced by 43 per cent by 2030”.

Methane would also need to be reduced by about a third, the report’s authors continued, adding that even if this was achieved, it was “almost inevitable that we will temporarily exceed this temperature threshold”, although the world “could  return to below it by the end of the century”.

Now or never

“ It’s now or never, if we want to limit global warming to 1.5°C (2.7°F); without immediate and deep emissions reductions across all sectors, it will be impossible ,” said Jim Skea, Co-Chair of IPCC Working Group III, which released the latest report.

Global temperatures will stabilise when carbon dioxide emissions reach net zero. For 1.5C (2.7F), this means achieving net zero carbon dioxide emissions globally in the early 2050s; for 2C (3.6°F), it is in the early 2070s, the IPCC report states.

“This assessment shows that limiting warming to around 2C (3.6F) still requires global greenhouse gas emissions to peak before 2025 at the latest, and be reduced by a quarter by 2030.”

Families forced to move all their belongings, including livestock, South Sudan.

Policy base

A great deal of importance is attached to IPCC assessments because they provide governments with scientific information that they can use to develop climate policies.

They also play a key role in international negotiations to tackle climate change.

Among the sustainable and emissions-busting solutions that are available to governments, the IPCC report emphasised that rethinking how cities and other urban areas function in future could help significantly in mitigating the worst effects of climate change.

“These (reductions) can be achieved through lower energy consumption (such as by creating compact, walkable cities), electrification of transport in combination with low-emission energy sources, and enhanced carbon uptake and storage using nature,” the report suggested. “There are options for established, rapidly growing and new cities,” it said.

Echoing that message, IPCC Working Group III Co-Chair, Priyadarshi Shukla, insisted that “the right policies, infrastructure and technology…to enable changes to our lifestyles and behaviour, can result in a 40 to 70 per cent reduction in greenhouse gas emissions by 2050. “The evidence also shows that these lifestyle changes can improve our health and wellbeing.”

A cow trying to leave an area affected by intense flooding, South Sudan.

  • climate action
  • Intergovernmental Panel on Climate Change (IPCC)
  • Climate modelling
  • Extreme weather
  • Health and Security
  • Temperature

China energy

  • Oil and gas
  • Other technologies
  • China Policy
  • International policy
  • Other national policy
  • Rest of world policy
  • UN climate talks
  • Country profiles

Guest posts

  • Infographics
  • Media analysis
  • State of the climate
  • Translations
  • Daily Brief
  • China Briefing
  • Comments Policy
  • Cookies Policy
  • Global emissions
  • Rest of world emissions
  • UK emissions
  • EU emissions
  • Global South Climate Database
  • Newsletters
  • COP21 Paris
  • COP22 Marrakech
  • COP24 Katowice
  • COP25 Madrid
  • COP26 Glasgow
  • COP27 Sharm el-Sheikh
  • COP28 Dubai
  • Privacy Policy
  • Attribution
  • Geoengineering
  • Food and farming
  • Nature policy
  • Plants and forests
  • Marine life
  • Ocean acidification
  • Ocean warming
  • Sea level rise
  • Human security
  • Public health
  • Public opinion
  • Risk and adaptation
  • Science communication
  • Carbon budgets
  • Climate sensitivity
  • GHGs and aerosols
  • Global temperature
  • Negative emissions
  • Rest of world temperature

Tipping points

  • UK temperature
  • Thank you for subscribing

Social Channels

Search archive.

climate change essay 2022

Receive a Daily or Weekly summary of the most important articles direct to your inbox, just enter your email below. By entering your email address you agree for your data to be handled in accordance with our Privacy Policy .

climate change essay 2022

Multiple Authors

climate change essay 2022

Last year brought no shortage of news. Frontpages around the world were dominated by Russia’s invasion of Ukraine , the death of Queen Elizabeth II and a UK prime minister outlasted by a lettuce .

But in yet another hectic year for news coverage, climate change still made headlines – not least because of the thousands of peer-reviewed journal papers about climate and energy that are published every year. 

These studies were picked up around the world by online news outlets and shared on social media platforms, including Twitter, Facebook and LinkedIn. Tracking all these “mentions” was Altmetric , an organisation that scores academic papers according to the media attention they receive.

Using Altmetric data for 2022, Carbon Brief has compiled its now-traditional list of the 25 most talked-about climate or energy-related papers that were published the previous year.

From megafloods to megadroughts and insects to polar bears, last year saw a broad range of headline-grabbing research – as well as a new record-high Altmetric score for a paper in a Carbon Brief annual review.

The infographic above shows which papers made it into the top 10, while the chart at the end of the article shows which journals feature most frequently in the top 25.

Pandemic prominence

As in 2020 and 2021 , the most talked-about scientific research of the past year has been about Covid-19. 

All but five of the 50 highest scoring papers of 2022 relate to the coronavirus. Those five include two papers on monkeypox (since renamed “mpox”), one on the global burden of drug-resistant bacteria , one that identifies the Epstein-Barr virus as “the leading cause of multiple sclerosis”, and one finding that, in 2020, firearms became the main cause of deaths in children in the US.

Continuing the theme, the most talked-about climate and energy paper of 2022 also relates to the Covid-19 pandemic.

Just outside the overall top 50, in 56th place, is “ Climate change increases cross-species viral transmission risk ”. Published in Nature, the study warns that mammals forced to move to cooler climes amid rising global temperatures are “already” spreading their viruses further – with “undoubtable” impacts for human health.

Climate change increases cross-species viral transmission risk screenshot

The research uses modelling to map how climate change could shift the geographic ranges of 3,100 mammal species and the viruses they carry by 2070. It finds that climate change is increasingly driving new encounters between mammal species, raising the risk of novel disease spread. The world’s “biodiversity hotspots” and densely populated parts of Asia and Africa are most likely to be affected.

Speaking to Carbon Brief when the paper was published in April, co-lead author Dr Colin Carlson , a global change biologist at Georgetown University in Washington DC, explained:

“Species are going to show up in new combinations because of climate change and, when they do, that’s an opportunity for them to share viruses with each other.” 

The relevance of the work was “reinforced by the Covid-19 pandemic”, the paper says, “which began only weeks after the completion of this study”. The authors note that Covid-19 “probably originated in south-east Asian horseshoe bats and may have spread to humans through an as-yet-unknown bridge host”. They add:

“Although we caution against over-interpreting our results as explanatory of the current pandemic, our findings suggest that climate change could easily become the dominant anthropogenic force in viral cross-species transmission, which will undoubtedly have a downstream effect on human health and pandemic risk.”

The paper clocks in with an Altmetric score of 7,803 – the highest score for any climate paper featured in Carbon Brief’s annual reviews and only the second time the top-scoring paper has surpassed 7,000. 

(For Carbon Brief’s previous Altmetric articles, see the links for 2021 , 2020 , 2019 , 2018 , 2017 , 2016 and 2015 .)

The study was covered in 716 news stories by 558 outlets around the world, including the Guardian , New York Times , Agence France-Presse , Al Jazeera and New Delhi Times . It was also picked up in 44 blog posts.

Inline montage

The research was the most talked about on Twitter of any of the top 25 climate papers included here. The paper’s URL was included in more than 10,000 tweets from more than 9,000 accounts, which collectively have almost 39 million followers.

Considering the paper’s timing, it is “not surprising” that connecting climate change with pandemics “gathered a bit of attention”, Carlson tells Carbon Brief. 

However, he says, “there’s still a weird pattern where climate gets left out of the conversation [around pandemics] a lot compared to biodiversity loss or wildlife trade”. He adds:

“I think I’ve started to see that change finally, and if we played a part in that, that’s wonderful. Most of my work focuses on the health impacts of climate change, and I think time and time again, we underestimate how bad they’ll be…Climate change is an existential threat to human and animal health, and I hope our study and the conversation around it helped push that envelope a bit.”

The second highest-scoring climate paper of 2022 – clocking in at 70th in the overall 2022 rankings – is, “ Exceeding 1.5C global warming could trigger multiple climate tipping points ”. Published in the journal Science, the study has an Altmetric score of 6,573.

Exceeding 1.5C global warming could trigger multiple climate tipping points screenshot

The study’s lead author, Dr David McKay , told Carbon Brief in September that tipping points have been a keen area of interest in the climate community since 2008, when the study, “ Tipping elements in the Earth’s climate system ”, first “broke the ice” on the subject.

His work provides the first comprehensive assessment of climate-related tipping points since the 2008 paper. It identifies 16 climate tipping elements – shown below – and finds a “significant likelihood” that multiple tipping points will be crossed if global temperatures exceed 1.5C above pre-industrial levels.

The location of the Earth’s tipping points and when they are likely to be crossed. Credit: Map by Tom Prater, based on McKay et al (2022).

The study was mentioned in 667 news stories from 397 outlets – including the Guardian , New Scientist and BBC News . It received the highest number of mentions in blog posts and Wikipedia pages of the top 25 climate papers – at 55 and 34, respectively. The study also featured in more than 6,000 tweets.

The study was strategically published just days before researchers, economists and civil society representatives gathered in McKay’s home town of Exeter for a conference on the topic of climate tipping points. Carbon Brief attended the conference, and summarised the key talking points, ideas and proposals that emerged.

Arctic warming

In third place with an Altmetric score of 6,201 is the Communications Earth and Environment study, “ The Arctic has warmed nearly four times faster than the globe since 1979 ”.

It is well known that Arctic temperatures are rising much faster than the global average. Previous estimates suggest that the region is warming twice or even three times as quickly as the rest of the world. However, this new study finds that the Arctic has warmed nearly four times faster than the global average over the past four decades.

The Arctic has warmed nearly four times faster than the globe since 1979 screenshot

Dr Mika Rantanen – a researcher at the Finnish Meteorological Institute and lead author on the study – tells Carbon Brief that “Arctic warming and its consequences have become one of the biggest manifestations of climate change”. As such, he says he and his co-authors expected the paper to attract media attention.

True to his expectations, the article was picked up in 765 news stories from 525 outlets, including the Independent , New York Times , Scientific American and Washington Post . “I think that choosing an attractive title was one reason why the paper was picked up so widely,” Rantanen tells Carbon Brief.

In fourth place, with an Altmetric score of 6,147, is the Nature Climate Change paper, “ Greenland ice sheet climate disequilibrium and committed sea level rise ”. 

The study finds that the “imbalance” of the Greenland ice sheet caused by global warming means it is already committed to contributing “at least” 274mm to global sea levels in future, “regardless of 21st-century climate pathways”.

The research also warned that if Greenland melt was consistently as large as the high-melt year of 2012, this would commit 782mm to sea levels, which serves as “an ominous prognosis for Greenland’s trajectory through a 21st century of warming”.

The study was picked up by 867 news stories from 658 outlets. These include, for example, a Guardian headline warning that major sea level rise from Greenland was now “inevitable”, and an Associated Press article leading on the idea of “zombie ice”:

“That’s doomed ice that, while still attached to thicker areas of ice, is no longer getting replenished by parent glaciers now receiving less snow. Without replenishment, the doomed ice is melting from climate change and will inevitably raise seas.”

Study co-author Dr William Colgan , a glaciologist at the Geological Survey of Denmark and Greenland , told the outlet:

“It’s dead ice. It’s just going to melt and disappear from the ice sheet…This ice has been consigned to the ocean, regardless of what climate (emissions) scenario we take now.”

The paper was also picked up by 37 blog posts and 1,671 tweets.

Completing the top five is another pandemic-related paper, “ Over half of known human pathogenic diseases can be aggravated by climate change ”, also published in Nature Climate Change.

It finds that nearly 60% of pathogen-caused diseases that affect humans have been “at some point aggravated” by climate-related “hazards”, such as warming and drought. 

Specifically, the researchers identify how 375 infectious diseases around the world have been affected by a range of climatic hazards. They find that while 16% of infectious diseases have “at times” been reduced by climate hazards, there are more than 1,000 “unique pathways” by which pathogenic diseases were exacerbated by climate change. 

The authors warn that these pathways are “too numerous for comprehensive societal adaptations” and say that this work highlights the “urgent need to work at the source of the problem: reducing [greenhouse gas] emissions”.

With an overall Altmetric tally of 6,079, the paper would have scored high enough to secure top spot last year . It was covered by 803 news stories from 582 outlets, 31 posts from 28 blogs, and 2,571 tweets from 2,277 users.

Just missing out on a spot in the top five is a “perspective” paper in the Proceedings of the National Academy of Sciences, “ Climate endgame: Exploring catastrophic climate change scenarios ”. This less-than-cheery article on “catastrophic” outcomes of climate change was referenced in 556 news stories from 428 outlets. The BBC News coverage of the study says:

“Catastrophic climate change outcomes, including human extinction, are not being taken seriously enough by scientists, a new study says. The authors say that the consequences of more extreme warming – still on the cards if no action is taken – are ‘dangerously underexplored’. They argue that the world needs to start preparing for the possibility of what they term the ‘climate endgame’.”

With an Altmetric score of 4,807, spot number seven goes to the Advances in Atmospheric Sciences paper, “ Another record: Ocean warming continues through 2021 despite La Niña conditions ”.

The annual Lancet Countdown on Health and Climate Change report clocks in at number eight. The paper – under the heading “health at the mercy of fossil fuels” – was mentioned in 521 news stories from 386 outlets. In a striking summary, the report says:

“Worldwide, people are seeing their health increasingly affected by climate change amidst the compounding impacts of Covid-19 and the cost of living and energy crises; governments and companies continue to prioritise fossil fuels over a healthy future despite climate commitments; and rapid, holistic action is the only route to ensuring a just and healthy future.”

At number nine is the “brief communication” Nature Climate Change paper, “ Rapid intensification of the emerging south-western North American megadrought in 2020-2021 ”. The study finds that the American west’s megadrought is the driest in at least 1,200 years.

The research was picked up in 1,187 new stories – more than any of the other 25 papers included here – including American publications the New York Times , the Washington Post , NBC News and NPR . The paper also topped the tables for blog post mentions, with 76.

Rounding off the top 10 climate articles of 2022 is the Nature Climate Change study, “ Pronounced loss of Amazon rainforest resilience since the early 2000s ”, with an Altmetric score of 4,195. This article was mentioned in 563 news stories from 434 outlets, including Carbon Brief , BBC News , the Independent , the New York Times and New Scientist . 

The study finds that three-quarters of the Amazon rainforest has lost “resilience” since 2003 – making it more vulnerable to extreme events such as droughts. The work shows we are “approaching a tipping point”, the lead author of the study told journalists at a press conference.

Elsewhere in the top 25

The rest of the top 25 contains a varied mix of papers, including how agriculture and climate change are “ reshaping ” insect biodiversity worldwide (12th) and the discovery of a “ genetically distinct and functionally isolated ” population of polar bears from south-eastern Greenland (19th).

Just missing out on the top 10 is, “ Global carbon budget 2022 ”, in 11th place. Published in the journal Earth System Science Data, the paper details the annually estimated “global carbon budget” as produced by the Global Carbon Project .

The paper’s lead author Prof Pierre Friedlingstein , chair of mathematical modelling of climate systems at the University of Exeter , co-wrote a Carbon Brief article to unpack their findings.

The latest data shows that global CO2 emissions from fossil fuels and cement increased by 1.0% in 2022, hitting a new record high of 36.6bn tonnes of CO2. This rise was “primarily driven by a strong increase in oil emissions as global travel continues to recover from the Covid-19 pandemic”, the article says, adding that “coal and gas emissions grew more slowly, though both had record emissions in 2022”.

There are several energy-related papers in the top 25. This includes a paper in 15th place from the Proceedings of the National Academy of Sciences , which finds that “corn-based ethanol in the US has failed to meet the policy’s own greenhouse gas emissions targets and negatively affected water quality, the area of land used for conservation, and other ecosystem processes”. Another is a Joule paper in 20th, which finds that “compared to continuing with a fossil fuel-based system, a rapid green energy transition is likely to result in trillions of net savings”.

The topic of public health features again in the top 25. For example, in 14th place is a Communications Earth & Environment study warning that, under 2C of warming, the exposure to dangerous heat stress “will likely increase by 50-100% across much of the tropics and increase by a factor of 3-10 in many regions throughout the mid-latitudes”.

Expert analysis direct to your inbox.

Get a round-up of all the important articles and papers selected by Carbon Brief by email. Find out more about our newsletters here .

Research into extreme weather also appears in the top 25. This includes a Nature Communications study in 18th place on the 2020 North Atlantic hurricane season – the most active on record – which finds that “human-induced climate change increased the extreme three-hourly storm rainfall rates and extreme three-day accumulated rainfall amounts…for observed storms that are at least tropical storm strength”. A Science Advances paper in 23rd place warns that climate change has already doubled the likelihood of an event capable of producing a catastrophic “megaflood” in California.

Finally, rounding out the top 25 is a Nature Geoscience study showing that the Thwaites glacier in west Antarctica has seen “sustained pulses of rapid retreat” in the past two centuries and similar pulses “are likely to occur in the near future”.

All the final scores for the top 25 climate papers of 2022 can be found in this spreadsheet .

Top journals

Across the top 25 papers in Carbon Brief’s leaderboard this year, Nature Climate Change features most frequently with four papers. Nature Climate Change also took first place in 2021 (jointly with Nature) and 2016 (jointly with Science).  

In joint-second place is Nature and Science with three papers each. Nature is perennially high-placed in this analysis, taking first – or joint first – spot in Carbon Brief’s top 25 in 2021 , 2020 , 2019 , 2018 , 2017 and 2015 .

For the rest of the top 25, there are four journals that appear twice and seven that appear once.

Chart by Carbon Brief using Highcharts.

Diversity of the top 25

The top 25 climate papers of 2022 cover a huge range of topics and scope. 

The “Lancet Countdown on health and climate change” and “Global Carbon Budget” reports are epic annual publications, which review vast swathes of literature and have around 100 authors each. Meanwhile, three of the climate papers in the list have only two authors, and focus on specific new frontiers of climate research.

In total, the top 25 climate papers of 2022 have more than 400 authors. However, despite the variety in the climate research the papers present, analysis of their authors reveals a distinct lack of diversity.

Carbon Brief recorded the gender and country of affiliation for each of these authors. (The  methodology used was developed by Carbon Brief for analysis presented in a special 2021 series on climate justice .) The analysis reveals that the authors of the climate papers most featured in the media in 2022 are predominantly men from the global north.

The chart below shows the institutional affiliations of all authors in this analysis, broken down by continent – Europe, North America , Oceania, Asia, South America and Africa.

The percentage of authors from the climate papers most featured in the media in 2022.

The analysis shows that nine out of every 10 authors are affiliated with institutions from the global north – defined as North America, Europe and Oceania. Meanwhile, there are only two authors from South America, based in Peru, and a single author from Africa, based in South Africa.

Further data analysis shows that there are also inequalities within continents. The map below shows the percentage of authors from each country in the analysis, where dark blue indicates a higher percentage. Countries that are not represented by any authors in the analysis are shown in white.

diversity-authors-2022

The top-ranking countries on this map are the US and the UK, which together account for more than half of all authors in this analysis (32% and 19%, respectively). Almost half of all researchers from the global south are from China – which accounts for around 6% of all researchers in the analysis.

None of the authors of the top 25 climate papers of 2022 is from south Asia, central America or the Caribbean.

Meanwhile, only 27% of authors from the top 25 climate papers of 2022 are women. Similarly, only six of the 25 papers have a female lead author.

The plot below shows the number of male (purple) and female (orange) authors in this analysis from each continent.

The number of male (purple) and female (orange) authors in the climate papers most featured in the media in 2022.

The full spreadsheet showing the results of this data analysis can be found here. For more on the biases in climate publishing, see Carbon Brief’s article on the lack of diversity in climate-science research .

climate change essay 2022

DeBriefed 24 May 2024: ‘Surprise’ UK election; Oceans court ruling; China and Russia’s fossil-fuel pact

climate change essay 2022

Guest post: Heat pumps gained European market share in 2023 despite falling sales

DeBriefed 17 May 2024: Biden’s clean-energy tariff blitz; Modi’s coal plans examined; Deadly heat in Mexico

climate change essay 2022

Interview: China’s renewables ‘pave the way to rapidly reduce coal reliance’

Update: This article was updated on 09/01/2023 to add in the diversity analysis.

  • Analysis: The climate papers most featured in the media in 2022

Advertisement

Advertisement

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

  • Review Article
  • Published: 04 April 2022
  • Volume 29 , pages 42539–42559, ( 2022 )

Cite this article

climate change essay 2022

  • Kashif Abbass 1 ,
  • Muhammad Zeeshan Qasim 2 ,
  • Huaming Song 1 ,
  • Muntasir Murshed   ORCID: orcid.org/0000-0001-9872-8742 3 , 4 ,
  • Haider Mahmood   ORCID: orcid.org/0000-0002-6474-4338 5 &
  • Ijaz Younis 1  

205k Accesses

414 Citations

31 Altmetric

Explore all metrics

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Similar content being viewed by others

climate change essay 2022

Morocco’s climate change impacts, adaptation and mitigation—a stocktake

climate change essay 2022

Climate change adaptation (CCA) research in Nepal: implications for the advancement of adaptation planning

climate change essay 2022

A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan

Avoid common mistakes on your manuscript.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

figure 1

Source : constructed by authors

Methodology search for finalized articles for investigations.

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

figure 2

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

figure 3

Source EMDAT ( 2020 )

Global deaths from natural disasters, 1978 to 2020.

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

figure 4

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

figure 5

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

A typical interaction between the susceptible and resistant strains.

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table 2 ).

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

figure 6

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Seasonal variations and cultivation practices

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

New varieties of crops

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

Changes in management and other input factors

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Availability of data and material

Data sources and relevant links are provided in the paper to access data.

Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054

Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech

Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14

Abbass K, Song H, Shah SM, Aziz B (2019) Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff 8(370):2167–0234

Google Scholar  

Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan

Abraham E, Chain E (1988) An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 10(4):677

CAS   Google Scholar  

Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 15(2):77–86

Article   Google Scholar  

Akkari C, Bryant CR (2016) The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research 5(2):162–173

Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740

Ali A, Erenstein O (2017) Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag 16:183–194

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. https://doi.org/10.1007/s10668-021-01716-2

Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press

Arshad MI, Iqbal MA, Shahbaz M (2018) Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research 23(2):121–132

Ashbolt NJ (2015) Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports 2(1):95–106

Article   CAS   Google Scholar  

Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543

Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Chang 3(9):827–832

Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.

Ayers J, Huq S, Wright H, Faisal A, Hussain S (2014) Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev 6:293–305

Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451

Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M (2022) The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy 185:1441–1455

Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank

Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)

Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK (2014) Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang 26:27–38

Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244

Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T (2019) Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish 28(3):434–445

Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916

Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317

Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J (2010) Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol 16(2):587–598

Blum A, Klueva N, Nguyen H (2001) Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117(2):117–123

Bonacci O (2019) Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia). Acta Hydrotechnica 32(57):135–150

Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214

Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S (2018) Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol 250:47–63

Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN (2014) Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio 43(6):759–769

Bujosa A, Riera A, Torres CM (2015) Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage 47:233–239

Calderini D, Abeledo L, Savin R, Slafer GA (1999) Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci 132(4):453–459

Cammell M, Knight J (1992) Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res 22:117–162

Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci 111(2):723–727

Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF

Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag

Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513

Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587

Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R (2018) Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol 18(1):1–14

Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M (2009) Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet 373(9676):1693–1733

Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, https://doi.org/10.7208/9780226315072

Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare

Davidson D (2016) Gaps in agricultural climate adaptation research. Nat Clim Chang 6(5):433–435

Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci 114(19):4881–4886

Dimri A, Kumar D, Choudhary A, Maharana P (2018) Future changes over the Himalayas: mean temperature. Global Planet Change 162:235–251

Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Publishing Group, Nat Clim Chang

Book   Google Scholar  

Dupuis I, Dumas C (1990) Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol 94(2):665–670

Edreira JR, Otegui ME (2013) Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res 142:58–67

Edreira JR, Carpici EB, Sammarro D, Otegui M (2011) Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res 123(2):62–73

Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J (2017) Trees, forests and water: Cool insights for a hot world. Glob Environ Chang 43:51–61

Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER (2021) Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem 36(1):384–393

EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be

EPA U (2018) United States Environmental Protection Agency, EPA Year in Review

Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience

Fand BB, Kamble AL, Kumar M (2012) Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ 2(11):1–14

FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.

Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204

Farooq M, Bramley H, Palta JA, Siddique KH (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30(6):491–507

Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18

Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770

Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T (2013) Changing climates, changing forests: a western North American perspective. J Forest 111(3):214–228

Fischer AP (2019) Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan 188:72–79

Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM (2013) Global wildland fire season severity in the 21st century. For Ecol Manage 294:54–61

Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang 5(7):673–677

Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer

Gambín BL, Borrás L, Otegui ME (2006) Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res 95(2–3):316–326

Gambín B, Borrás L (2010) Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology 156(1):91–102

Gampe D, Nikulin G, Ludwig R (2016) Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ 573:1503–1518

García GA, Dreccer MF, Miralles DJ, Serrago RA (2015) High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol 21(11):4153–4164

Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA (2019) Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res 151:75–86

Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509

Gorst A, Dehlavi A, Groom B (2018) Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ 23(6):679–701

Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134(3):371–385

Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G (2012) Consumer behaviour and demand response of tourists to climate change. Ann Tour Res 39(1):36–58

Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8(2):024041

Grieg E Responsible Consumption and Production

Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)

Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D (2015) On climate change skepticism and denial in tourism. J Sustain Tour 23(1):4–25

Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D (2018) Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol 218(1):15–28

Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10:4–10

Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J (2019) Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun 10(1):1124

Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06

Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C (2016) Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res 7(4):247–252

Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853

Hubbart JA, Guyette R, Muzika R-M (2016) More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ 566:463–467

Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):48

Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR (2018) Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod 200:791–808

Intergov. Panel Clim Chang 33 from  https://doi.org/10.1017/CBO9781107415324

Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R (2009) Towards a formal framework of vulnerability to climate change. Environ Model Assess 14(1):1–16

IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep

Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham

Izaguirre C, Losada I, Camus P, Vigh J, Stenek V (2021) Climate change risk to global port operations. Nat Clim Chang 11(1):14–20

Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science

Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC (2020) Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE 15(3):e0229588

Jurgilevich A, Räsänen A, Groundstroem F, Juhola S (2017) A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett 12(1):013002

Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference

Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991

Karkman A, Do TT, Walsh F, Virta MP (2018) Antibiotic-resistance genes in waste water. Trends Microbiol 26(3):220–228

Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF (2005) Role of marine biology in glacial-interglacial CO2 cycles. Science 308(5718):74–78

Kongsager R (2018) Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land 7(4):158

Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987

Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875

Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414

Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE (2017) Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett 44(14):7419–7428

Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons

Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo

Lipczynska-Kochany E (2018) Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ 640:1548–1565

livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020

Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002

Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697

Ma L, Li B, Zhang T (2019) New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res 152:191–201

Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza

Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier

Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070

Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier

Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ (2018) Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett 13(4):044002

Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science 4(2):90–93

Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228

Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing

Mihiretu A, Okoyo EN, Lemma T (2021) Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences 1(2):1–18

Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826

Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210

Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332

Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. https://doi.org/10.1007/s11356-020-09497-3

Murshed M (2022) Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption 30:396–412. https://doi.org/10.1016/j.spc.2021.12.016

Murshed M, Dao NTT (2020) Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. https://doi.org/10.1007/s10708-020-10270-9

Murshed M, Abbass K, Rashid S (2021) Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco 26(4):5425–5450

Murshed M, Nurmakhanova M, Elheddad M, Ahmed R (2020) Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res 27(31):38951–38973. https://doi.org/10.1007/s11356-020-09593-4

Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. https://doi.org/10.1080/15567249.2022.2038730

Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR (2015) Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour 11:64–79

npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.

Ogden LE (2018) Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience 68(10):733–739

Ortiz AMD, Outhwaite CL, Dalin C, Newbold T (2021) A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth 4(1):88–101

Ortiz R (2008) Crop genetic engineering under global climate change. Ann Arid Zone 47(3):343

Otegui MAE, Bonhomme R (1998) Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res 56(3):247–256

Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc

Pal JK (2021) Visualizing the knowledge outburst in global research on COVID-19. Scientometrics 126(5):4173–4193

Panda R, Behera S, Kashyap P (2003) Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag 63(1):37–56

Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T (2019) Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv 5(3):eaau9124

Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317

Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30(12–13):1395–1405

Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ (2012) Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol 133(1):295–313

Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101(27):9971–9975

Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A (2013) Essential biodiversity variables. Science 339(6117):277–278

Perera K, De Silva K, Amarasinghe M (2018) Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change 161:162–171

Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham

Phillips JD (2018) Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA 169:107–118

Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228

Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR (2013) Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121(8):878–885

Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S (2020) The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res 27(1):133–142

Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity

Rahman M, Alam K (2016) Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate 4(1):12

Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69:789–815

Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460

Reichstein M, Carvalhais N (2019) Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys 40(4):693–707

Reidsma P, Ewert F, Boogaard H, van Diepen K (2009) Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst 100(1–3):51–60

Ritchie H, Roser M (2014) Natural disasters. Our World in Data

Rizvi AR, Baig S, Verdone M (2015) Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. IUCN, Gland, Switzerland, p 48

Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D (2013) What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol 14(3):187–198

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111(9):3268–3273

Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests

Sadras VO, Slafer GA (2012) Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res 127:215–224

Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186

Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F (2021) Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE 16(5):e0252071

Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757

Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

Schoene DH, Bernier PY (2012) Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ 24:12–19

Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press

Scott D (2021) Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability 13(4):1966

Scott D, McBoyle G, Schwartzentruber M (2004) Climate change and the distribution of climatic resources for tourism in North America. Climate Res 27(2):105–117

Semenov MA (2009) Impacts of climate change on wheat in England and Wales. J R Soc Interface 6(33):343–350

Shaffril HAM, Krauss SE, Samsuddin SF (2018) A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ 644:683–695

Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614

Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690

Sharma R (2012) Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev 32(4):480–486

Sharma R, Sinha A, Kautish P (2020) Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res 27(29):36970–36982

Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer

Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20

Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759

Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42(5):880–890

Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p

Stone P, Nicolas M (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol 21(6):887–900

Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G (2018) Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ 616:453–461

Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S (2005) Livelihoods, forests, and conservation in developing countries: an overview. World Dev 33(9):1383–1402

Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4

Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z (2006) Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol 138(1–4):82–92

Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Change 79(3–4):185–211

Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as

Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst

Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag 14(3):207–222

UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest

Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780

Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28

Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P (2022b) Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy 183:90–102

Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515

Usman M, Khalid K, Mehdi MA (2021) What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy 168:1165–1176

Urban MC (2015) Accelerating extinction risk from climate change. Science 348(6234):571–573

Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer

Vedwan N, Rhoades RE (2001) Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res 19(2):109–117

Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR (2001) Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci 41(3):748–754

Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A (2016) Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci 113(48):13791–13796

Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers

Waheed A, Fischer TB, Khan MI (2021) Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage 67(5):793–810

Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank

Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A (2015) Health and climate change: policy responses to protect public health. The Lancet 386(10006):1861–1914

Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83(4):441–470

Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)

Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK (2016) Climate-driven regime shift of a temperate marine ecosystem. Science 353(6295):169–172

WHO (2018) WHO, 2018. Antimicrobial resistance

Wilkinson DM, Sherratt TN (2016) Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers 9(2):127–140

Wiranata IJ, Simbolon K (2021) Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations 5(2):129–146

Wiréhn L (2018) Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 77:63–74

Wu D, Su Y, Xi H, Chen X, Xie B (2019) Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res 158:11–21

Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier

Wu H, Qian H, Chen J, Huo C (2017) Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management 31(5):1557–1574

Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev

Xu J, Sharma R, Fang J, Xu Y (2008) Critical linkages between land-use transition and human health in the Himalayan region. Environ Int 34(2):239–247

Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M (2015) Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol 17(2):179–184

Yang B, Usman M (2021) Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons 28:893–910

Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16

Zarnetske PL, Skelly DK, Urban MC (2012) Biotic multipliers of climate change. Science 336(6088):1516–1518

Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S (2017) A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol 546:44–59

Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. https://doi.org/10.1016/j.renene.2022.03.050

Download references

Author information

Authors and affiliations.

School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, People’s Republic of China

Kashif Abbass, Huaming Song & Ijaz Younis

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, People’s Republic of China

Muhammad Zeeshan Qasim

School of Business and Economics, North South University, Dhaka, 1229, Bangladesh

Muntasir Murshed

Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942, Saudi Arabia

Haider Mahmood

You can also search for this author in PubMed   Google Scholar

Contributions

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Corresponding author

Correspondence to Huaming Song .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Abbass, K., Qasim, M.Z., Song, H. et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29 , 42539–42559 (2022). https://doi.org/10.1007/s11356-022-19718-6

Download citation

Received : 26 August 2021

Accepted : 10 March 2022

Published : 04 April 2022

Issue Date : June 2022

DOI : https://doi.org/10.1007/s11356-022-19718-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Climate change
  • Antimicrobial resistance
  • Biodiversity
  • Mitigation measures
  • Find a journal
  • Publish with us
  • Track your research

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

climate change essay 2022

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions. As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth. 

A woman working in the field points at something out of frame

Sacred plant helps forge a climate-friendly future in Paraguay

el nino and climate crisis madagascar image

El Niño and climate crisis raise drought fears in Madagascar

The El Niño climate pattern, a naturally occurring phenomenon, can significantly disrupt global weather systems, but the human-made climate emergency is exacerbating the destructive effects.

“Verified for Climate” champions: Communicating science and solutions

Gustavo Figueirôa, biologist and communications director at SOS Pantanal, and Habiba Abdulrahman, eco-fashion educator, introduce themselves as champions for “Verified for Climate,” a joint initiative of the United Nations and Purpose to stand up to climate disinformation and put an end to the narratives of denialism, doomism, and delay.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

A review of the global climate change impacts, adaptation, and sustainable mitigation measures

Kashif abbass.

1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094 People’s Republic of China

Muhammad Zeeshan Qasim

2 Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094 People’s Republic of China

Huaming Song

Muntasir murshed.

3 School of Business and Economics, North South University, Dhaka, 1229 Bangladesh

4 Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh

Haider Mahmood

5 Department of Finance, College of Business Administration, Prince Sattam Bin Abdulaziz University, 173, Alkharj, 11942 Saudi Arabia

Ijaz Younis

Associated data.

Data sources and relevant links are provided in the paper to access data.

Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector’s vulnerability is a globally concerning scenario, as sufficient production and food supplies are threatened due to irreversible weather fluctuations. In turn, it is challenging the global feeding patterns, particularly in countries with agriculture as an integral part of their economy and total productivity. Climate change has also put the integrity and survival of many species at stake due to shifts in optimum temperature ranges, thereby accelerating biodiversity loss by progressively changing the ecosystem structures. Climate variations increase the likelihood of particular food and waterborne and vector-borne diseases, and a recent example is a coronavirus pandemic. Climate change also accelerates the enigma of antimicrobial resistance, another threat to human health due to the increasing incidence of resistant pathogenic infections. Besides, the global tourism industry is devastated as climate change impacts unfavorable tourism spots. The methodology investigates hypothetical scenarios of climate variability and attempts to describe the quality of evidence to facilitate readers’ careful, critical engagement. Secondary data is used to identify sustainability issues such as environmental, social, and economic viability. To better understand the problem, gathered the information in this report from various media outlets, research agencies, policy papers, newspapers, and other sources. This review is a sectorial assessment of climate change mitigation and adaptation approaches worldwide in the aforementioned sectors and the associated economic costs. According to the findings, government involvement is necessary for the country’s long-term development through strict accountability of resources and regulations implemented in the past to generate cutting-edge climate policy. Therefore, mitigating the impacts of climate change must be of the utmost importance, and hence, this global threat requires global commitment to address its dreadful implications to ensure global sustenance.

Introduction

Worldwide observed and anticipated climatic changes for the twenty-first century and global warming are significant global changes that have been encountered during the past 65 years. Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, environmental, socio-political, and socio-economic disciplines (Adger et al.  2005 ; Leal Filho et al.  2021 ; Feliciano et al.  2022 ). Climate change involves heightened temperatures across numerous worlds (Battisti and Naylor  2009 ; Schuurmans  2021 ; Weisheimer and Palmer  2005 ; Yadav et al.  2015 ). With the onset of the industrial revolution, the problem of earth climate was amplified manifold (Leppänen et al.  2014 ). It is reported that the immediate attention and due steps might increase the probability of overcoming its devastating impacts. It is not plausible to interpret the exact consequences of climate change (CC) on a sectoral basis (Izaguirre et al.  2021 ; Jurgilevich et al.  2017 ), which is evident by the emerging level of recognition plus the inclusion of climatic uncertainties at both local and national level of policymaking (Ayers et al.  2014 ).

Climate change is characterized based on the comprehensive long-haul temperature and precipitation trends and other components such as pressure and humidity level in the surrounding environment. Besides, the irregular weather patterns, retreating of global ice sheets, and the corresponding elevated sea level rise are among the most renowned international and domestic effects of climate change (Lipczynska-Kochany  2018 ; Michel et al.  2021 ; Murshed and Dao 2020 ). Before the industrial revolution, natural sources, including volcanoes, forest fires, and seismic activities, were regarded as the distinct sources of greenhouse gases (GHGs) such as CO 2 , CH 4 , N 2 O, and H 2 O into the atmosphere (Murshed et al. 2020 ; Hussain et al.  2020 ; Sovacool et al.  2021 ; Usman and Balsalobre-Lorente 2022 ; Murshed 2022 ). United Nations Framework Convention on Climate Change (UNFCCC) struck a major agreement to tackle climate change and accelerate and intensify the actions and investments required for a sustainable low-carbon future at Conference of the Parties (COP-21) in Paris on December 12, 2015. The Paris Agreement expands on the Convention by bringing all nations together for the first time in a single cause to undertake ambitious measures to prevent climate change and adapt to its impacts, with increased funding to assist developing countries in doing so. As so, it marks a turning point in the global climate fight. The core goal of the Paris Agreement is to improve the global response to the threat of climate change by keeping the global temperature rise this century well below 2 °C over pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C (Sharma et al. 2020 ; Sharif et al. 2020 ; Chien et al. 2021 .

Furthermore, the agreement aspires to strengthen nations’ ability to deal with the effects of climate change and align financing flows with low GHG emissions and climate-resilient paths (Shahbaz et al. 2019 ; Anwar et al. 2021 ; Usman et al. 2022a ). To achieve these lofty goals, adequate financial resources must be mobilized and provided, as well as a new technology framework and expanded capacity building, allowing developing countries and the most vulnerable countries to act under their respective national objectives. The agreement also establishes a more transparent action and support mechanism. All Parties are required by the Paris Agreement to do their best through “nationally determined contributions” (NDCs) and to strengthen these efforts in the coming years (Balsalobre-Lorente et al. 2020 ). It includes obligations that all Parties regularly report on their emissions and implementation activities. A global stock-take will be conducted every five years to review collective progress toward the agreement’s goal and inform the Parties’ future individual actions. The Paris Agreement became available for signature on April 22, 2016, Earth Day, at the United Nations Headquarters in New York. On November 4, 2016, it went into effect 30 days after the so-called double threshold was met (ratification by 55 nations accounting for at least 55% of world emissions). More countries have ratified and continue to ratify the agreement since then, bringing 125 Parties in early 2017. To fully operationalize the Paris Agreement, a work program was initiated in Paris to define mechanisms, processes, and recommendations on a wide range of concerns (Murshed et al. 2021 ). Since 2016, Parties have collaborated in subsidiary bodies (APA, SBSTA, and SBI) and numerous formed entities. The Conference of the Parties functioning as the meeting of the Parties to the Paris Agreement (CMA) convened for the first time in November 2016 in Marrakesh in conjunction with COP22 and made its first two resolutions. The work plan is scheduled to be finished by 2018. Some mitigation and adaptation strategies to reduce the emission in the prospective of Paris agreement are following firstly, a long-term goal of keeping the increase in global average temperature to well below 2 °C above pre-industrial levels, secondly, to aim to limit the rise to 1.5 °C, since this would significantly reduce risks and the impacts of climate change, thirdly, on the need for global emissions to peak as soon as possible, recognizing that this will take longer for developing countries, lastly, to undertake rapid reductions after that under the best available science, to achieve a balance between emissions and removals in the second half of the century. On the other side, some adaptation strategies are; strengthening societies’ ability to deal with the effects of climate change and to continue & expand international assistance for developing nations’ adaptation.

However, anthropogenic activities are currently regarded as most accountable for CC (Murshed et al. 2022 ). Apart from the industrial revolution, other anthropogenic activities include excessive agricultural operations, which further involve the high use of fuel-based mechanization, burning of agricultural residues, burning fossil fuels, deforestation, national and domestic transportation sectors, etc. (Huang et al.  2016 ). Consequently, these anthropogenic activities lead to climatic catastrophes, damaging local and global infrastructure, human health, and total productivity. Energy consumption has mounted GHGs levels concerning warming temperatures as most of the energy production in developing countries comes from fossil fuels (Balsalobre-Lorente et al. 2022 ; Usman et al. 2022b ; Abbass et al. 2021a ; Ishikawa-Ishiwata and Furuya  2022 ).

This review aims to highlight the effects of climate change in a socio-scientific aspect by analyzing the existing literature on various sectorial pieces of evidence globally that influence the environment. Although this review provides a thorough examination of climate change and its severe affected sectors that pose a grave danger for global agriculture, biodiversity, health, economy, forestry, and tourism, and to purpose some practical prophylactic measures and mitigation strategies to be adapted as sound substitutes to survive from climate change (CC) impacts. The societal implications of irregular weather patterns and other effects of climate changes are discussed in detail. Some numerous sustainable mitigation measures and adaptation practices and techniques at the global level are discussed in this review with an in-depth focus on its economic, social, and environmental aspects. Methods of data collection section are included in the supplementary information.

Review methodology

Related study and its objectives.

Today, we live an ordinary life in the beautiful digital, globalized world where climate change has a decisive role. What happens in one country has a massive influence on geographically far apart countries, which points to the current crisis known as COVID-19 (Sarkar et al.  2021 ). The most dangerous disease like COVID-19 has affected the world’s climate changes and economic conditions (Abbass et al. 2022 ; Pirasteh-Anosheh et al.  2021 ). The purpose of the present study is to review the status of research on the subject, which is based on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures” by systematically reviewing past published and unpublished research work. Furthermore, the current study seeks to comment on research on the same topic and suggest future research on the same topic. Specifically, the present study aims: The first one is, organize publications to make them easy and quick to find. Secondly, to explore issues in this area, propose an outline of research for future work. The third aim of the study is to synthesize the previous literature on climate change, various sectors, and their mitigation measurement. Lastly , classify the articles according to the different methods and procedures that have been adopted.

Review methodology for reviewers

This review-based article followed systematic literature review techniques that have proved the literature review as a rigorous framework (Benita  2021 ; Tranfield et al.  2003 ). Moreover, we illustrate in Fig.  1 the search method that we have started for this research. First, finalized the research theme to search literature (Cooper et al.  2018 ). Second, used numerous research databases to search related articles and download from the database (Web of Science, Google Scholar, Scopus Index Journals, Emerald, Elsevier Science Direct, Springer, and Sciverse). We focused on various articles, with research articles, feedback pieces, short notes, debates, and review articles published in scholarly journals. Reports used to search for multiple keywords such as “Climate Change,” “Mitigation and Adaptation,” “Department of Agriculture and Human Health,” “Department of Biodiversity and Forestry,” etc.; in summary, keyword list and full text have been made. Initially, the search for keywords yielded a large amount of literature.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig1_HTML.jpg

Methodology search for finalized articles for investigations.

Source : constructed by authors

Since 2020, it has been impossible to review all the articles found; some restrictions have been set for the literature exhibition. The study searched 95 articles on a different database mentioned above based on the nature of the study. It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on “Global Climate Change Impacts, adaptation, and sustainable mitigation measures,” and (ii) the search key terms related to study requirements. The complete procedure yielded 55 articles for our study. We repeat our search on the “Web of Science and Google Scholars” database to enhance the search results and check the referenced articles.

In this study, 55 articles are reviewed systematically and analyzed for research topics and other aspects, such as the methods, contexts, and theories used in these studies. Furthermore, this study analyzes closely related areas to provide unique research opportunities in the future. The study also discussed future direction opportunities and research questions by understanding the research findings climate changes and other affected sectors. The reviewed paper framework analysis process is outlined in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig2_HTML.jpg

Framework of the analysis Process.

Natural disasters and climate change’s socio-economic consequences

Natural and environmental disasters can be highly variable from year to year; some years pass with very few deaths before a significant disaster event claims many lives (Symanski et al.  2021 ). Approximately 60,000 people globally died from natural disasters each year on average over the past decade (Ritchie and Roser  2014 ; Wiranata and Simbolon  2021 ). So, according to the report, around 0.1% of global deaths. Annual variability in the number and share of deaths from natural disasters in recent decades are shown in Fig.  3 . The number of fatalities can be meager—sometimes less than 10,000, and as few as 0.01% of all deaths. But shock events have a devastating impact: the 1983–1985 famine and drought in Ethiopia; the 2004 Indian Ocean earthquake and tsunami; Cyclone Nargis, which struck Myanmar in 2008; and the 2010 Port-au-Prince earthquake in Haiti and now recent example is COVID-19 pandemic (Erman et al.  2021 ). These events pushed global disaster deaths to over 200,000—more than 0.4% of deaths in these years. Low-frequency, high-impact events such as earthquakes and tsunamis are not preventable, but such high losses of human life are. Historical evidence shows that earlier disaster detection, more robust infrastructure, emergency preparedness, and response programmers have substantially reduced disaster deaths worldwide. Low-income is also the most vulnerable to disasters; improving living conditions, facilities, and response services in these areas would be critical in reducing natural disaster deaths in the coming decades.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig3_HTML.jpg

Global deaths from natural disasters, 1978 to 2020.

Source EMDAT ( 2020 )

The interior regions of the continent are likely to be impacted by rising temperatures (Dimri et al.  2018 ; Goes et al.  2020 ; Mannig et al.  2018 ; Schuurmans  2021 ). Weather patterns change due to the shortage of natural resources (water), increase in glacier melting, and rising mercury are likely to cause extinction to many planted species (Gampe et al.  2016 ; Mihiretu et al.  2021 ; Shaffril et al.  2018 ).On the other hand, the coastal ecosystem is on the verge of devastation (Perera et al.  2018 ; Phillips  2018 ). The temperature rises, insect disease outbreaks, health-related problems, and seasonal and lifestyle changes are persistent, with a strong probability of these patterns continuing in the future (Abbass et al. 2021c ; Hussain et al.  2018 ). At the global level, a shortage of good infrastructure and insufficient adaptive capacity are hammering the most (IPCC  2013 ). In addition to the above concerns, a lack of environmental education and knowledge, outdated consumer behavior, a scarcity of incentives, a lack of legislation, and the government’s lack of commitment to climate change contribute to the general public’s concerns. By 2050, a 2 to 3% rise in mercury and a drastic shift in rainfall patterns may have serious consequences (Huang et al. 2022 ; Gorst et al.  2018 ). Natural and environmental calamities caused huge losses globally, such as decreased agriculture outputs, rehabilitation of the system, and rebuilding necessary technologies (Ali and Erenstein  2017 ; Ramankutty et al.  2018 ; Yu et al.  2021 ) (Table ​ (Table1). 1 ). Furthermore, in the last 3 or 4 years, the world has been plagued by smog-related eye and skin diseases, as well as a rise in road accidents due to poor visibility.

Main natural danger statistics for 1985–2020 at the global level

Source: EM-DAT ( 2020 )

Climate change and agriculture

Global agriculture is the ultimate sector responsible for 30–40% of all greenhouse emissions, which makes it a leading industry predominantly contributing to climate warming and significantly impacted by it (Grieg; Mishra et al.  2021 ; Ortiz et al.  2021 ; Thornton and Lipper  2014 ). Numerous agro-environmental and climatic factors that have a dominant influence on agriculture productivity (Pautasso et al.  2012 ) are significantly impacted in response to precipitation extremes including floods, forest fires, and droughts (Huang  2004 ). Besides, the immense dependency on exhaustible resources also fuels the fire and leads global agriculture to become prone to devastation. Godfray et al. ( 2010 ) mentioned that decline in agriculture challenges the farmer’s quality of life and thus a significant factor to poverty as the food and water supplies are critically impacted by CC (Ortiz et al.  2021 ; Rosenzweig et al.  2014 ). As an essential part of the economic systems, especially in developing countries, agricultural systems affect the overall economy and potentially the well-being of households (Schlenker and Roberts  2009 ). According to the report published by the Intergovernmental Panel on Climate Change (IPCC), atmospheric concentrations of greenhouse gases, i.e., CH 4, CO 2 , and N 2 O, are increased in the air to extraordinary levels over the last few centuries (Usman and Makhdum 2021 ; Stocker et al.  2013 ). Climate change is the composite outcome of two different factors. The first is the natural causes, and the second is the anthropogenic actions (Karami 2012 ). It is also forecasted that the world may experience a typical rise in temperature stretching from 1 to 3.7 °C at the end of this century (Pachauri et al. 2014 ). The world’s crop production is also highly vulnerable to these global temperature-changing trends as raised temperatures will pose severe negative impacts on crop growth (Reidsma et al. 2009 ). Some of the recent modeling about the fate of global agriculture is briefly described below.

Decline in cereal productivity

Crop productivity will also be affected dramatically in the next few decades due to variations in integral abiotic factors such as temperature, solar radiation, precipitation, and CO 2 . These all factors are included in various regulatory instruments like progress and growth, weather-tempted changes, pest invasions (Cammell and Knight 1992 ), accompanying disease snags (Fand et al. 2012 ), water supplies (Panda et al. 2003 ), high prices of agro-products in world’s agriculture industry, and preeminent quantity of fertilizer consumption. Lobell and field ( 2007 ) claimed that from 1962 to 2002, wheat crop output had condensed significantly due to rising temperatures. Therefore, during 1980–2011, the common wheat productivity trends endorsed extreme temperature events confirmed by Gourdji et al. ( 2013 ) around South Asia, South America, and Central Asia. Various other studies (Asseng, Cao, Zhang, and Ludwig 2009 ; Asseng et al. 2013 ; García et al. 2015 ; Ortiz et al. 2021 ) also proved that wheat output is negatively affected by the rising temperatures and also caused adverse effects on biomass productivity (Calderini et al. 1999 ; Sadras and Slafer 2012 ). Hereafter, the rice crop is also influenced by the high temperatures at night. These difficulties will worsen because the temperature will be rising further in the future owing to CC (Tebaldi et al. 2006 ). Another research conducted in China revealed that a 4.6% of rice production per 1 °C has happened connected with the advancement in night temperatures (Tao et al. 2006 ). Moreover, the average night temperature growth also affected rice indicia cultivar’s output pragmatically during 25 years in the Philippines (Peng et al. 2004 ). It is anticipated that the increase in world average temperature will also cause a substantial reduction in yield (Hatfield et al. 2011 ; Lobell and Gourdji 2012 ). In the southern hemisphere, Parry et al. ( 2007 ) noted a rise of 1–4 °C in average daily temperatures at the end of spring season unti the middle of summers, and this raised temperature reduced crop output by cutting down the time length for phenophases eventually reduce the yield (Hatfield and Prueger 2015 ; R. Ortiz 2008 ). Also, world climate models have recommended that humid and subtropical regions expect to be plentiful prey to the upcoming heat strokes (Battisti and Naylor 2009 ). Grain production is the amalgamation of two constituents: the average weight and the grain output/m 2 , however, in crop production. Crop output is mainly accredited to the grain quantity (Araus et al. 2008 ; Gambín and Borrás 2010 ). In the times of grain set, yield resources are mainly strewn between hitherto defined components, i.e., grain usual weight and grain output, which presents a trade-off between them (Gambín and Borrás 2010 ) beside disparities in per grain integration (B. L. Gambín et al. 2006 ). In addition to this, the maize crop is also susceptible to raised temperatures, principally in the flowering stage (Edreira and Otegui 2013 ). In reality, the lower grain number is associated with insufficient acclimatization due to intense photosynthesis and higher respiration and the high-temperature effect on the reproduction phenomena (Edreira and Otegui 2013 ). During the flowering phase, maize visible to heat (30–36 °C) seemed less anthesis-silking intermissions (Edreira et al. 2011 ). Another research by Dupuis and Dumas ( 1990 ) proved that a drop in spikelet when directly visible to high temperatures above 35 °C in vitro pollination. Abnormalities in kernel number claimed by Vega et al. ( 2001 ) is related to conceded plant development during a flowering phase that is linked with the active ear growth phase and categorized as a critical phase for approximation of kernel number during silking (Otegui and Bonhomme 1998 ).

The retort of rice output to high temperature presents disparities in flowering patterns, and seed set lessens and lessens grain weight (Qasim et al. 2020 ; Qasim, Hammad, Maqsood, Tariq, & Chawla). During the daytime, heat directly impacts flowers which lessens the thesis period and quickens the earlier peak flowering (Tao et al. 2006 ). Antagonistic effect of higher daytime temperature d on pollen sprouting proposed seed set decay, whereas, seed set was lengthily reduced than could be explicated by pollen growing at high temperatures 40◦C (Matsui et al. 2001 ).

The decline in wheat output is linked with higher temperatures, confirmed in numerous studies (Semenov 2009 ; Stone and Nicolas 1994 ). High temperatures fast-track the arrangements of plant expansion (Blum et al. 2001 ), diminution photosynthetic process (Salvucci and Crafts‐Brandner 2004 ), and also considerably affect the reproductive operations (Farooq et al. 2011 ).

The destructive impacts of CC induced weather extremes to deteriorate the integrity of crops (Chaudhary et al. 2011 ), e.g., Spartan cold and extreme fog cause falling and discoloration of betel leaves (Rosenzweig et al. 2001 ), giving them a somehow reddish appearance, squeezing of lemon leaves (Pautasso et al. 2012 ), as well as root rot of pineapple, have reported (Vedwan and Rhoades 2001 ). Henceforth, in tackling the disruptive effects of CC, several short-term and long-term management approaches are the crucial need of time (Fig.  4 ). Moreover, various studies (Chaudhary et al. 2011 ; Patz et al. 2005 ; Pautasso et al. 2012 ) have demonstrated adapting trends such as ameliorating crop diversity can yield better adaptability towards CC.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig4_HTML.jpg

Schematic description of potential impacts of climate change on the agriculture sector and the appropriate mitigation and adaptation measures to overcome its impact.

Climate change impacts on biodiversity

Global biodiversity is among the severe victims of CC because it is the fastest emerging cause of species loss. Studies demonstrated that the massive scale species dynamics are considerably associated with diverse climatic events (Abraham and Chain 1988 ; Manes et al. 2021 ; A. M. D. Ortiz et al. 2021 ). Both the pace and magnitude of CC are altering the compatible habitat ranges for living entities of marine, freshwater, and terrestrial regions. Alterations in general climate regimes influence the integrity of ecosystems in numerous ways, such as variation in the relative abundance of species, range shifts, changes in activity timing, and microhabitat use (Bates et al. 2014 ). The geographic distribution of any species often depends upon its ability to tolerate environmental stresses, biological interactions, and dispersal constraints. Hence, instead of the CC, the local species must only accept, adapt, move, or face extinction (Berg et al. 2010 ). So, the best performer species have a better survival capacity for adjusting to new ecosystems or a decreased perseverance to survive where they are already situated (Bates et al. 2014 ). An important aspect here is the inadequate habitat connectivity and access to microclimates, also crucial in raising the exposure to climate warming and extreme heatwave episodes. For example, the carbon sequestration rates are undergoing fluctuations due to climate-driven expansion in the range of global mangroves (Cavanaugh et al. 2014 ).

Similarly, the loss of kelp-forest ecosystems in various regions and its occupancy by the seaweed turfs has set the track for elevated herbivory by the high influx of tropical fish populations. Not only this, the increased water temperatures have exacerbated the conditions far away from the physiological tolerance level of the kelp communities (Vergés et al. 2016 ; Wernberg et al. 2016 ). Another pertinent danger is the devastation of keystone species, which even has more pervasive effects on the entire communities in that habitat (Zarnetske et al. 2012 ). It is particularly important as CC does not specify specific populations or communities. Eventually, this CC-induced redistribution of species may deteriorate carbon storage and the net ecosystem productivity (Weed et al. 2013 ). Among the typical disruptions, the prominent ones include impacts on marine and terrestrial productivity, marine community assembly, and the extended invasion of toxic cyanobacteria bloom (Fossheim et al. 2015 ).

The CC-impacted species extinction is widely reported in the literature (Beesley et al. 2019 ; Urban 2015 ), and the predictions of demise until the twenty-first century are dreadful (Abbass et al. 2019 ; Pereira et al. 2013 ). In a few cases, northward shifting of species may not be formidable as it allows mountain-dwelling species to find optimum climates. However, the migrant species may be trapped in isolated and incompatible habitats due to losing topography and range (Dullinger et al. 2012 ). For example, a study indicated that the American pika has been extirpated or intensely diminished in some regions, primarily attributed to the CC-impacted extinction or at least local extirpation (Stewart et al. 2015 ). Besides, the anticipation of persistent responses to the impacts of CC often requires data records of several decades to rigorously analyze the critical pre and post CC patterns at species and ecosystem levels (Manes et al. 2021 ; Testa et al. 2018 ).

Nonetheless, the availability of such long-term data records is rare; hence, attempts are needed to focus on these profound aspects. Biodiversity is also vulnerable to the other associated impacts of CC, such as rising temperatures, droughts, and certain invasive pest species. For instance, a study revealed the changes in the composition of plankton communities attributed to rising temperatures. Henceforth, alterations in such aquatic producer communities, i.e., diatoms and calcareous plants, can ultimately lead to variation in the recycling of biological carbon. Moreover, such changes are characterized as a potential contributor to CO 2 differences between the Pleistocene glacial and interglacial periods (Kohfeld et al. 2005 ).

Climate change implications on human health

It is an understood corporality that human health is a significant victim of CC (Costello et al. 2009 ). According to the WHO, CC might be responsible for 250,000 additional deaths per year during 2030–2050 (Watts et al. 2015 ). These deaths are attributed to extreme weather-induced mortality and morbidity and the global expansion of vector-borne diseases (Lemery et al. 2021; Yang and Usman 2021 ; Meierrieks 2021 ; UNEP 2017 ). Here, some of the emerging health issues pertinent to this global problem are briefly described.

Climate change and antimicrobial resistance with corresponding economic costs

Antimicrobial resistance (AMR) is an up-surging complex global health challenge (Garner et al. 2019 ; Lemery et al. 2021 ). Health professionals across the globe are extremely worried due to this phenomenon that has critical potential to reverse almost all the progress that has been achieved so far in the health discipline (Gosling and Arnell 2016 ). A massive amount of antibiotics is produced by many pharmaceutical industries worldwide, and the pathogenic microorganisms are gradually developing resistance to them, which can be comprehended how strongly this aspect can shake the foundations of national and global economies (UNEP 2017 ). This statement is supported by the fact that AMR is not developing in a particular region or country. Instead, it is flourishing in every continent of the world (WHO 2018 ). This plague is heavily pushing humanity to the post-antibiotic era, in which currently antibiotic-susceptible pathogens will once again lead to certain endemics and pandemics after being resistant(WHO 2018 ). Undesirably, if this statement would become a factuality, there might emerge certain risks in undertaking sophisticated interventions such as chemotherapy, joint replacement cases, and organ transplantation (Su et al. 2018 ). Presently, the amplification of drug resistance cases has made common illnesses like pneumonia, post-surgical infections, HIV/AIDS, tuberculosis, malaria, etc., too difficult and costly to be treated or cure well (WHO 2018 ). From a simple example, it can be assumed how easily antibiotic-resistant strains can be transmitted from one person to another and ultimately travel across the boundaries (Berendonk et al. 2015 ). Talking about the second- and third-generation classes of antibiotics, e.g., most renowned generations of cephalosporin antibiotics that are more expensive, broad-spectrum, more toxic, and usually require more extended periods whenever prescribed to patients (Lemery et al. 2021 ; Pärnänen et al. 2019 ). This scenario has also revealed that the abundance of resistant strains of pathogens was also higher in the Southern part (WHO 2018 ). As southern parts are generally warmer than their counterparts, it is evident from this example how CC-induced global warming can augment the spread of antibiotic-resistant strains within the biosphere, eventually putting additional economic burden in the face of developing new and costlier antibiotics. The ARG exchange to susceptible bacteria through one of the potential mechanisms, transformation, transduction, and conjugation; Selection pressure can be caused by certain antibiotics, metals or pesticides, etc., as shown in Fig.  5 .

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig5_HTML.jpg

A typical interaction between the susceptible and resistant strains.

Source: Elsayed et al. ( 2021 ); Karkman et al. ( 2018 )

Certain studies highlighted that conventional urban wastewater treatment plants are typical hotspots where most bacterial strains exchange genetic material through horizontal gene transfer (Fig.  5 ). Although at present, the extent of risks associated with the antibiotic resistance found in wastewater is complicated; environmental scientists and engineers have particular concerns about the potential impacts of these antibiotic resistance genes on human health (Ashbolt 2015 ). At most undesirable and worst case, these antibiotic-resistant genes containing bacteria can make their way to enter into the environment (Pruden et al. 2013 ), irrigation water used for crops and public water supplies and ultimately become a part of food chains and food webs (Ma et al. 2019 ; D. Wu et al. 2019 ). This problem has been reported manifold in several countries (Hendriksen et al. 2019 ), where wastewater as a means of irrigated water is quite common.

Climate change and vector borne-diseases

Temperature is a fundamental factor for the sustenance of living entities regardless of an ecosystem. So, a specific living being, especially a pathogen, requires a sophisticated temperature range to exist on earth. The second essential component of CC is precipitation, which also impacts numerous infectious agents’ transport and dissemination patterns. Global rising temperature is a significant cause of many species extinction. On the one hand, this changing environmental temperature may be causing species extinction, and on the other, this warming temperature might favor the thriving of some new organisms. Here, it was evident that some pathogens may also upraise once non-evident or reported (Patz et al. 2000 ). This concept can be exemplified through certain pathogenic strains of microorganisms that how the likelihood of various diseases increases in response to climate warming-induced environmental changes (Table ​ (Table2 2 ).

Examples of how various environmental changes affect various infectious diseases in humans

Source: Aron and Patz ( 2001 )

A recent example is an outburst of coronavirus (COVID-19) in the Republic of China, causing pneumonia and severe acute respiratory complications (Cui et al. 2021 ; Song et al. 2021 ). The large family of viruses is harbored in numerous animals, bats, and snakes in particular (livescience.com) with the subsequent transfer into human beings. Hence, it is worth noting that the thriving of numerous vectors involved in spreading various diseases is influenced by Climate change (Ogden 2018 ; Santos et al. 2021 ).

Psychological impacts of climate change

Climate change (CC) is responsible for the rapid dissemination and exaggeration of certain epidemics and pandemics. In addition to the vast apparent impacts of climate change on health, forestry, agriculture, etc., it may also have psychological implications on vulnerable societies. It can be exemplified through the recent outburst of (COVID-19) in various countries around the world (Pal 2021 ). Besides, the victims of this viral infection have made healthy beings scarier and terrified. In the wake of such epidemics, people with common colds or fever are also frightened and must pass specific regulatory protocols. Living in such situations continuously terrifies the public and makes the stress familiar, which eventually makes them psychologically weak (npr.org).

CC boosts the extent of anxiety, distress, and other issues in public, pushing them to develop various mental-related problems. Besides, frequent exposure to extreme climatic catastrophes such as geological disasters also imprints post-traumatic disorder, and their ubiquitous occurrence paves the way to developing chronic psychological dysfunction. Moreover, repetitive listening from media also causes an increase in the person’s stress level (Association 2020 ). Similarly, communities living in flood-prone areas constantly live in extreme fear of drowning and die by floods. In addition to human lives, the flood-induced destruction of physical infrastructure is a specific reason for putting pressure on these communities (Ogden 2018 ). For instance, Ogden ( 2018 ) comprehensively denoted that Katrina’s Hurricane augmented the mental health issues in the victim communities.

Climate change impacts on the forestry sector

Forests are the global regulators of the world’s climate (FAO 2018 ) and have an indispensable role in regulating global carbon and nitrogen cycles (Rehman et al. 2021 ; Reichstein and Carvalhais 2019 ). Hence, disturbances in forest ecology affect the micro and macro-climates (Ellison et al. 2017 ). Climate warming, in return, has profound impacts on the growth and productivity of transboundary forests by influencing the temperature and precipitation patterns, etc. As CC induces specific changes in the typical structure and functions of ecosystems (Zhang et al. 2017 ) as well impacts forest health, climate change also has several devastating consequences such as forest fires, droughts, pest outbreaks (EPA 2018 ), and last but not the least is the livelihoods of forest-dependent communities. The rising frequency and intensity of another CC product, i.e., droughts, pose plenty of challenges to the well-being of global forests (Diffenbaugh et al. 2017 ), which is further projected to increase soon (Hartmann et al. 2018 ; Lehner et al. 2017 ; Rehman et al. 2021 ). Hence, CC induces storms, with more significant impacts also put extra pressure on the survival of the global forests (Martínez-Alvarado et al. 2018 ), significantly since their influences are augmented during higher winter precipitations with corresponding wetter soils causing weak root anchorage of trees (Brázdil et al. 2018 ). Surging temperature regimes causes alterations in usual precipitation patterns, which is a significant hurdle for the survival of temperate forests (Allen et al. 2010 ; Flannigan et al. 2013 ), letting them encounter severe stress and disturbances which adversely affects the local tree species (Hubbart et al. 2016 ; Millar and Stephenson 2015 ; Rehman et al. 2021 ).

Climate change impacts on forest-dependent communities

Forests are the fundamental livelihood resource for about 1.6 billion people worldwide; out of them, 350 million are distinguished with relatively higher reliance (Bank 2008 ). Agro-forestry-dependent communities comprise 1.2 billion, and 60 million indigenous people solely rely on forests and their products to sustain their lives (Sunderlin et al. 2005 ). For example, in the entire African continent, more than 2/3rd of inhabitants depend on forest resources and woodlands for their alimonies, e.g., food, fuelwood and grazing (Wasiq and Ahmad 2004 ). The livings of these people are more intensely affected by the climatic disruptions making their lives harder (Brown et al. 2014 ). On the one hand, forest communities are incredibly vulnerable to CC due to their livelihoods, cultural and spiritual ties as well as socio-ecological connections, and on the other, they are not familiar with the term “climate change.” (Rahman and Alam 2016 ). Among the destructive impacts of temperature and rainfall, disruption of the agroforestry crops with resultant downscale growth and yield (Macchi et al. 2008 ). Cruz ( 2015 ) ascribed that forest-dependent smallholder farmers in the Philippines face the enigma of delayed fruiting, more severe damages by insect and pest incidences due to unfavorable temperature regimes, and changed rainfall patterns.

Among these series of challenges to forest communities, their well-being is also distinctly vulnerable to CC. Though the detailed climate change impacts on human health have been comprehensively mentioned in the previous section, some studies have listed a few more devastating effects on the prosperity of forest-dependent communities. For instance, the Himalayan people have been experiencing frequent skin-borne diseases such as malaria and other skin diseases due to increasing mosquitoes, wild boar as well, and new wasps species, particularly in higher altitudes that were almost non-existent before last 5–10 years (Xu et al. 2008 ). Similarly, people living at high altitudes in Bangladesh have experienced frequent mosquito-borne calamities (Fardous; Sharma 2012 ). In addition, the pace of other waterborne diseases such as infectious diarrhea, cholera, pathogenic induced abdominal complications and dengue has also been boosted in other distinguished regions of Bangladesh (Cell 2009 ; Gunter et al. 2008 ).

Pest outbreak

Upscaling hotter climate may positively affect the mobile organisms with shorter generation times because they can scurry from harsh conditions than the immobile species (Fettig et al. 2013 ; Schoene and Bernier 2012 ) and are also relatively more capable of adapting to new environments (Jactel et al. 2019 ). It reveals that insects adapt quickly to global warming due to their mobility advantages. Due to past outbreaks, the trees (forests) are relatively more susceptible victims (Kurz et al. 2008 ). Before CC, the influence of factors mentioned earlier, i.e., droughts and storms, was existent and made the forests susceptible to insect pest interventions; however, the global forests remain steadfast, assiduous, and green (Jactel et al. 2019 ). The typical reasons could be the insect herbivores were regulated by several tree defenses and pressures of predation (Wilkinson and Sherratt 2016 ). As climate greatly influences these phenomena, the global forests cannot be so sedulous against such challenges (Jactel et al. 2019 ). Table ​ Table3 3 demonstrates some of the particular considerations with practical examples that are essential while mitigating the impacts of CC in the forestry sector.

Essential considerations while mitigating the climate change impacts on the forestry sector

Source : Fischer ( 2019 )

Climate change impacts on tourism

Tourism is a commercial activity that has roots in multi-dimensions and an efficient tool with adequate job generation potential, revenue creation, earning of spectacular foreign exchange, enhancement in cross-cultural promulgation and cooperation, a business tool for entrepreneurs and eventually for the country’s national development (Arshad et al. 2018 ; Scott 2021 ). Among a plethora of other disciplines, the tourism industry is also a distinct victim of climate warming (Gössling et al. 2012 ; Hall et al. 2015 ) as the climate is among the essential resources that enable tourism in particular regions as most preferred locations. Different places at different times of the year attract tourists both within and across the countries depending upon the feasibility and compatibility of particular weather patterns. Hence, the massive variations in these weather patterns resulting from CC will eventually lead to monumental challenges to the local economy in that specific area’s particular and national economy (Bujosa et al. 2015 ). For instance, the Intergovernmental Panel on Climate Change (IPCC) report demonstrated that the global tourism industry had faced a considerable decline in the duration of ski season, including the loss of some ski areas and the dramatic shifts in tourist destinations’ climate warming.

Furthermore, different studies (Neuvonen et al. 2015 ; Scott et al. 2004 ) indicated that various currently perfect tourist spots, e.g., coastal areas, splendid islands, and ski resorts, will suffer consequences of CC. It is also worth noting that the quality and potential of administrative management potential to cope with the influence of CC on the tourism industry is of crucial significance, which renders specific strengths of resiliency to numerous destinations to withstand against it (Füssel and Hildén 2014 ). Similarly, in the partial or complete absence of adequate socio-economic and socio-political capital, the high-demanding tourist sites scurry towards the verge of vulnerability. The susceptibility of tourism is based on different components such as the extent of exposure, sensitivity, life-supporting sectors, and capacity assessment factors (Füssel and Hildén 2014 ). It is obvious corporality that sectors such as health, food, ecosystems, human habitat, infrastructure, water availability, and the accessibility of a particular region are prone to CC. Henceforth, the sensitivity of these critical sectors to CC and, in return, the adaptive measures are a hallmark in determining the composite vulnerability of climate warming (Ionescu et al. 2009 ).

Moreover, the dependence on imported food items, poor hygienic conditions, and inadequate health professionals are dominant aspects affecting the local terrestrial and aquatic biodiversity. Meanwhile, the greater dependency on ecosystem services and its products also makes a destination more fragile to become a prey of CC (Rizvi et al. 2015 ). Some significant non-climatic factors are important indicators of a particular ecosystem’s typical health and functioning, e.g., resource richness and abundance portray the picture of ecosystem stability. Similarly, the species abundance is also a productive tool that ensures that the ecosystem has a higher buffering capacity, which is terrific in terms of resiliency (Roscher et al. 2013 ).

Climate change impacts on the economic sector

Climate plays a significant role in overall productivity and economic growth. Due to its increasingly global existence and its effect on economic growth, CC has become one of the major concerns of both local and international environmental policymakers (Ferreira et al. 2020 ; Gleditsch 2021 ; Abbass et al. 2021b ; Lamperti et al. 2021 ). The adverse effects of CC on the overall productivity factor of the agricultural sector are therefore significant for understanding the creation of local adaptation policies and the composition of productive climate policy contracts. Previous studies on CC in the world have already forecasted its effects on the agricultural sector. Researchers have found that global CC will impact the agricultural sector in different world regions. The study of the impacts of CC on various agrarian activities in other demographic areas and the development of relative strategies to respond to effects has become a focal point for researchers (Chandioet al. 2020 ; Gleditsch 2021 ; Mosavi et al. 2020 ).

With the rapid growth of global warming since the 1980s, the temperature has started increasing globally, which resulted in the incredible transformation of rain and evaporation in the countries. The agricultural development of many countries has been reliant, delicate, and susceptible to CC for a long time, and it is on the development of agriculture total factor productivity (ATFP) influence different crops and yields of farmers (Alhassan 2021 ; Wu  2020 ).

Food security and natural disasters are increasing rapidly in the world. Several major climatic/natural disasters have impacted local crop production in the countries concerned. The effects of these natural disasters have been poorly controlled by the development of the economies and populations and may affect human life as well. One example is China, which is among the world’s most affected countries, vulnerable to natural disasters due to its large population, harsh environmental conditions, rapid CC, low environmental stability, and disaster power. According to the January 2016 statistical survey, China experienced an economic loss of 298.3 billion Yuan, and about 137 million Chinese people were severely affected by various natural disasters (Xie et al. 2018 ).

Mitigation and adaptation strategies of climate changes

Adaptation and mitigation are the crucial factors to address the response to CC (Jahanzad et al. 2020 ). Researchers define mitigation on climate changes, and on the other hand, adaptation directly impacts climate changes like floods. To some extent, mitigation reduces or moderates greenhouse gas emission, and it becomes a critical issue both economically and environmentally (Botzen et al. 2021 ; Jahanzad et al. 2020 ; Kongsager 2018 ; Smit et al. 2000 ; Vale et al. 2021 ; Usman et al. 2021 ; Verheyen 2005 ).

Researchers have deep concern about the adaptation and mitigation methodologies in sectoral and geographical contexts. Agriculture, industry, forestry, transport, and land use are the main sectors to adapt and mitigate policies(Kärkkäinen et al. 2020 ; Waheed et al. 2021 ). Adaptation and mitigation require particular concern both at the national and international levels. The world has faced a significant problem of climate change in the last decades, and adaptation to these effects is compulsory for economic and social development. To adapt and mitigate against CC, one should develop policies and strategies at the international level (Hussain et al. 2020 ). Figure  6 depicts the list of current studies on sectoral impacts of CC with adaptation and mitigation measures globally.

An external file that holds a picture, illustration, etc.
Object name is 11356_2022_19718_Fig6_HTML.jpg

Sectoral impacts of climate change with adaptation and mitigation measures.

Conclusion and future perspectives

Specific socio-agricultural, socio-economic, and physical systems are the cornerstone of psychological well-being, and the alteration in these systems by CC will have disastrous impacts. Climate variability, alongside other anthropogenic and natural stressors, influences human and environmental health sustainability. Food security is another concerning scenario that may lead to compromised food quality, higher food prices, and inadequate food distribution systems. Global forests are challenged by different climatic factors such as storms, droughts, flash floods, and intense precipitation. On the other hand, their anthropogenic wiping is aggrandizing their existence. Undoubtedly, the vulnerability scale of the world’s regions differs; however, appropriate mitigation and adaptation measures can aid the decision-making bodies in developing effective policies to tackle its impacts. Presently, modern life on earth has tailored to consistent climatic patterns, and accordingly, adapting to such considerable variations is of paramount importance. Because the faster changes in climate will make it harder to survive and adjust, this globally-raising enigma calls for immediate attention at every scale ranging from elementary community level to international level. Still, much effort, research, and dedication are required, which is the most critical time. Some policy implications can help us to mitigate the consequences of climate change, especially the most affected sectors like the agriculture sector;

Warming might lengthen the season in frost-prone growing regions (temperate and arctic zones), allowing for longer-maturing seasonal cultivars with better yields (Pfadenhauer 2020 ; Bonacci 2019 ). Extending the planting season may allow additional crops each year; when warming leads to frequent warmer months highs over critical thresholds, a split season with a brief summer fallow may be conceivable for short-period crops such as wheat barley, cereals, and many other vegetable crops. The capacity to prolong the planting season in tropical and subtropical places where the harvest season is constrained by precipitation or agriculture farming occurs after the year may be more limited and dependent on how precipitation patterns vary (Wu et al. 2017 ).

The genetic component is comprehensive for many yields, but it is restricted like kiwi fruit for a few. Ali et al. ( 2017 ) investigated how new crops will react to climatic changes (also stated in Mall et al. 2017 ). Hot temperature, drought, insect resistance; salt tolerance; and overall crop production and product quality increases would all be advantageous (Akkari 2016 ). Genetic mapping and engineering can introduce a greater spectrum of features. The adoption of genetically altered cultivars has been slowed, particularly in the early forecasts owing to the complexity in ensuring features are expediently expressed throughout the entire plant, customer concerns, economic profitability, and regulatory impediments (Wirehn 2018 ; Davidson et al. 2016 ).

To get the full benefit of the CO 2 would certainly require additional nitrogen and other fertilizers. Nitrogen not consumed by the plants may be excreted into groundwater, discharged into water surface, or emitted from the land, soil nitrous oxide when large doses of fertilizer are sprayed. Increased nitrogen levels in groundwater sources have been related to human chronic illnesses and impact marine ecosystems. Cultivation, grain drying, and other field activities have all been examined in depth in the studies (Barua et al. 2018 ).

  • The technological and socio-economic adaptation

The policy consequence of the causative conclusion is that as a source of alternative energy, biofuel production is one of the routes that explain oil price volatility separate from international macroeconomic factors. Even though biofuel production has just begun in a few sample nations, there is still a tremendous worldwide need for feedstock to satisfy industrial expansion in China and the USA, which explains the food price relationship to the global oil price. Essentially, oil-exporting countries may create incentives in their economies to increase food production. It may accomplish by giving farmers financing, seedlings, fertilizers, and farming equipment. Because of the declining global oil price and, as a result, their earnings from oil export, oil-producing nations may be unable to subsidize food imports even in the near term. As a result, these countries can boost the agricultural value chain for export. It may be accomplished through R&D and adding value to their food products to increase income by correcting exchange rate misalignment and adverse trade terms. These nations may also diversify their economies away from oil, as dependence on oil exports alone is no longer economically viable given the extreme volatility of global oil prices. Finally, resource-rich and oil-exporting countries can convert to non-food renewable energy sources such as solar, hydro, coal, wind, wave, and tidal energy. By doing so, both world food and oil supplies would be maintained rather than harmed.

IRENA’s modeling work shows that, if a comprehensive policy framework is in place, efforts toward decarbonizing the energy future will benefit economic activity, jobs (outweighing losses in the fossil fuel industry), and welfare. Countries with weak domestic supply chains and a large reliance on fossil fuel income, in particular, must undertake structural reforms to capitalize on the opportunities inherent in the energy transition. Governments continue to give major policy assistance to extract fossil fuels, including tax incentives, financing, direct infrastructure expenditures, exemptions from environmental regulations, and other measures. The majority of major oil and gas producing countries intend to increase output. Some countries intend to cut coal output, while others plan to maintain or expand it. While some nations are beginning to explore and execute policies aimed at a just and equitable transition away from fossil fuel production, these efforts have yet to impact major producing countries’ plans and goals. Verifiable and comparable data on fossil fuel output and assistance from governments and industries are critical to closing the production gap. Governments could increase openness by declaring their production intentions in their climate obligations under the Paris Agreement.

It is firmly believed that achieving the Paris Agreement commitments is doubtlful without undergoing renewable energy transition across the globe (Murshed 2020 ; Zhao et al. 2022 ). Policy instruments play the most important role in determining the degree of investment in renewable energy technology. This study examines the efficacy of various policy strategies in the renewable energy industry of multiple nations. Although its impact is more visible in established renewable energy markets, a renewable portfolio standard is also a useful policy instrument. The cost of producing renewable energy is still greater than other traditional energy sources. Furthermore, government incentives in the R&D sector can foster innovation in this field, resulting in cost reductions in the renewable energy industry. These nations may export their technologies and share their policy experiences by forming networks among their renewable energy-focused organizations. All policy measures aim to reduce production costs while increasing the proportion of renewables to a country’s energy system. Meanwhile, long-term contracts with renewable energy providers, government commitment and control, and the establishment of long-term goals can assist developing nations in deploying renewable energy technology in their energy sector.

Author contribution

KA: Writing the original manuscript, data collection, data analysis, Study design, Formal analysis, Visualization, Revised draft, Writing-review, and editing. MZQ: Writing the original manuscript, data collection, data analysis, Writing-review, and editing. HS: Contribution to the contextualization of the theme, Conceptualization, Validation, Supervision, literature review, Revised drapt, and writing review and editing. MM: Writing review and editing, compiling the literature review, language editing. HM: Writing review and editing, compiling the literature review, language editing. IY: Contribution to the contextualization of the theme, literature review, and writing review and editing.

Availability of data and material

Declarations.

Not applicable.

The authors declare no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Kashif Abbass, Email: nc.ude.tsujn@ssabbafihsak .

Muhammad Zeeshan Qasim, Email: moc.kooltuo@888misaqnahseez .

Huaming Song, Email: nc.ude.tsujn@gnimauh .

Muntasir Murshed, Email: [email protected] .

Haider Mahmood, Email: moc.liamtoh@doomhamrediah .

Ijaz Younis, Email: nc.ude.tsujn@sinuoyzaji .

  • Abbass K, Begum H, Alam ASA, Awang AH, Abdelsalam MK, Egdair IMM, Wahid R (2022) Fresh Insight through a Keynesian Theory Approach to Investigate the Economic Impact of the COVID-19 Pandemic in Pakistan. Sustain 14(3):1054
  • Abbass K, Niazi AAK, Qazi TF, Basit A, Song H (2021a) The aftermath of COVID-19 pandemic period: barriers in implementation of social distancing at workplace. Library Hi Tech
  • Abbass K, Song H, Khan F, Begum H, Asif M (2021b) Fresh insight through the VAR approach to investigate the effects of fiscal policy on environmental pollution in Pakistan. Environ Scie Poll Res 1–14 [ PubMed ]
  • Abbass K, Song H, Shah SM, Aziz B. Determinants of Stock Return for Non-Financial Sector: Evidence from Energy Sector of Pakistan. J Bus Fin Aff. 2019; 8 (370):2167–0234. [ Google Scholar ]
  • Abbass K, Tanveer A, Huaming S, Khatiya AA (2021c) Impact of financial resources utilization on firm performance: a case of SMEs working in Pakistan
  • Abraham E, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988; 10 (4):677. [ PubMed ] [ Google Scholar ]
  • Adger WN, Arnell NW, Tompkins EL. Successful adaptation to climate change across scales. Glob Environ Chang. 2005; 15 (2):77–86. doi: 10.1016/j.gloenvcha.2004.12.005. [ CrossRef ] [ Google Scholar ]
  • Akkari C, Bryant CR. The co-construction approach as approach to developing adaptation strategies in the face of climate change and variability: A conceptual framework. Agricultural Research. 2016; 5 (2):162–173. doi: 10.1007/s40003-016-0208-8. [ CrossRef ] [ Google Scholar ]
  • Alhassan H (2021) The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Sci Afr 12:e00740
  • Ali A, Erenstein O. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Clim Risk Manag. 2017; 16 :183–194. doi: 10.1016/j.crm.2016.12.001. [ CrossRef ] [ Google Scholar ]
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Hogg ET. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 2010; 259 (4):660–684. doi: 10.1016/j.foreco.2009.09.001. [ CrossRef ] [ Google Scholar ]
  • Anwar A, Sinha A, Sharif A, Siddique M, Irshad S, Anwar W, Malik S (2021) The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries. Environ Dev Sust. 10.1007/s10668-021-01716-2
  • Araus JL, Slafer GA, Royo C, Serret MD. Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci. 2008; 27 (6):377–412. doi: 10.1080/07352680802467736. [ CrossRef ] [ Google Scholar ]
  • Aron JL, Patz J (2001) Ecosystem change and public health: a global perspective: JHU Press
  • Arshad MI, Iqbal MA, Shahbaz M. Pakistan tourism industry and challenges: a review. Asia Pacific Journal of Tourism Research. 2018; 23 (2):121–132. doi: 10.1080/10941665.2017.1410192. [ CrossRef ] [ Google Scholar ]
  • Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Current Environmental Health Reports. 2015; 2 (1):95–106. doi: 10.1007/s40572-014-0037-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Asseng S, Cao W, Zhang W, Ludwig F (2009) Crop physiology, modelling and climate change: impact and adaptation strategies. Crop Physiol 511–543
  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Cammarano D. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang. 2013; 3 (9):827–832. doi: 10.1038/nclimate1916. [ CrossRef ] [ Google Scholar ]
  • Association A (2020) Climate change is threatening mental health, American Psychological Association, “Kirsten Weir, . from < https://www.apa.org/monitor/2016/07-08/climate-change >, Accessed on 26 Jan 2020.
  • Ayers J, Huq S, Wright H, Faisal A, Hussain S. Mainstreaming climate change adaptation into development in Bangladesh. Clim Dev. 2014; 6 :293–305. doi: 10.1080/17565529.2014.977761. [ CrossRef ] [ Google Scholar ]
  • Balsalobre-Lorente D, Driha OM, Bekun FV, Sinha A, Adedoyin FF (2020) Consequences of COVID-19 on the social isolation of the Chinese economy: accounting for the role of reduction in carbon emissions. Air Qual Atmos Health 13(12):1439–1451
  • Balsalobre-Lorente D, Ibáñez-Luzón L, Usman M, Shahbaz M. The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries. Renew Energy. 2022; 185 :1441–1455. doi: 10.1016/j.renene.2021.10.059. [ CrossRef ] [ Google Scholar ]
  • Bank W (2008) Forests sourcebook: practical guidance for sustaining forests in development cooperation: World Bank
  • Barua S, Valenzuela E (2018) Climate change impacts on global agricultural trade patterns: evidence from the past 50 years. In Proceedings of the Sixth International Conference on Sustainable Development (pp. 26–28)
  • Bates AE, Pecl GT, Frusher S, Hobday AJ, Wernberg T, Smale DA, Colwell RK. Defining and observing stages of climate-mediated range shifts in marine systems. Glob Environ Chang. 2014; 26 :27–38. doi: 10.1016/j.gloenvcha.2014.03.009. [ CrossRef ] [ Google Scholar ]
  • Battisti DS, Naylor RL. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 2009; 323 (5911):240–244. doi: 10.1126/science.1164363. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Beesley L, Close PG, Gwinn DC, Long M, Moroz M, Koster WM, Storer T. Flow-mediated movement of freshwater catfish, Tandanus bostocki, in a regulated semi-urban river, to inform environmental water releases. Ecol Freshw Fish. 2019; 28 (3):434–445. doi: 10.1111/eff.12466. [ CrossRef ] [ Google Scholar ]
  • Benita F (2021) Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain Cities Soc 70:102916 [ PMC free article ] [ PubMed ]
  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Pons M-N. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015; 13 (5):310–317. doi: 10.1038/nrmicro3439. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berg MP, Kiers ET, Driessen G, Van DerHEIJDEN M, Kooi BW, Kuenen F, Ellers J. Adapt or disperse: understanding species persistence in a changing world. Glob Change Biol. 2010; 16 (2):587–598. doi: 10.1111/j.1365-2486.2009.02014.x. [ CrossRef ] [ Google Scholar ]
  • Blum A, Klueva N, Nguyen H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica. 2001; 117 (2):117–123. doi: 10.1023/A:1004083305905. [ CrossRef ] [ Google Scholar ]
  • Bonacci O. Air temperature and precipitation analyses on a small Mediterranean island: the case of the remote island of Lastovo (Adriatic Sea, Croatia) Acta Hydrotechnica. 2019; 32 (57):135–150. doi: 10.15292/acta.hydro.2019.10. [ CrossRef ] [ Google Scholar ]
  • Botzen W, Duijndam S, van Beukering P (2021) Lessons for climate policy from behavioral biases towards COVID-19 and climate change risks. World Dev 137:105214 [ PMC free article ] [ PubMed ]
  • Brázdil R, Stucki P, Szabó P, Řezníčková L, Dolák L, Dobrovolný P, Suchánková S. Windstorms and forest disturbances in the Czech Lands: 1801–2015. Agric for Meteorol. 2018; 250 :47–63. doi: 10.1016/j.agrformet.2017.11.036. [ CrossRef ] [ Google Scholar ]
  • Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN. Climate change and forest communities: prospects for building institutional adaptive capacity in the Congo Basin forests. Ambio. 2014; 43 (6):759–769. doi: 10.1007/s13280-014-0493-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bujosa A, Riera A, Torres CM. Valuing tourism demand attributes to guide climate change adaptation measures efficiently: the case of the Spanish domestic travel market. Tour Manage. 2015; 47 :233–239. doi: 10.1016/j.tourman.2014.09.023. [ CrossRef ] [ Google Scholar ]
  • Calderini D, Abeledo L, Savin R, Slafer GA. Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat. J Agric Sci. 1999; 132 (4):453–459. doi: 10.1017/S0021859699006504. [ CrossRef ] [ Google Scholar ]
  • Cammell M, Knight J. Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res. 1992; 22 :117–162. doi: 10.1016/S0065-2504(08)60135-X. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci. 2014; 111 (2):723–727. doi: 10.1073/pnas.1315800111. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cell CC (2009) Climate change and health impacts in Bangladesh. Clima Chang Cell DoE MoEF
  • Chandio AA, Jiang Y, Rehman A, Rauf A (2020) Short and long-run impacts of climate change on agriculture: an empirical evidence from China. Int J Clim Chang Strat Manag
  • Chaudhary P, Rai S, Wangdi S, Mao A, Rehman N, Chettri S, Bawa KS (2011) Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Curr Sci 504–513
  • Chien F, Anwar A, Hsu CC, Sharif A, Razzaq A, Sinha A (2021) The role of information and communication technology in encountering environmental degradation: proposing an SDG framework for the BRICS countries. Technol Soc 65:101587
  • Cooper C, Booth A, Varley-Campbell J, Britten N, Garside R. Defining the process to literature searching in systematic reviews: a literature review of guidance and supporting studies. BMC Med Res Methodol. 2018; 18 (1):1–14. doi: 10.1186/s12874-018-0545-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Kett M. Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet. 2009; 373 (9676):1693–1733. doi: 10.1016/S0140-6736(09)60935-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cruz DLA (2015) Mother Figured. University of Chicago Press. Retrieved from, 10.7208/9780226315072
  • Cui W, Ouyang T, Qiu Y, Cui D (2021) Literature Review of the Implications of Exercise Rehabilitation Strategies for SARS Patients on the Recovery of COVID-19 Patients. Paper presented at the Healthcare [ PMC free article ] [ PubMed ]
  • Davidson D. Gaps in agricultural climate adaptation research. Nat Clim Chang. 2016; 6 (5):433–435. doi: 10.1038/nclimate3007. [ CrossRef ] [ Google Scholar ]
  • Diffenbaugh NS, Singh D, Mankin JS, Horton DE, Swain DL, Touma D, Tsiang M. Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci. 2017; 114 (19):4881–4886. doi: 10.1073/pnas.1618082114. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dimri A, Kumar D, Choudhary A, Maharana P. Future changes over the Himalayas: mean temperature. Global Planet Change. 2018; 162 :235–251. doi: 10.1016/j.gloplacha.2018.01.014. [ CrossRef ] [ Google Scholar ]
  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann N, Guisan A. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang: Nature Publishing Group; 2012. [ Google Scholar ]
  • Dupuis I, Dumas C. Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiol. 1990; 94 (2):665–670. doi: 10.1104/pp.94.2.665. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Otegui ME. Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res. 2013; 142 :58–67. doi: 10.1016/j.fcr.2012.11.009. [ CrossRef ] [ Google Scholar ]
  • Edreira JR, Carpici EB, Sammarro D, Otegui M. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crop Res. 2011; 123 (2):62–73. doi: 10.1016/j.fcr.2011.04.015. [ CrossRef ] [ Google Scholar ]
  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Pokorny J. Trees, forests and water: Cool insights for a hot world. Glob Environ Chang. 2017; 43 :51–61. doi: 10.1016/j.gloenvcha.2017.01.002. [ CrossRef ] [ Google Scholar ]
  • Elsayed ZM, Eldehna WM, Abdel-Aziz MM, El Hassab MA, Elkaeed EB, Al-Warhi T, Mohammed ER. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing–bacteria. J Enzyme Inhib Med Chem. 2021; 36 (1):384–393. doi: 10.1080/14756366.2020.1868450. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • EM-DAT (2020) EMDAT: OFDA/CRED International Disaster Database, Université catholique de Louvain – Brussels – Belgium. from http://www.emdat.be
  • EPA U (2018) United States Environmental Protection Agency, EPA Year in Review
  • Erman A, De Vries Robbe SA, Thies SF, Kabir K, Maruo M (2021) Gender Dimensions of Disaster Risk and Resilience
  • Fand BB, Kamble AL, Kumar M. Will climate change pose serious threat to crop pest management: a critical review. Int J Sci Res Publ. 2012; 2 (11):1–14. [ Google Scholar ]
  • FAO (2018).The State of the World’s Forests 2018 - Forest Pathways to Sustainable Development.
  • Fardous S Perception of climate change in Kaptai National Park. Rural Livelihoods and Protected Landscape: Co-Management in the Wetlands and Forests of Bangladesh, 186–204
  • Farooq M, Bramley H, Palta JA, Siddique KH. Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci. 2011; 30 (6):491–507. doi: 10.1080/07352689.2011.615687. [ CrossRef ] [ Google Scholar ]
  • Feliciano D, Recha J, Ambaw G, MacSween K, Solomon D, Wollenberg E (2022) Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim Policy 1–18
  • Ferreira JJ, Fernandes CI, Ferreira FA (2020) Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: a comparison of European countries. Technol Forecast Soc Change 150:119770
  • Fettig CJ, Reid ML, Bentz BJ, Sevanto S, Spittlehouse DL, Wang T. Changing climates, changing forests: a western North American perspective. J Forest. 2013; 111 (3):214–228. doi: 10.5849/jof.12-085. [ CrossRef ] [ Google Scholar ]
  • Fischer AP. Characterizing behavioral adaptation to climate change in temperate forests. Landsc Urban Plan. 2019; 188 :72–79. doi: 10.1016/j.landurbplan.2018.09.024. [ CrossRef ] [ Google Scholar ]
  • Flannigan M, Cantin AS, De Groot WJ, Wotton M, Newbery A, Gowman LM. Global wildland fire season severity in the 21st century. For Ecol Manage. 2013; 294 :54–61. doi: 10.1016/j.foreco.2012.10.022. [ CrossRef ] [ Google Scholar ]
  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang. 2015; 5 (7):673–677. doi: 10.1038/nclimate2647. [ CrossRef ] [ Google Scholar ]
  • Füssel HM, Hildén M (2014) How is uncertainty addressed in the knowledge base for national adaptation planning? Adapting to an Uncertain Climate (pp. 41–66): Springer
  • Gambín BL, Borrás L, Otegui ME. Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res. 2006; 95 (2–3):316–326. doi: 10.1016/j.fcr.2005.04.002. [ CrossRef ] [ Google Scholar ]
  • Gambín B, Borrás L. Resource distribution and the trade-off between seed number and seed weight: a comparison across crop species. Annals of Applied Biology. 2010; 156 (1):91–102. doi: 10.1111/j.1744-7348.2009.00367.x. [ CrossRef ] [ Google Scholar ]
  • Gampe D, Nikulin G, Ludwig R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total Environ. 2016; 573 :1503–1518. doi: 10.1016/j.scitotenv.2016.08.053. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • García GA, Dreccer MF, Miralles DJ, Serrago RA. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Change Biol. 2015; 21 (11):4153–4164. doi: 10.1111/gcb.13009. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Edwards MA. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019; 151 :75–86. doi: 10.1016/j.watres.2018.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gleditsch NP (2021) This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. J Peace Res 0022343320969785
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010; 327 (5967):812–818. doi: 10.1126/science.1185383. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Goes S, Hasterok D, Schutt DL, Klöcking M (2020) Continental lithospheric temperatures: A review. Phys Earth Planet Inter 106509
  • Gorst A, Dehlavi A, Groom B. Crop productivity and adaptation to climate change in Pakistan. Environ Dev Econ. 2018; 23 (6):679–701. doi: 10.1017/S1355770X18000232. [ CrossRef ] [ Google Scholar ]
  • Gosling SN, Arnell NW. A global assessment of the impact of climate change on water scarcity. Clim Change. 2016; 134 (3):371–385. doi: 10.1007/s10584-013-0853-x. [ CrossRef ] [ Google Scholar ]
  • Gössling S, Scott D, Hall CM, Ceron J-P, Dubois G. Consumer behaviour and demand response of tourists to climate change. Ann Tour Res. 2012; 39 (1):36–58. doi: 10.1016/j.annals.2011.11.002. [ CrossRef ] [ Google Scholar ]
  • Gourdji SM, Sibley AM, Lobell DB. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett. 2013; 8 (2):024041. doi: 10.1088/1748-9326/8/2/024041. [ CrossRef ] [ Google Scholar ]
  • Grieg E Responsible Consumption and Production
  • Gunter BG, Rahman A, Rahman A (2008) How Vulnerable are Bangladesh’s Indigenous People to Climate Change? Bangladesh Development Research Center (BDRC)
  • Hall CM, Amelung B, Cohen S, Eijgelaar E, Gössling S, Higham J, Scott D. On climate change skepticism and denial in tourism. J Sustain Tour. 2015; 23 (1):4–25. doi: 10.1080/09669582.2014.953544. [ CrossRef ] [ Google Scholar ]
  • Hartmann H, Moura CF, Anderegg WR, Ruehr NK, Salmon Y, Allen CD, Galbraith D. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 2018; 218 (1):15–28. doi: 10.1111/nph.15048. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes. 2015; 10 :4–10. doi: 10.1016/j.wace.2015.08.001. [ CrossRef ] [ Google Scholar ]
  • Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Wolfe D. Climate impacts on agriculture: implications for crop production. Agron J. 2011; 103 (2):351–370. doi: 10.2134/agronj2010.0303. [ CrossRef ] [ Google Scholar ]
  • Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, Kjeldgaard J. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019; 10 (1):1124. doi: 10.1038/s41467-019-08853-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang S (2004) Global trade patterns in fruits and vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06
  • Huang W, Gao Q-X, Cao G-L, Ma Z-Y, Zhang W-D, Chao Q-C. Effect of urban symbiosis development in China on GHG emissions reduction. Adv Clim Chang Res. 2016; 7 (4):247–252. doi: 10.1016/j.accre.2016.12.003. [ CrossRef ] [ Google Scholar ]
  • Huang Y, Haseeb M, Usman M, Ozturk I (2022) Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries? Tech Soc 68:101853
  • Hubbart JA, Guyette R, Muzika R-M. More than drought: precipitation variance, excessive wetness, pathogens and the future of the western edge of the eastern deciduous forest. Sci Total Environ. 2016; 566 :463–467. doi: 10.1016/j.scitotenv.2016.05.108. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess. 2020; 192 (1):48. doi: 10.1007/s10661-019-7956-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hussain M, Liu G, Yousaf B, Ahmed R, Uzma F, Ali MU, Butt AR. Regional and sectoral assessment on climate-change in Pakistan: social norms and indigenous perceptions on climate-change adaptation and mitigation in relation to global context. J Clean Prod. 2018; 200 :791–808. doi: 10.1016/j.jclepro.2018.07.272. [ CrossRef ] [ Google Scholar ]
  • Intergov. Panel Clim Chang 33 from 10.1017/CBO9781107415324
  • Ionescu C, Klein RJ, Hinkel J, Kumar KK, Klein R. Towards a formal framework of vulnerability to climate change. Environ Model Assess. 2009; 14 (1):1–16. doi: 10.1007/s10666-008-9179-x. [ CrossRef ] [ Google Scholar ]
  • IPCC (2013) Summary for policymakers. Clim Chang Phys Sci Basis Contrib Work Gr I Fifth Assess Rep
  • Ishikawa-Ishiwata Y, Furuya J (2022) Economic evaluation and climate change adaptation measures for rice production in vietnam using a supply and demand model: special emphasis on the Mekong River Delta region in Vietnam. In Interlocal Adaptations to Climate Change in East and Southeast Asia (pp. 45–53). Springer, Cham
  • Izaguirre C, Losada I, Camus P, Vigh J, Stenek V. Climate change risk to global port operations. Nat Clim Chang. 2021; 11 (1):14–20. doi: 10.1038/s41558-020-00937-z. [ CrossRef ] [ Google Scholar ]
  • Jactel H, Koricheva J, Castagneyrol B (2019) Responses of forest insect pests to climate change: not so simple. Current opinion in insect science [ PubMed ]
  • Jahanzad E, Holtz BA, Zuber CA, Doll D, Brewer KM, Hogan S, Gaudin AC. Orchard recycling improves climate change adaptation and mitigation potential of almond production systems. PLoS ONE. 2020; 15 (3):e0229588. doi: 10.1371/journal.pone.0229588. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jurgilevich A, Räsänen A, Groundstroem F, Juhola S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ Res Lett. 2017; 12 (1):013002. doi: 10.1088/1748-9326/aa5508. [ CrossRef ] [ Google Scholar ]
  • Karami E (2012) Climate change, resilience and poverty in the developing world. Paper presented at the Culture, Politics and Climate change conference
  • Kärkkäinen L, Lehtonen H, Helin J, Lintunen J, Peltonen-Sainio P, Regina K, . . . Packalen T (2020) Evaluation of policy instruments for supporting greenhouse gas mitigation efforts in agricultural and urban land use. Land Use Policy 99:104991
  • Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018; 26 (3):220–228. doi: 10.1016/j.tim.2017.09.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF. Role of marine biology in glacial-interglacial CO2 cycles. Science. 2005; 308 (5718):74–78. doi: 10.1126/science.1105375. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kongsager R. Linking climate change adaptation and mitigation: a review with evidence from the land-use sectors. Land. 2018; 7 (4):158. doi: 10.3390/land7040158. [ CrossRef ] [ Google Scholar ]
  • Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008; 452 (7190):987. doi: 10.1038/nature06777. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financial Stab 54:100875
  • Leal Filho W, Azeiteiro UM, Balogun AL, Setti AFF, Mucova SA, Ayal D, . . . Oguge NO (2021) The influence of ecosystems services depletion to climate change adaptation efforts in Africa. Sci Total Environ 146414 [ PubMed ]
  • Lehner F, Coats S, Stocker TF, Pendergrass AG, Sanderson BM, Raible CC, Smerdon JE. Projected drought risk in 1.5 C and 2 C warmer climates. Geophys Res Lett. 2017; 44 (14):7419–7428. doi: 10.1002/2017GL074117. [ CrossRef ] [ Google Scholar ]
  • Lemery J, Knowlton K, Sorensen C (2021) Global climate change and human health: from science to practice: John Wiley & Sons
  • Leppänen S, Saikkonen L, Ollikainen M (2014) Impact of Climate Change on cereal grain production in Russia: Mimeo
  • Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: a review. Sci Total Environ. 2018; 640 :1548–1565. doi: 10.1016/j.scitotenv.2018.05.376. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • livescience.com. New coronavirus may have ‘jumped’ to humans from snakes, study finds, live science,. from < https://www.livescience.com/new-coronavirus-origin-snakes.html > accessed on Jan 2020
  • Lobell DB, Field CB. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett. 2007; 2 (1):014002. doi: 10.1088/1748-9326/2/1/014002. [ CrossRef ] [ Google Scholar ]
  • Lobell DB, Gourdji SM. The influence of climate change on global crop productivity. Plant Physiol. 2012; 160 (4):1686–1697. doi: 10.1104/pp.112.208298. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ma L, Li B, Zhang T. New insights into antibiotic resistome in drinking water and management perspectives: a metagenomic based study of small-sized microbes. Water Res. 2019; 152 :191–201. doi: 10.1016/j.watres.2018.12.069. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Macchi M, Oviedo G, Gotheil S, Cross K, Boedhihartono A, Wolfangel C, Howell M (2008) Indigenous and traditional peoples and climate change. International Union for the Conservation of Nature, Gland, Suiza
  • Mall RK, Gupta A, Sonkar G (2017) Effect of climate change on agricultural crops. In Current developments in biotechnology and bioengineering (pp. 23–46). Elsevier
  • Manes S, Costello MJ, Beckett H, Debnath A, Devenish-Nelson E, Grey KA, . . . Krause C (2021) Endemism increases species’ climate change risk in areas of global biodiversity importance. Biol Conserv 257:109070
  • Mannig B, Pollinger F, Gafurov A, Vorogushyn S, Unger-Shayesteh K (2018) Impacts of climate change in Central Asia Encyclopedia of the Anthropocene (pp. 195–203): Elsevier
  • Martínez-Alvarado O, Gray SL, Hart NC, Clark PA, Hodges K, Roberts MJ. Increased wind risk from sting-jet windstorms with climate change. Environ Res Lett. 2018; 13 (4):044002. doi: 10.1088/1748-9326/aaae3a. [ CrossRef ] [ Google Scholar ]
  • Matsui T, Omasa K, Horie T. The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Production Science. 2001; 4 (2):90–93. doi: 10.1626/pps.4.90. [ CrossRef ] [ Google Scholar ]
  • Meierrieks D (2021) Weather shocks, climate change and human health. World Dev 138:105228
  • Michel D, Eriksson M, Klimes M (2021) Climate change and (in) security in transboundary river basins Handbook of Security and the Environment: Edward Elgar Publishing
  • Mihiretu A, Okoyo EN, Lemma T. Awareness of climate change and its associated risks jointly explain context-specific adaptation in the Arid-tropics. Northeast Ethiopia SN Social Sciences. 2021; 1 (2):1–18. [ Google Scholar ]
  • Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015; 349 (6250):823–826. doi: 10.1126/science.aaa9933. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mishra A, Bruno E, Zilberman D (2021) Compound natural and human disasters: Managing drought and COVID-19 to sustain global agriculture and food sectors. Sci Total Environ 754:142210 [ PMC free article ] [ PubMed ]
  • Mosavi SH, Soltani S, Khalilian S (2020) Coping with climate change in agriculture: Evidence from Hamadan-Bahar plain in Iran. Agric Water Manag 241:106332
  • Murshed M (2020) An empirical analysis of the non-linear impacts of ICT-trade openness on renewable energy transition, energy efficiency, clean cooking fuel access and environmental sustainability in South Asia. Environ Sci Pollut Res 27(29):36254–36281. 10.1007/s11356-020-09497-3 [ PMC free article ] [ PubMed ]
  • Murshed M. Pathways to clean cooking fuel transition in low and middle income Sub-Saharan African countries: the relevance of improving energy use efficiency. Sustainable Production and Consumption. 2022; 30 :396–412. doi: 10.1016/j.spc.2021.12.016. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Dao NTT. Revisiting the CO2 emission-induced EKC hypothesis in South Asia: the role of Export Quality Improvement. GeoJournal. 2020 doi: 10.1007/s10708-020-10270-9. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Abbass K, Rashid S. Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka. Int J Finan Eco. 2021; 26 (4):5425–5450. doi: 10.1002/ijfe.2073. [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Elheddad M, Ahmed R. Value addition in the services sector and its heterogeneous impacts on CO2 emissions: revisiting the EKC hypothesis for the OPEC using panel spatial estimation techniques. Environ Sci Pollut Res. 2020; 27 (31):38951–38973. doi: 10.1007/s11356-020-09593-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Murshed M, Nurmakhanova M, Al-Tal R, Mahmood H, Elheddad M, Ahmed R (2022) Can intra-regional trade, renewable energy use, foreign direct investments, and economic growth reduce ecological footprints in South Asia? Energy Sources, Part B: Economics, Planning, and Policy. 10.1080/15567249.2022.2038730
  • Neuvonen M, Sievänen T, Fronzek S, Lahtinen I, Veijalainen N, Carter TR. Vulnerability of cross-country skiing to climate change in Finland–an interactive mapping tool. J Outdoor Recreat Tour. 2015; 11 :64–79. doi: 10.1016/j.jort.2015.06.010. [ CrossRef ] [ Google Scholar ]
  • npr.org. Please Help Me.’ What people in China are saying about the outbreak on social media, npr.org, . from < https://www.npr.org/sections/goatsandsoda/2020/01/24/799000379/please-help-me-what-people-in-china-are-saying-about-the-outbreak-on-social-medi >, Accessed on 26 Jan 2020.
  • Ogden LE. Climate change, pathogens, and people: the challenges of monitoring a moving target. Bioscience. 2018; 68 (10):733–739. doi: 10.1093/biosci/biy101. [ CrossRef ] [ Google Scholar ]
  • Ortiz AMD, Outhwaite CL, Dalin C, Newbold T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth. 2021; 4 (1):88–101. doi: 10.1016/j.oneear.2020.12.008. [ CrossRef ] [ Google Scholar ]
  • Ortiz R. Crop genetic engineering under global climate change. Ann Arid Zone. 2008; 47 (3):343. [ Google Scholar ]
  • Otegui MAE, Bonhomme R. Grain yield components in maize: I. Ear growth and kernel set. Field Crop Res. 1998; 56 (3):247–256. doi: 10.1016/S0378-4290(97)00093-2. [ CrossRef ] [ Google Scholar ]
  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, . . . Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc
  • Pal JK. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics. 2021; 126 (5):4173–4193. doi: 10.1007/s11192-021-03912-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Panda R, Behera S, Kashyap P. Effective management of irrigation water for wheat under stressed conditions. Agric Water Manag. 2003; 63 (1):37–56. doi: 10.1016/S0378-3774(03)00099-4. [ CrossRef ] [ Google Scholar ]
  • Pärnänen KM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, Do TT, Jaeger T. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci Adv. 2019; 5 (3):eaau9124. doi: 10.1126/sciadv.aau9124. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press
  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human health. Nature. 2005; 438 (7066):310–317. doi: 10.1038/nature04188. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasitol. 2000; 30 (12–13):1395–1405. doi: 10.1016/S0020-7519(00)00141-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ. Impacts of climate change on plant diseases—opinions and trends. Eur J Plant Pathol. 2012; 133 (1):295–313. doi: 10.1007/s10658-012-9936-1. [ CrossRef ] [ Google Scholar ]
  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Cassman KG. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci. 2004; 101 (27):9971–9975. doi: 10.1073/pnas.0403720101. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Cardoso A. Essential biodiversity variables. Science. 2013; 339 (6117):277–278. doi: 10.1126/science.1229931. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Perera K, De Silva K, Amarasinghe M. Potential impact of predicted sea level rise on carbon sink function of mangrove ecosystems with special reference to Negombo estuary, Sri Lanka. Global Planet Change. 2018; 161 :162–171. doi: 10.1016/j.gloplacha.2017.12.016. [ CrossRef ] [ Google Scholar ]
  • Pfadenhauer JS, Klötzli FA (2020) Zonal Vegetation of the Subtropical (Warm–Temperate) Zone with Winter Rain. In Global Vegetation (pp. 455–514). Springer, Cham
  • Phillips JD. Environmental gradients and complexity in coastal landscape response to sea level rise. CATENA. 2018; 169 :107–118. doi: 10.1016/j.catena.2018.05.036. [ CrossRef ] [ Google Scholar ]
  • Pirasteh-Anosheh H, Parnian A, Spasiano D, Race M, Ashraf M (2021) Haloculture: A system to mitigate the negative impacts of pandemics on the environment, society and economy, emphasizing COVID-19. Environ Res 111228 [ PMC free article ] [ PubMed ]
  • Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Snape JR. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect. 2013; 121 (8):878–885. doi: 10.1289/ehp.1206446. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Abbas F, Saeed S, Bakhat HF, Nasim W, Fahad S. The potential applications of picotechnology in biomedical and environmental sciences. Environ Sci Pollut Res. 2020; 27 (1):133–142. doi: 10.1007/s11356-019-06554-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Qasim MZ, Hammad HM, Maqsood F, Tariq T, Chawla MS Climate Change Implication on Cereal Crop Productivity
  • Rahman M, Alam K. Forest dependent indigenous communities’ perception and adaptation to climate change through local knowledge in the protected area—a Bangladesh case study. Climate. 2016; 4 (1):12. doi: 10.3390/cli4010012. [ CrossRef ] [ Google Scholar ]
  • Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH. Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol. 2018; 69 :789–815. doi: 10.1146/annurev-arplant-042817-040256. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rehman A, Ma H, Ahmad M, Irfan M, Traore O, Chandio AA (2021) Towards environmental Sustainability: devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecol Indic 125:107460
  • Reichstein M, Carvalhais N. Aspects of forest biomass in the Earth system: its role and major unknowns. Surv Geophys. 2019; 40 (4):693–707. doi: 10.1007/s10712-019-09551-x. [ CrossRef ] [ Google Scholar ]
  • Reidsma P, Ewert F, Boogaard H, van Diepen K. Regional crop modelling in Europe: the impact of climatic conditions and farm characteristics on maize yields. Agric Syst. 2009; 100 (1–3):51–60. doi: 10.1016/j.agsy.2008.12.009. [ CrossRef ] [ Google Scholar ]
  • Ritchie H, Roser M (2014) Natural disasters. Our World in Data
  • Rizvi AR, Baig S, Verdone M. Ecosystems based adaptation: knowledge gaps in making an economic case for investing in nature based solutions for climate change. Gland, Switzerland: IUCN; 2015. p. 48. [ Google Scholar ]
  • Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D. What happens to the sown species if a biodiversity experiment is not weeded? Basic Appl Ecol. 2013; 14 (3):187–198. doi: 10.1016/j.baae.2013.01.003. [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Khabarov N. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci. 2014; 111 (9):3268–3273. doi: 10.1073/pnas.1222463110. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events-implications for food production, plant diseases, and pests
  • Sadras VO, Slafer GA. Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crop Res. 2012; 127 :215–224. doi: 10.1016/j.fcr.2011.11.014. [ CrossRef ] [ Google Scholar ]
  • Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004; 120 (2):179–186. doi: 10.1111/j.0031-9317.2004.0173.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Santos WS, Gurgel-Gonçalves R, Garcez LM, Abad-Franch F. Deforestation effects on Attalea palms and their resident Rhodnius, vectors of Chagas disease, in eastern Amazonia. PLoS ONE. 2021; 16 (5):e0252071. doi: 10.1371/journal.pone.0252071. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sarkar P, Debnath N, Reang D (2021) Coupled human-environment system amid COVID-19 crisis: a conceptual model to understand the nexus. Sci Total Environ 753:141757 [ PMC free article ] [ PubMed ]
  • Schlenker W, Roberts MJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci. 2009; 106 (37):15594–15598. doi: 10.1073/pnas.0906865106. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schoene DH, Bernier PY. Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy Econ. 2012; 24 :12–19. doi: 10.1016/j.forpol.2011.04.007. [ CrossRef ] [ Google Scholar ]
  • Schuurmans C (2021) The world heat budget: expected changes Climate Change (pp. 1–15): CRC Press
  • Scott D. Sustainable Tourism and the Grand Challenge of Climate Change. Sustainability. 2021; 13 (4):1966. doi: 10.3390/su13041966. [ CrossRef ] [ Google Scholar ]
  • Scott D, McBoyle G, Schwartzentruber M. Climate change and the distribution of climatic resources for tourism in North America. Climate Res. 2004; 27 (2):105–117. doi: 10.3354/cr027105. [ CrossRef ] [ Google Scholar ]
  • Semenov MA. Impacts of climate change on wheat in England and Wales. J R Soc Interface. 2009; 6 (33):343–350. doi: 10.1098/rsif.2008.0285. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shaffril HAM, Krauss SE, Samsuddin SF. A systematic review on Asian’s farmers’ adaptation practices towards climate change. Sci Total Environ. 2018; 644 :683–695. doi: 10.1016/j.scitotenv.2018.06.349. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shahbaz M, Balsalobre-Lorente D, Sinha A (2019) Foreign direct Investment–CO2 emissions nexus in Middle East and North African countries: Importance of biomass energy consumption. J Clean Product 217:603–614
  • Sharif A, Mishra S, Sinha A, Jiao Z, Shahbaz M, Afshan S (2020) The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew Energy 150:670–690
  • Sharma R. Impacts on human health of climate and land use change in the Hindu Kush-Himalayan region. Mt Res Dev. 2012; 32 (4):480–486. doi: 10.1659/MRD-JOURNAL-D-12-00068.1. [ CrossRef ] [ Google Scholar ]
  • Sharma R, Sinha A, Kautish P. Examining the impacts of economic and demographic aspects on the ecological footprint in South and Southeast Asian countries. Environ Sci Pollut Res. 2020; 27 (29):36970–36982. doi: 10.1007/s11356-020-09659-3. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Smit B, Burton I, Klein RJ, Wandel J (2000) An anatomy of adaptation to climate change and variability Societal adaptation to climate variability and change (pp. 223–251): Springer
  • Song Y, Fan H, Tang X, Luo Y, Liu P, Chen Y (2021) The effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on ischemic stroke and the possible underlying mechanisms. Int J Neurosci 1–20 [ PMC free article ] [ PubMed ]
  • Sovacool BK, Griffiths S, Kim J, Bazilian M (2021) Climate change and industrial F-gases: a critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew Sustain Energy Rev 141:110759
  • Stewart JA, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE, Wright DH. Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr. 2015; 42 (5):880–890. doi: 10.1111/jbi.12466. [ CrossRef ] [ Google Scholar ]
  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, . . . Midgley P (2013) Climate change 2013: The physical science basis. Working group I contribution to the IPCC Fifth assessment report: Cambridge: Cambridge University Press. 1535p
  • Stone P, Nicolas M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct Plant Biol. 1994; 21 (6):887–900. doi: 10.1071/PP9940887. [ CrossRef ] [ Google Scholar ]
  • Su H-C, Liu Y-S, Pan C-G, Chen J, He L-Y, Ying G-G. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018; 616 :453–461. doi: 10.1016/j.scitotenv.2017.10.318. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sunderlin WD, Angelsen A, Belcher B, Burgers P, Nasi R, Santoso L, Wunder S. Livelihoods, forests, and conservation in developing countries: an overview. World Dev. 2005; 33 (9):1383–1402. doi: 10.1016/j.worlddev.2004.10.004. [ CrossRef ] [ Google Scholar ]
  • Symanski E, Han HA, Han I, McDaniel M, Whitworth KW, McCurdy S, . . . Delclos GL (2021) Responding to natural and industrial disasters: partnerships and lessons learned. Disaster medicine and public health preparedness 1–4 [ PMC free article ] [ PubMed ]
  • Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric for Meteorol. 2006; 138 (1–4):82–92. doi: 10.1016/j.agrformet.2006.03.014. [ CrossRef ] [ Google Scholar ]
  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA. Going to the extremes. Clim Change. 2006; 79 (3–4):185–211. doi: 10.1007/s10584-006-9051-4. [ CrossRef ] [ Google Scholar ]
  • Testa G, Koon E, Johannesson L, McKenna G, Anthony T, Klintmalm G, Gunby R (2018) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as
  • Thornton PK, Lipper L (2014) How does climate change alter agricultural strategies to support food security? (Vol. 1340): Intl Food Policy Res Inst
  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Manag. 2003; 14 (3):207–222. doi: 10.1111/1467-8551.00375. [ CrossRef ] [ Google Scholar ]
  • UNEP (2017) United nations environment programme: frontiers 2017. from https://www.unenvironment.org/news-and-stories/press-release/antimicrobial-resistance - environmental-pollution-among-biggest
  • Usman M, Balsalobre-Lorente D (2022) Environmental concern in the era of industrialization: Can financial development, renewable energy and natural resources alleviate some load? Ene Policy 162:112780
  • Usman M, Makhdum MSA (2021) What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew Energy 179:12–28
  • Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: Do financial development, natural resources, and renewable energy consumption matter? Rene. Energy. 2022; 183 :90–102. doi: 10.1016/j.renene.2021.10.067. [ CrossRef ] [ Google Scholar ]
  • Usman M, Jahanger A, Makhdum MSA, Balsalobre-Lorente D, Bashir A (2022a) How do financial development, energy consumption, natural resources, and globalization affect Arctic countries’ economic growth and environmental quality? An advanced panel data simulation. Energy 241:122515
  • Usman M, Khalid K, Mehdi MA. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew Energy. 2021; 168 :1165–1176. doi: 10.1016/j.renene.2021.01.012. [ CrossRef ] [ Google Scholar ]
  • Urban MC. Accelerating extinction risk from climate change. Science. 2015; 348 (6234):571–573. doi: 10.1126/science.aaa4984. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vale MM, Arias PA, Ortega G, Cardoso M, Oliveira BF, Loyola R, Scarano FR (2021) Climate change and biodiversity in the Atlantic Forest: best climatic models, predicted changes and impacts, and adaptation options The Atlantic Forest (pp. 253–267): Springer
  • Vedwan N, Rhoades RE. Climate change in the Western Himalayas of India: a study of local perception and response. Climate Res. 2001; 19 (2):109–117. doi: 10.3354/cr019109. [ CrossRef ] [ Google Scholar ]
  • Vega CR, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001; 41 (3):748–754. doi: 10.2135/cropsci2001.413748x. [ CrossRef ] [ Google Scholar ]
  • Vergés A, Doropoulos C, Malcolm HA, Skye M, Garcia-Pizá M, Marzinelli EM, Vila-Concejo A. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc Natl Acad Sci. 2016; 113 (48):13791–13796. doi: 10.1073/pnas.1610725113. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Verheyen R (2005) Climate change damage and international law: prevention duties and state responsibility (Vol. 54): Martinus Nijhoff Publishers
  • Waheed A, Fischer TB, Khan MI. Climate Change Policy Coherence across Policies, Plans, and Strategies in Pakistan—implications for the China-Pakistan Economic Corridor Plan. Environ Manage. 2021; 67 (5):793–810. doi: 10.1007/s00267-021-01449-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wasiq M, Ahmad M (2004) Sustaining forests: a development strategy: The World Bank
  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Cooper A. Health and climate change: policy responses to protect public health. The Lancet. 2015; 386 (10006):1861–1914. doi: 10.1016/S0140-6736(15)60854-6. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weed AS, Ayres MP, Hicke JA. Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr. 2013; 83 (4):441–470. doi: 10.1890/13-0160.1. [ CrossRef ] [ Google Scholar ]
  • Weisheimer A, Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32(20)
  • Wernberg T, Bennett S, Babcock RC, De Bettignies T, Cure K, Depczynski M, Hovey RK. Climate-driven regime shift of a temperate marine ecosystem. Science. 2016; 353 (6295):169–172. doi: 10.1126/science.aad8745. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • WHO (2018) WHO, 2018. Antimicrobial resistance
  • Wilkinson DM, Sherratt TN. Why is the world green? The interactions of top–down and bottom–up processes in terrestrial vegetation ecology. Plant Ecolog Divers. 2016; 9 (2):127–140. doi: 10.1080/17550874.2016.1178353. [ CrossRef ] [ Google Scholar ]
  • Wiranata IJ, Simbolon K. Increasing awareness capacity of disaster potential as a support to achieve sustainable development goal (sdg) 13 in lampung province. Jurnal Pir: Power in International Relations. 2021; 5 (2):129–146. doi: 10.22303/pir.5.2.2021.129-146. [ CrossRef ] [ Google Scholar ]
  • Wiréhn L. Nordic agriculture under climate change: a systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy. 2018; 77 :63–74. doi: 10.1016/j.landusepol.2018.04.059. [ CrossRef ] [ Google Scholar ]
  • Wu D, Su Y, Xi H, Chen X, Xie B. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Res. 2019; 158 :11–21. doi: 10.1016/j.watres.2019.03.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wu HX (2020) Losing Steam?—An industry origin analysis of China’s productivity slowdown Measuring Economic Growth and Productivity (pp. 137–167): Elsevier
  • Wu H, Qian H, Chen J, Huo C. Assessment of agricultural drought vulnerability in the Guanzhong Plain. China Water Resources Management. 2017; 31 (5):1557–1574. doi: 10.1007/s11269-017-1594-9. [ CrossRef ] [ Google Scholar ]
  • Xie W, Huang J, Wang J, Cui Q, Robertson R, Chen K (2018) Climate change impacts on China’s agriculture: the responses from market and trade. China Econ Rev
  • Xu J, Sharma R, Fang J, Xu Y. Critical linkages between land-use transition and human health in the Himalayan region. Environ Int. 2008; 34 (2):239–247. doi: 10.1016/j.envint.2007.08.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Yadav MK, Singh R, Singh K, Mall R, Patel C, Yadav S, Singh M. Assessment of climate change impact on productivity of different cereal crops in Varanasi. India J Agrometeorol. 2015; 17 (2):179–184. doi: 10.54386/jam.v17i2.1000. [ CrossRef ] [ Google Scholar ]
  • Yang B, Usman M. Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sust Prod Cons. 2021; 28 :893–910. [ Google Scholar ]
  • Yu Z, Razzaq A, Rehman A, Shah A, Jameel K, Mor RS (2021) Disruption in global supply chain and socio-economic shocks: a lesson from COVID-19 for sustainable production and consumption. Oper Manag Res 1–16
  • Zarnetske PL, Skelly DK, Urban MC. Biotic multipliers of climate change. Science. 2012; 336 (6088):1516–1518. doi: 10.1126/science.1222732. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Zhang M, Liu N, Harper R, Li Q, Liu K, Wei X, Liu S. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J Hydrol. 2017; 546 :44–59. doi: 10.1016/j.jhydrol.2016.12.040. [ CrossRef ] [ Google Scholar ]
  • Zhao J, Sinha A, Inuwa N, Wang Y, Murshed M, Abbasi KR (2022) Does Structural Transformation in Economy Impact Inequality in Renewable Energy Productivity? Implications for Sustainable Development. Renew Energy 189:853–864. 10.1016/j.renene.2022.03.050

A polar bear stands on a small iceberg

Russell Millner/Alamy

Defend Our Planet and Most Vulnerable Species

Your donation today will be triple-matched to power NRDC’s next great chapter in protecting our ecosystems and saving imperiled wildlife.

What Are the Causes of Climate Change?

We can’t fight climate change without understanding what drives it.

A river runs through a valley between mountains, with brown banks visible on either side of the water

Low water levels at Shasta Lake, California, following a historic drought in October 2021

Andrew Innerarity/California Department of Water Resources

A headshot of Jeff Turrentine

  • Share this page block

At the root of climate change is the phenomenon known as the greenhouse effect , the term scientists use to describe the way that certain atmospheric gases “trap” heat that would otherwise radiate upward, from the planet’s surface, into outer space. On the one hand, we have the greenhouse effect to thank for the presence of life on earth; without it, our planet would be cold and unlivable.

But beginning in the mid- to late-19th century, human activity began pushing the greenhouse effect to new levels. The result? A planet that’s warmer right now than at any other point in human history, and getting ever warmer. This global warming has, in turn, dramatically altered natural cycles and weather patterns, with impacts that include extreme heat, protracted drought, increased flooding, more intense storms, and rising sea levels. Taken together, these miserable and sometimes deadly effects are what have come to be known as climate change .

Detailing and discussing the human causes of climate change isn’t about shaming people, or trying to make them feel guilty for their choices. It’s about defining the problem so that we can arrive at effective solutions. And we must honestly address its origins—even though it can sometimes be difficult, or even uncomfortable, to do so. Human civilization has made extraordinary productivity leaps, some of which have led to our currently overheated planet. But by harnessing that same ability to innovate and attaching it to a renewed sense of shared responsibility, we can find ways to cool the planet down, fight climate change , and chart a course toward a more just, equitable, and sustainable future.

Here’s a rough breakdown of the factors that are driving climate change.

Natural causes of climate change

Human-driven causes of climate change, transportation, electricity generation, industry & manufacturing, agriculture, oil & gas development, deforestation, our lifestyle choices.

Some amount of climate change can be attributed to natural phenomena. Over the course of Earth’s existence, volcanic eruptions , fluctuations in solar radiation , tectonic shifts , and even small changes in our orbit have all had observable effects on planetary warming and cooling patterns.

But climate records are able to show that today’s global warming—particularly what has occured since the start of the industrial revolution—is happening much, much faster than ever before. According to NASA , “[t]hese natural causes are still in play today, but their influence is too small or they occur too slowly to explain the rapid warming seen in recent decades.” And the records refute the misinformation that natural causes are the main culprits behind climate change, as some in the fossil fuel industry and conservative think tanks would like us to believe.

A black and white image of an industrial plant on the banks of a body of water, with black smoke rising from three smokestacks

Chemical manufacturing plants emit fumes along Onondaga Lake in Solvay, New York, in the late-19th century. Over time, industrial development severely polluted the local area.

Library of Congress, Prints & Photographs Division, Detroit Publishing Company Collection

Scientists agree that human activity is the primary driver of what we’re seeing now worldwide. (This type of climate change is sometimes referred to as anthropogenic , which is just a way of saying “caused by human beings.”) The unchecked burning of fossil fuels over the past 150 years has drastically increased the presence of atmospheric greenhouse gases, most notably carbon dioxide . At the same time, logging and development have led to the widespread destruction of forests, wetlands, and other carbon sinks —natural resources that store carbon dioxide and prevent it from being released into the atmosphere.

Right now, atmospheric concentrations of greenhouse gases like carbon dioxide, methane , and nitrous oxide are the highest they’ve been in the last 800,000 years . Some greenhouse gases, like hydrochlorofluorocarbons (HFCs) , do not even exist in nature. By continuously pumping these gases into the air, we helped raise the earth’s average temperature by about 1.9 degrees Fahrenheit during the 20th century—which has brought us to our current era of deadly, and increasingly routine, weather extremes. And it’s important to note that while climate change affects everyone in some way, it doesn’t do so equally: All over the world, people of color and those living in economically disadvantaged or politically marginalized communities bear a much larger burden , despite the fact that these communities play a much smaller role in warming the planet.

Our ways of generating power for electricity, heat, and transportation, our built environment and industries, our ways of interacting with the land, and our consumption habits together serve as the primary drivers of climate change. While the percentages of greenhouse gases stemming from each source may fluctuate, the sources themselves remain relatively consistent.

Four lanes of cars and trucks sit in traffic on a highway

Traffic on Interstate 25 in Denver

David Parsons/iStock

The cars, trucks, ships, and planes that we use to transport ourselves and our goods are a major source of global greenhouse gas emissions. (In the United States, they actually constitute the single-largest source.) Burning petroleum-based fuel in combustion engines releases massive amounts of carbon dioxide into the atmosphere. Passenger cars account for 41 percent of those emissions, with the typical passenger vehicle emitting about 4.6 metric tons of carbon dioxide per year. And trucks are by far the worst polluters on the road. They run almost constantly and largely burn diesel fuel, which is why, despite accounting for just 4 percent of U.S. vehicles, trucks emit 23 percent of all greenhouse gas emissions from transportation.

We can get these numbers down, but we need large-scale investments to get more zero-emission vehicles on the road and increase access to reliable public transit .

As of 2021, nearly 60 percent of the electricity used in the United States comes from the burning of coal, natural gas , and other fossil fuels . Because of the electricity sector’s historical investment in these dirty energy sources, it accounts for roughly a quarter of U.S. greenhouse gas emissions, including carbon dioxide, methane, and nitrous oxide.

That history is undergoing a major change, however: As renewable energy sources like wind and solar become cheaper and easier to develop, utilities are turning to them more frequently. The percentage of clean, renewable energy is growing every year—and with that growth comes a corresponding decrease in pollutants.

But while things are moving in the right direction, they’re not moving fast enough. If we’re to keep the earth’s average temperature from rising more than 1.5 degrees Celsius, which scientists say we must do in order to avoid the very worst impacts of climate change, we have to take every available opportunity to speed up the shift from fossil fuels to renewables in the electricity sector.

A graphic titled "Total U.S. Greenhouse Gas Emissions by Economic Sector (2020)"

The factories and facilities that produce our goods are significant sources of greenhouse gases; in 2020, they were responsible for fully 24 percent of U.S. emissions. Most industrial emissions come from the production of a small set of carbon-intensive products, including basic chemicals, iron and steel, cement and concrete, aluminum, glass, and paper. To manufacture the building blocks of our infrastructure and the vast array of products demanded by consumers, producers must burn through massive amounts of energy. In addition, older facilities in need of efficiency upgrades frequently leak these gases, along with other harmful forms of air pollution .

One way to reduce the industrial sector’s carbon footprint is to increase efficiency through improved technology and stronger enforcement of pollution regulations. Another way is to rethink our attitudes toward consumption (particularly when it comes to plastics ), recycling , and reuse —so that we don’t need to be producing so many things in the first place. And, since major infrastructure projects rely heavily on industries like cement manufacturing (responsible for 7 percent of annual global greenhouse gas), policy mandates must leverage the government’s purchasing power to grow markets for cleaner alternatives, and ensure that state and federal agencies procure more sustainably produced materials for these projects. Hastening the switch from fossil fuels to renewables will also go a long way toward cleaning up this energy-intensive sector.

The advent of modern, industrialized agriculture has significantly altered the vital but delicate relationship between soil and the climate—so much so that agriculture accounted for 11 percent of U.S. greenhouse gas emissions in 2020. This sector is especially notorious for giving off large amounts of nitrous oxide and methane, powerful gases that are highly effective at trapping heat. The widespread adoption of chemical fertilizers , combined with certain crop-management practices that prioritize high yields over soil health, means that agriculture accounts for nearly three-quarters of the nitrous oxide found in our atmosphere. Meanwhile, large-scale industrialized livestock production continues to be a significant source of atmospheric methane, which is emitted as a function of the digestive processes of cattle and other ruminants.

A man in a cap and outdoor vest in front of a wooden building holds a large squash

Stephen McComber holds a squash harvested from the community garden in Kahnawà:ke Mohawk Territory, a First Nations reserve of the Mohawks of Kahnawà:ke, in Quebec.

Stephanie Foden for NRDC

But farmers and ranchers—especially Indigenous farmers, who have been tending the land according to sustainable principles —are reminding us that there’s more than one way to feed the world. By adopting the philosophies and methods associated with regenerative agriculture , we can slash emissions from this sector while boosting our soil’s capacity for sequestering carbon from the atmosphere, and producing healthier foods.

A pipe sticks out of a hole in the ground in the center of a wide pit surrounded by crude fencing

A decades-old, plugged and abandoned oil well at a cattle ranch in Crane County, Texas, in June 2021, when it was found to be leaking brine water

Matthew Busch/Bloomberg via Getty Images

Oil and gas lead to emissions at every stage of their production and consumption—not only when they’re burned as fuel, but just as soon as we drill a hole in the ground to begin extracting them. Fossil fuel development is a major source of methane, which invariably leaks from oil and gas operations : drilling, fracking , transporting, and refining. And while methane isn’t as prevalent a greenhouse gas as carbon dioxide, it’s many times more potent at trapping heat during the first 20 years of its release into the atmosphere. Even abandoned and inoperative wells—sometimes known as “orphaned” wells —leak methane. More than 3 million of these old, defunct wells are spread across the country and were responsible for emitting more than 280,000 metric tons of methane in 2018.

Unsurprisingly, given how much time we spend inside of them, our buildings—both residential and commercial—emit a lot of greenhouse gases. Heating, cooling, cooking, running appliances, and maintaining other building-wide systems accounted for 13 percent of U.S. emissions overall in 2020. And even worse, some 30 percent of the energy used in U.S. buildings goes to waste, on average.

Every day, great strides are being made in energy efficiency , allowing us to achieve the same (or even better) results with less energy expended. By requiring all new buildings to employ the highest efficiency standards—and by retrofitting existing buildings with the most up-to-date technologies—we’ll reduce emissions in this sector while simultaneously making it easier and cheaper for people in all communities to heat, cool, and power their homes: a top goal of the environmental justice movement.

An aerial view show a large area of brown land surrounded by deep green land

An aerial view of clearcut sections of boreal forest near Dryden in Northwestern Ontario, Canada, in June 2019

River Jordan for NRDC

Another way we’re injecting more greenhouse gas into the atmosphere is through the clearcutting of the world’s forests and the degradation of its wetlands . Vegetation and soil store carbon by keeping it at ground level or underground. Through logging and other forms of development, we’re cutting down or digging up vegetative biomass and releasing all of its stored carbon into the air. In Canada’s boreal forest alone, clearcutting is responsible for releasing more than 25 million metric tons of carbon dioxide into the atmosphere each year—the emissions equivalent of 5.5 million vehicles.

Government policies that emphasize sustainable practices, combined with shifts in consumer behavior , are needed to offset this dynamic and restore the planet’s carbon sinks .

A passnger train crosses over a bridge on a river

The Yellow Line Metro train crossing over the Potomac River from Washington, DC, to Virginia on June 24, 2022

Sarah Baker

The decisions we make every day as individuals—which products we purchase, how much electricity we consume, how we get around, what we eat (and what we don’t—food waste makes up 4 percent of total U.S. greenhouse gas emissions)—add up to our single, unique carbon footprints . Put all of them together and you end up with humanity’s collective carbon footprint. The first step in reducing it is for us to acknowledge the uneven distribution of climate change’s causes and effects, and for those who bear the greatest responsibility for global greenhouse gas emissions to slash them without bringing further harm to those who are least responsible .

The big, climate-affecting decisions made by utilities, industries, and governments are shaped, in the end, by us : our needs, our demands, our priorities. Winning the fight against climate change will require us to rethink those needs, ramp up those demands , and reset those priorities. Short-term thinking of the sort that enriches corporations must give way to long-term planning that strengthens communities and secures the health and safety of all people. And our definition of climate advocacy must go beyond slogans and move, swiftly, into the realm of collective action—fueled by righteous anger, perhaps, but guided by faith in science and in our ability to change the world for the better.

If our activity has brought us to this dangerous point in human history, breaking old patterns can help us find a way out.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

We need climate action to be a top priority in Washington!

Tell President Biden and Congress to slash climate pollution and reduce our dependence on fossil fuels.

A rainbow arches over lush green mountains and wind turbines in a valley

Urge President Biden and Congress to make equitable climate action a top priority in 2024

Related stories.

A great blue heron perches on a piling in a body of water, with an industrial plant and smokestacks visible in the background

Greenhouse Effect 101

A woman holds a lantern that is connected by a wire to a small solar panel held by a man to her left.

What Are the Solutions to Climate Change?

A person in an orange shirt holding up a solar panel

Failing to Meet Our Climate Goals Is Not an Option

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Main Question Paper
  • JEE Main Cutoff
  • JEE Main Advanced Admit Card
  • JEE Advanced Admit Card 2024
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • KCET Result
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2023
  • CAT 2023 College Predictor
  • CMAT 2024 Admit Card
  • TS ICET 2024 Hall Ticket
  • CMAT Result 2024
  • MAH MBA CET Cutoff 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Admit Card 2024
  • NEET PG Application Form 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET Exam City Intimation Slip 2024
  • IGNOU Date Sheet
  • CUET Mock Test 2024
  • CUET Admit card 2024
  • CUET Result 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • CUET Exam Analysis 2024
  • IGNOU Exam Form 2024
  • CUET 2024 Exam Live
  • CUET Answer Key 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Essay on Climate Change

Climate Change Essay - The globe is growing increasingly sensitive to climate change. It is currently a serious worldwide concern. The term "Climate Change" describes changes to the earth's climate. It explains the atmospheric changes that have occurred across time, spanning from decades to millions of years. Here are some sample essays on climate change.

100 Words Essay on Climate Change

200 words essay on climate change, 500 words essay on climate change.

Essay on Climate Change

The climatic conditions on Earth are changing due to climate change. Several internal and external variables, such as solar radiation, variations in the Earth's orbit, volcanic eruptions, plate tectonics, etc., are to blame for this.

There are strategies for climate change reduction. If not implemented, the weather might get worse, there might be water scarcity, there could be lower agricultural output, and it might affect people's ability to make a living. In order to breathe clean air and drink pure water, you must concentrate on limiting human activity. These are the simple measures that may be taken to safeguard the environment and its resources.

The climate of the Earth has changed significantly over time. While some of these changes were brought on by natural events like volcanic eruptions, floods, forest fires, etc., many of the changes were brought on by human activity. The burning of fossil fuels, domesticating livestock, and other human activities produce a significant quantity of greenhouse gases. This results in an increase of greenhouse effect and global warming which are the major causes for climate change.

Reasons of Climate Change

Some of the reasons of climate change are:

Deforestation

Excessive use of fossil fuels

Water and soil pollution

Plastic and other non biodegradable waste

Wildlife and nature extinction

Consequences of Climate Change

All kinds of life on earth will be affected by climate change if it continues to change at the same pace. The earth's temperature will increase, the monsoon patterns will shift, the sea level will rise, and there will be more frequent storms, volcano eruptions, and other natural calamities. The earth's biological and ecological equilibrium will be disturbed. Humans won't be able to access clean water or air to breathe when the environment becomes contaminated. The end of life on this earth is imminent. To reduce the issue of climate change, we need to bring social awareness along with strict measures to protect and preserve the natural environment.

A shift in the world's climatic pattern is referred to as climate change. Over the centuries, the climate pattern of our planet has undergone modifications. The amount of carbon dioxide in the atmosphere has significantly grown.

When Did Climate Change Begin

It is possible to see signs of climate change as early as the beginning of the industrial revolution. The pace at which the manufacturers produced things on a large scale required a significant amount of raw materials. Since the raw materials being transformed into finished products now have such huge potential for profit, these business models have spread quickly over the world. Hazardous substances and chemicals build up in the environment as a result of company emissions and waste disposal.

Although climate change is a natural occurrence, it is evident that human activity is turning into the primary cause of the current climate change situation. The major cause is the growing population. Natural resources are utilised more and more as a result of the population's fast growth placing a heavy burden on the available resources. Over time, as more and more products and services are created, pollution will eventually increase.

Causes of Climate Change

There are a number of factors that have contributed towards weather change in the past and continue to do so. Let us look at a few:

Solar Radiation |The climate of earth is determined by how quickly the sun's energy is absorbed and distributed throughout space. This energy is transmitted throughout the world by the winds, ocean currents etc which affects the climatic conditions of the world. Changes in solar intensity have an effect on the world's climate.

Deforestation | The atmosphere's carbon dioxide is stored by trees. As a result of their destruction, carbon dioxide builds up more quickly since there are no trees to absorb it. Additionally, trees release the carbon they stored when we burn them.

Agriculture | Many kinds of greenhouse gases are released into the atmosphere by growing crops and raising livestock. Animals, for instance, create methane, a greenhouse gas that is 30 times more potent than carbon dioxide. The nitrous oxide used in fertilisers is roughly 300 times more strong than carbon dioxide.

How to Prevent Climate Change

We need to look out for drastic steps to stop climate change since it is affecting the resources and life on our planet. We can stop climate change if the right solutions are put in place. Here are some strategies for reducing climate change:

Raising public awareness of climate change

Prohibiting tree-cutting and deforestation.

Ensure the surroundings are clean.

Refrain from using chemical fertilisers.

Water and other natural resource waste should be reduced.

Protect the animals and plants.

Purchase energy-efficient goods and equipment.

Increase the number of trees in the neighbourhood and its surroundings.

Follow the law and safeguard the environment's resources.

Reduce the amount of energy you use.

During the last few decades especially, climate change has grown to be of concern. Global concern has been raised over changes in the Earth's climatic pattern. The causes of climate change are numerous, as well as the effects of it and it is our responsibility as inhabitants of this planet to look after its well being and leave it in a better condition for future generations.

Applications for Admissions are open.

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

ALLEN Digital Scholarship Admission Test (ADSAT)

ALLEN Digital Scholarship Admission Test (ADSAT)

Register FREE for ALLEN Digital Scholarship Admission Test (ADSAT)

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

PW JEE Coaching

PW JEE Coaching

Enrol in PW Vidyapeeth center for JEE coaching

PW NEET Coaching

PW NEET Coaching

Enrol in PW Vidyapeeth center for NEET coaching

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

climate change essay 2022

Yale Environment Review (YER) is a student-run review that provides weekly updates on environmental research findings.

You’re concerned about climate change: do your choices make an impact.

climate change essay 2022

Why have individuals been slow to reduce their carbon footprint even when they have the financial resources and willingness to do so?Many of our assumptions around environmental responsibility fallshort of making immediate and meaningful change. Still, new research guides us with a framework to decide on individual, corporate, and governmental climate action.

By Enar Leferink • May 17, 2024

Akenji, Lewis, Magnus Bengtsson, Viivi Toivio, Michael Lettenmeier, Tina Fawcett, Yael Parag, Yamina Saheb, et al.  1.5–Degree Lifestyles: Towards A Fair Consumption Space for All , 2022.

Heinonen, Jukka, Sarah Olson, Michal Czepkiewicz, Áróra Árnadóttir, and Juudit Ottelin. “Too Much Consumption or Too High Emissions Intensities? Explaining the High Consumption-Based Carbon Footprints in the Nordic Countries.”  Environmental Research Communications  4, no. 12 (December 2022): 125007. https://doi.org/10.1088/2515-7620/aca871 .

Leferink, Enar Kornelius, Jukka Heinonen, Sanna Ala-Mantila, and Áróra Árnadóttir. “Climate Concern Elasticity of Carbon Footprint.”  Environmental Research Communications  5, no. 7 (July 2023): 075003. https://doi.org/10.1088/2515-7620/acda80 .

The  climate movement discourse has shifted  from focusing almost exclusively on individual action to prioritizing systemic remedies at the societal, corporate, and policy levels. Organizations originally placed most of the burden on individuals to reduce pollution. The climate movement now primarily assigns responsibility for climate change to corporations and governments. This shift towards corporate responsibility, for instance, is evident in our discourse around recycling. While organizations once primarily made properly sorting recycling an individual obligation, it is now clear that recycling has minimal impacts on emission reduction, no matter how precise the sorting effort is. Furthermore, even when community members sort their trash, only a fraction is recycled. This trash crisis is a systemic failure, not an individual one. Such shortcomings have increased individual’s frustration with slow progress toward sustainability goals. Even though the  climate movement has started noting  that individual power is only secondary to the economic system, which is the real problem, new research shows that, until the government makes systemic changes, short-term individual action is still vital during the transition phase.

To keep global warming below the 2 °C limit set in the  Paris Agreement , we must considerably reduce the average carbon footprint per individual  by 2030 . However, the obligation to reduce emissions lies primarily among more affluent countries with high per-capita emissions.  Scholars estimate  that if the wealthiest 10% of individuals reduced their carbon footprint by 90%, the poorest half could increase their carbon footprint two or three-fold without exceeding the targets set in the Paris Agreement. Two recent papers published in  Environmental Research Communications  investigate how to reduce the carbon footprint of the wealthiest. The authors in both papers focus on the Nordic countries, which are among the most affluent countries and have a range of high per-capita emissions because they emit multiple times the global average of greenhouse gases. Researchers of both papers set out to identify lifestyle elements that people can alter to reduce average footprints in Nordic countries immediately. The  first paper  is a collaboration of Nordic and Polish researchers led by Jukka Heinonen. This research analyzes the effects of different consumption choices on footprints. They identify that people must institute drastic lifestyle changes simultaneously to reach the Paris Agreement’s goal. 

With the current state of industry and governments, drastic and immediate reductions in consumption are needed from Nordic people to reach a footprint low enough for the Paris Agreement.  Heinonen and his team  show that lifestyles must change in multiple areas simultaneously. For example, it is not enough for someone to sell their car and become vegan. A person would also need to stop flying to reduce their carbon footprint below the Paris Agreement’s limit in carbon footprint. Such substantive requirements to meet reduction goals illustrate that we must fundamentally change our lifestyles to follow the Paris Agreement’s accords. Therefore, if individuals want to keep their core lifestyle characteristics the same, corporations must follow suit and make these lifestyles more sustainable.

Building upon these results, the researchers of the  second paper  investigate whether people who care about the environment pollute less.  The authors found  a noticeable difference in how caring for the environment relates to pollution in different types of consumption. From these findings, we can learn which policy changes are more or less critical in the short term.

The  second paper  suggests that the methodology used by researchers in the past has mistakenly led to the conclusion that income and carbon footprint are substantially related. Intuitively, if you have more income, you generally consume more. This intuition has inspired many scientists to analyze income and carbon footprint relationships. However, the traditional method to calculate this relationship assumes the average emission per dollar spent in a category. Imagine two passengers on the same flight from New York to LA. One paid $200 for their ticket and the other $400. Logically, they have the same carbon footprint from the flight, but the latter would cause twice the emissions according to the old methodology. When you spend money on a good, it is hard to imagine all the steps that went into making it—the materials extracted and altered, energy use and labor, and the cost of transportation. A thoughtful analysis must incorporate each step’s effect without relying too generously on the assumption that expenditure and emissions are inherently related.

Improving upon these traditional methods, the researchers used unique survey data on pro-climate attitudes . They found that people with higher incomes only sometimes pollute much more, and those who care more about the environment have relatively low emissions.  The data shows  that those with 10% higher incomes pollute around 2.2% more, and those with 10% higher concern for climate change pollute about 2.1% less. What’s more, there is a considerable difference between types of consumption. In particular, people with pro-climate attitudes are likely to eat less meat, use less heating, and use more public transportation. Counterintuitively, however, they fly much more. People who are 10% more concerned fly around 27.1% more. But most notably, although those with higher incomes consume more goods and services, people consume the same amount of goods and services no matter how much they care about climate change. Manufacturers may need to drive reduced emissions since those more concerned do not compromise buying goods and services. The results suggest that in other spheres, such as food, heating, and transportation, changes could be driven by personal motivation. Even with the potential for these actions to reduce carbon emissions,  people rarely make these low-carbon choices. Further research must address the knowledge gap between high-reward climate actions and people’s resistance to adopting them. 

These studies show that we must change our lifestyles as much as possible in the short term while working on long-term systemic changes. Better-off individuals must contribute considerably to reducing climate change by changing their behavior. But they also highlight the areas where motivation and income have little (or the opposite) effect, which are the areas policymakers and corporations should focus on. The need to reduce greenhouse gas emissions is dire and time-constrained, and the solution requires both behavioral and systemic change. Many of us are idealists, believing that we may save humanity if we “just” change the global economic system. However, until we reach this elusive goal, we must change at least three fronts: policy, business, and lifestyle choices. Governments must enact ambitious, strict green policies that force corporations to alter their operations. And since governmental action is slow, corporations also must take on real corporate responsibility to get a head start. And while those changes are happening, those who are privileged and able must change their lifestyles. To increase motivation for significant change, we must design and implement bottom-up (grassroots) and top-down (governmental regulation) methods to activate lifestyle changes. This research, which decouples the assumption that income (or climate concern) and climate emissions are always correlated, encourages all members of society to consider shifting their behavior—to fly less often, reduce car travel, and eat less meat.

Ultimately, this research calls for individual action and for governments and corporations to be accountable for making measuring changes.  Studies  have made it apparent that human actions have severely increased pollution. It is fair for the humans who have contributed most to pollution to shift their behavior to reduce it. As we await systemic change,  the science  is crystal clear: lifestyle change has a climate impact, so we have a moral responsibility to make decisions that reflect this.

You might like these articles that share the same topics

climate change essay 2022

Distributed energy resources (DERs) are important pathways in the clean energy transition. However, valuing these pathways is challenging. New research examines what value these technologies bring to the grid and how utilities should structure payments for them in the distributed energy system of tomorrow.          

climate change essay 2022

How do trees die from drought? Plant ecophysiologists are studying air bubbles in tree water columns to understand hydraulic failure: in other words, when tree water columns stop working. Their goal is to improve forecasts for tree responses in a changing climate future. Here is a brief summary of how hydraulic failure works and an introduction to three recent papers on the topic.

climate change essay 2022

Countries and companies have set ambitious renewable energy targets, with demand for critical minerals in the energy sector projected to increase six-fold by 2040. To avoid over-dependency on a handful of supplier countries and to achieve ambitious climate targets, there is a need for individual countries to revisit their mining policies and for global organizations to create binding international agreements to manage critical minerals.

climate change essay 2022

If environmental injustice is the issue, then environmental justice must be the goal—and it cannot be achieved without positioning Black, Indigenous, and People of Color as principal authorities on environmental impacts. Through legal frameworks like climate dominance and social science methods like feminist critical participatory action research (CPAR), communities most impacted by systemic environmental injustices are given credence and power as experts to subvert afterlives of colonialism and advocate for environmental justice.

The Macroeconomic Impact of Climate Change: Global vs. Local Temperature

This paper estimates that the macroeconomic damages from climate change are six times larger than previously thought. We exploit natural variability in global temperature and rely on time-series variation. A 1°C increase in global temperature leads to a 12% decline in world GDP. Global temperature shocks correlate much more strongly with extreme climatic events than the country-level temperature shocks commonly used in the panel literature, explaining why our estimate is substantially larger. We use our reduced-form evidence to estimate structural damage functions in a standard neoclassical growth model. Our results imply a Social Cost of Carbon of $1,056 per ton of carbon dioxide. A business-as-usual warming scenario leads to a present value welfare loss of 31%. Both are multiple orders of magnitude above previous estimates and imply that unilateral decarbonization policy is cost-effective for large countries such as the United States.

Adrien Bilal gratefully acknowledges support from the Chae Family Economics Research Fund at Harvard University. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

Mentioned in the News

More from nber.

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

Knowledge is power

climate change essay 2022

Stay in the know about climate impacts and solutions. Subscribe to our weekly newsletter.

By clicking submit, you agree to share your email address with the site owner and Mailchimp to receive emails from the site owner. Use the unsubscribe link in those emails to opt out at any time.

Yale Climate Connections

Yale Climate Connections

Climate change is affecting mental health literally everywhere

Avatar photo

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on X (Opens in new window)

three people hugging each other

Farmers who can’t sleep, worrying they’ll lose everything amid increasing drought. Youth struggling with depression over a future that feels hopeless. Indigenous people grief-stricken over devastated ecosystems. For all these people and more, climate change is taking a clear toll on mental health — in every part of the world.  

Experts shared these examples and others during a recent summit organized by the Connecting Climate Minds network that brought together hundreds of scientists, doctors, community leaders, and other experts from dozens of countries who have spent the past year studying how climate change is harming mental health in their regions. 

Although mental illnesses are often viewed as an individual problem, the experts made clear that climate change is contributing to mental health challenges everywhere. 

The Connecting Climate Minds youth ambassador from Borneo, Jhonatan Yuditya Pratama, said his Indigenous community views nature as a sacred extension of being. Seeing the devastation of climate change on ancestral lands has brought his community “a profound sense of grief and loss,” he said.

“For us, mental health isn’t just about individuals,” he said. “It’s about the collective well-being of our communities and the land itself. When nature suffers, so do we.”  

Extreme weather and air pollution are taking a toll 

In her keynote, Marina Romanello, executive director of the Lancet Countdown and a Connecting Climate Minds advisory board member, explained the key ways that climate change threatens mental health. 

  • Extreme heat is associated with increased self-harm and violence as well as more general feelings of negativity. It also leads to feelings of isolation when people feel trapped inside their relatively cooler homes.
  • Wildfire or extreme weather stokes anxiety leading up to an event — and afterward — that can lead to PTSD or depression for survivors who have seen cherished places or lives lost.
  • Farmers, fisherpeople, and others whose livelihoods are tied to the environment experience chronic stress, worry, and depression over things they can’t control, like extreme weather, habitat loss, and drought.
  • Water scarcity increases stress for people in charge of seeking and transporting household water. Water scarcity also makes it hard for people to stay clean, potentially leading to isolation, loneliness, and depression. 
  • Air pollution can keep kids out of school, leading to social isolation and, over time, a sense of hopelessness about the future. 

What’s more, people are experiencing the compounding effects of multiple disasters, said Emma Lawrance, who leads the Climate Cares Centre, a U.K.-based team that researches and supports mental health in the face of environmental crises: “With more frequent disasters, people can no longer recover psychologically from one before another occurs,” Lawrance said.  

And these escalating hazards are exacerbating social inequality, said Alaa Abelgawad, the Connecting Climate Minds youth ambassador representing northern Africa and western Asia. “[It’s] manifesting as anxiety, depression, and a profound sense of disempowerment among marginalized populations.”

Who is most vulnerable to climate change and mental health challenges? 

Many Indigenous communities have already been facing intergenerational trauma and a sense of deep disconnect from land and culture. Recurring climate devastation can intensify feelings of grief, stress, and disillusionment about the future, contributing to increased rates of addiction and suicide, participants said. 

Farmers, too, are among the most vulnerable. Changing seasonal norms, increasing drought, and a higher risk of severe weather are directly affecting their livelihoods. 

Sacha Wright, head of research at the youth-focused organization Force of Nature and part of Connecting Climate Minds’s “lived experience” working group, said that in Kenya, many small farmers are struggling with declining harvests and out of desperation have resorted to cutting down trees for charcoal. Though they felt they had no choice, some said cutting down the trees made the whole situation feel even worse. She spoke of high rates of depression, hopelessness, trauma, and a widespread feeling of “not knowing what to do.” 

For young people, climate change can also evoke a sense of hopelessness and powerlessness. In the Yucatan, one young person Wright interviewed said the only choices in life there are to migrate or enter the military. 

“When I see drought, I see my community leaving school and going to the military,” the person interviewed said. 

Mercy Njeru, a member of Connecting Climate Mind’s sub-Saharan Africa working group, said extreme heat is often leading to school closures across the region, setting youth up for failure and a sense of hopelessness. 

“When it’s so hot and you’re so anxious you can’t work, you can’t do anything because you’re feeling anxious or you’re feeling so sad from all the heat around you,” she said. 

In addition to environmental impacts, generational inequity and a sense of moral distress also contribute to anxiety for many youth. Britt Wray, director of Stanford Medicine’s Special Initiative on Climate Change and Mental Health, said she hears from many young people that power holders aren’t taking sufficient action, instead depending entirely on their generation to solve climate change. 

“This offloading of responsibility — without adequate partnership from the elder and more powerful contingents among us — can make burdensome climate anxiety and distress much worse,” she said.

Read: What baby boomers can do about climate change, according to Bill McKibben

What can be done to protect mental health as the climate changes? 

To help address the rising tide of mental health challenges, governments and public health leaders need to know exactly what kinds of impacts people are experiencing in their own communities.

First step: looking at experiences in every region. 

“We will only be successful if we can continue to connect and engage people from very different sectors, from neighborhoods all the way to multilateral organizations,” said Pamela Collins, chair of the department of mental health at the Johns Hopkins Bloomberg School of Public Health. 

Other examples of ways forward include everything from expanding health insurance to include climate-related mental health impacts to ensuring government policy supports people whose work has been affected by climate change to improve their job prospects. Several participants also spoke of the importance of returning to the wisdom of ancestral knowledge to address climate change in general, including mental health impacts. 

Other specific solutions offered by Connecting Climate Minds participants include:

  • More public green space. Collins, the Hopkins professor, cited a study highlighting the need for more accessible green space in cities, a move that could have multiple positive outcomes, including on mental health. Forest bathing , AKA spending dedicated time in nature, reduces stress and anxiety, increases serotonin production, and improves mood regulation and overall mental health — all while being low-intensity and low-cost, said Niaya Harper Igarashi, part of Connecting Climate Mind’s eastern and southeastern Asia working group. 
  • Focusing on reducing inequity. Making sure everyone has access to nutritious food, clean air and water, and sustainable energy sources is good for the climate and community. 
  • Talking helps. In many communities, mental health is a taboo topic. By talking more openly about it on a personal level, in social or spiritual settings, at the dinner table, or in your doctor’s office, individuals can combat stigma and contribute to a growing understanding of these issues. 
  • Meeting people where they are. From using vocabulary that makes sense for different communities to meeting people’s basic needs, solutions are most effective when they’re tailored for what real people are actually going through. For example, Wray, the Stanford expert, said meeting kids where they are includes screening for climate distress where many of them are every day: at school.

Lawrance, the Climate Cares lead who helped organize the summit, said it was heartening to see solutions being advanced around the world. 

“The dialogue showed this really strongly: that many solutions do already exist,” she said. “And it’s by learning from each other’s ways of knowing and doing that we can best find the ones that work for our context, and ensure people experiencing the worst climate impacts have a future where they cannot just survive, but thrive.”

We help millions of people understand climate change and what to do about it. Help us reach even more people like you.

more like this

Florida school district offers kids a cleaner ride to school

Florida school district offers kids a cleaner ride to school

Allergy symptoms got you down? Blame pollen AND air pollution.

Allergy symptoms got you down? Blame pollen AND air pollution.

A third of U.S. adults are interested in cutting back on meat, report finds

A third of U.S. adults are interested in cutting back on meat, report finds

Daisy simmons.

Daisy Simmons, assistant editor at Yale Climate Connections, is a creative, research-driven storyteller with 25 years of professional editorial experience. With a purposeful focus on covering solutions... More by Daisy Simmons

climate change essay 2022

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 16 November 2022

Climate change and human behaviour

Nature Human Behaviour volume  6 ,  pages 1441–1442 ( 2022 ) Cite this article

28k Accesses

2 Citations

62 Altmetric

Metrics details

Climate change is an immense challenge. Human behaviour is crucial in climate change mitigation, and in tackling the arising consequences. In this joint Focus issue between Nature Climate Change and Nature Human Behaviour , we take a closer look at the role of human behaviour in the climate crisis.

In the late 19th century, the scientist (and suffragette) Eunice Newton Foote published a paper suggesting that a build-up of carbon dioxide in the Earth’s atmosphere could cause increased surface temperatures 1 . In the mid-20th century, the British engineer Guy Callendar was the first to concretize the link between carbon dioxide levels and global warming 2 . Now, a century and a half after Foote’s work, there is overwhelming scientific evidence that human behaviour is the main driver of climatic changes and global warming.

climate change essay 2022

The negative effects of rising temperatures on the environment, biodiversity and human health are becoming increasingly noticeable. The years 2020 and 2016 were among the hottest since the record keeping of annual surface temperatures began in 1880 (ref. 3 ). Throughout 2022, the globe was plagued by record-breaking heatwaves. Even regions with a naturally warm climate, such as Pakistan or India, experienced some of their hottest days much earlier in the year — very probably a consequence of climate change 4 . According to the National Centers for Environmental Information of the United States, the surface global temperature during the decade leading up to 2020 was +0.82 °C (+1.48 °F) above the 20th-century average 5 . It is clear that we are facing a global crisis that requires urgent action.

During the Climate Change Conference (COP21) of the United Nations in Paris 2015, 196 parties adopted a legally binding treaty with the aim to limit global warming to ideally 1.5 °C and a maximum of 2 °C, compared to pre-industrial levels. A recent report issued by the UN suggests that we are very unlikely to meet the targets of the Paris Agreement. Instead, current policies are likely to cause temperatures to increase up to 2.8 °C this century 6 . The report suggests that to get on track to 2 °C, new pledges would need to be four times higher — and seven times higher to get on track to 1.5 °C. This November, world leaders will meet for the 27th time to coordinate efforts in facing the climate crisis and mitigating the effects during COP27 in Sharm El-Sheikh, Egypt.

This Focus issue

Human behaviour is not only one of the primary drivers of climate change but also is equally crucial for mitigating the impact of the Anthropocene. In 2022, this was also explicitly acknowledged in the report of the Intergovernmental Panel on Climate Change (IPCC). For the first time, the IPCC directly discussed behavioural, social and cultural dynamics in climate change mitigation 7 . This joint Focus highlights some of the aspects of the human factor that are central in the adaptation to and prevention of a warming climate, and the mitigation of negative consequences. It features original pieces, and also includes a curated collection of already published content from across journals in the Nature Portfolio.

Human behaviour is a neglected factor in climate science

In the light of the empirical evidence for the role of human behaviour in climatic changes, it is curious that the ‘human factor’ has not always received much attention in key research areas, such as climate modelling. For a long time, climate models to predict global warming and emissions did not account for it. This oversight meant that predictions made by these models have differed greatly in their projected rise in temperatures 8 , 9 .

Human behaviour is complex and multidimensional, making it difficult — but crucial — to account for it in climate models. In a Review , Brian Beckage and colleagues thus look at existing social climate models and make recommendations for how these models can better embed human behaviour in their forecasting.

The psychology of climate change

The complexity of humans is also reflected in their psychology. Despite an overwhelming scientific consensus on anthropogenic climate change, research suggests that many people underestimate the effects of it, are sceptical of it or deny its existence altogether. In a Review , Matthew Hornsey and Stephan Lewandowsky look at the psychological origins of such beliefs, as well as the roles of think tanks and political affiliation.

Psychologists are not only concerned with understanding and addressing climate scepticism but are also increasingly worried about mental health consequences. Two narrative Reviews address this topic. Neil Adger et al. discuss the direct and indirect pathways by which climate change affects well-being, and Fiona Charlson et al. adopt a clinical perspective in their piece. They review the literature on the clinical implications of climate change and provide practical suggestions for mental health practitioners.

Individual- and system-level behaviour change

To limit global warming to a minimum, system-level and individual-level behaviour change is necessary. Several pieces in this Focus discuss how such change can be facilitated.

Many interventions for individual behaviour change and for motivating environmental behaviour have been proposed. In a Review , Anne van Valkengoed and colleagues introduce a classification system that links different interventions to the determinants of individual environmental behaviour. Practitioners can use the system to design targeted interventions for behaviour change.

Ideally, interventions are scalable and result in system-level change. Scalability requires an understanding of public perceptions and behaviours, as Mirjam Jenny and Cornelia Betsch explain in a Comment . They draw on the experiences of the COVID-19 pandemic and discuss crucial structures, such as data observatories, for the collection of reliable large-scale data.

Such knowledge is also key for designing robust climate policies. Three Comments in Nature Climate Change look at how insights from behavioural science can inform policy making in areas such as natural-disaster insurance markets , carbon taxing and the assignment of responsibility for supply chain emissions .

Time to act

To buck the trend of rising temperatures, immediate and significant climate action is needed.

Natural disasters have become more frequent and occur at ever-closer intervals. The changing climate is driving biodiversity loss, and affecting human physical and mental health. Unfortunately, the conversations about climate change mitigation are often dominated by Global North and ‘WEIRD’ (Western, educated, industrialized, rich and democratic) perspectives, neglecting the views of countries in the Global South. In a Correspondence , Charles Ogunbode reminds us that climate justice is social justice in the Global South and that, while being a minor contributor to emissions and global warming, this region has to bear many of the consequences.

The fight against climate change is a collective endeavour and requires large-scale solutions. Collective action, however, usually starts with individuals who raise awareness and drive change. In two Q&As, Nature Human Behaviour entered into conversation with people who recognized the power of individual behaviour and took action.

Licypriya Kangujam is a 10-year-old climate activist based in India. She tells us how she hopes to raise the voices of the children of the world in the fight against climate change and connect individuals who want to take action.

Wolfgang Knorr is a former academic who co-founded Faculty for a Future to help academics to transform their careers and address pressing societal issues. In a Q&A , he describes his motivations to leave academia and offers advice on how academics can create impact.

Mitigation of climate change (as well as adaptation to its existing effects) is not possible without human behaviour change, be it on the individual, collective or policy level. The contents of this Focus shed light on the complexities that human behaviour bears, but also point towards future directions. It is the duty of us all to turn this knowledge into action.

Foote, E. Amer. J. Sci. 22 , 377–381 (1856).

Google Scholar  

Callendar, G. S. Q. J. R. Meteorol. Soc. 64 , 223–240 (1938).

Article   Google Scholar  

NASA. Vital signs – global temperature. climate.nasa.gov , https://climate.nasa.gov/vital-signs/global-temperature/ (2022).

Zachariah, M. et al. Climate change made devastating early heat in India and Pakistan 30 times more likely. worldweatherattribution.org , https://www.worldweatherattribution.org/wp-content/uploads/India_Pak-Heatwave-scientific-report.pdf (2022).

NOAA National Centers for Environmental Information. Annual 2020 Global Climate Report. ncei.noaa.gov , https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202013 (2021).

United Nations Environment Programme. Emissions Gap Report 2022: The Closing Window — Climate Crisis Calls For Rapid Transformation Of Societies (UNEP, 2022).

IPCC. Climate Change 2022: Mitigation of Climate Change (IPCC, 2022).

Calvin, K. & Bond-Lamberty, B. Environ. Res. Lett. 13 , 063006 (2018).

Beckage, B. et al. Clim. Change 163 , 181–188 (2020).

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Climate change and human behaviour. Nat Hum Behav 6 , 1441–1442 (2022). https://doi.org/10.1038/s41562-022-01490-9

Download citation

Published : 16 November 2022

Issue Date : November 2022

DOI : https://doi.org/10.1038/s41562-022-01490-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

climate change essay 2022

  • Our Supporters

Logo for Honolulu Civil Beat

This Alternative Method Of Demolishing Structures Could Help Honolulu Avoid A Landfill Crisis

Photo Essay: Adaptive Surfers Take To The Waves In Waikiki

Photo Essay: Adaptive Surfers Take To The Waves In Waikiki

Hawaii Ethics Commission Grapples With Pay-To-Play Issues

Hawaii Ethics Commission Grapples With Pay-To-Play Issues

Green: Hawaii Should Consider Liquefied Natural Gas As A ‘Bridge’ To 100% Renewable Energy

Green: Hawaii Should Consider Liquefied Natural Gas As A ‘Bridge’ To 100% Renewable Energy

  • Special Projects
  • Mobile Menu

Logo for Honolulu Civil Beat

How Data Gaps Could Put US Territories At Greater Risk For Climate Change

The Biden administration needs to develop a plan for how to address the data gaps in consultation with the territories, according to a recent report.

Editor’s note: This story by senior staff writer  Anita Hofschneider  is reprinted with  permission from Grist . You can subscribe to its  weekly newsletter here .

A new federal report found that federal agencies frequently fail to collect the same amount of data about U.S. territories that they collect, and maintain, for states, which advocates say has wide implications for climate adaptation and mitigation.

The report, authored by the U.S. Government Accountability Office, or GAO, examined federal data collection in five island territories: Puerto Rico, the U.S. Virgin Islands, the Commonwealth of the Northern Mariana Islands, Guam and American Samoa.

The latter three are home to relatively large communities of Indigenous Pacific Islanders. Guam, American Samoa and the Virgin Islands are currently on the United Nations’ list of non-self-governing territories , a list of modern colonies whose peoples have not yet achieved self-government. All U.S. territories are experiencing the impacts of warming oceans, more frequent and violent storms and bleaching coral reefs.

A coastal road and village in American Samoa in 2019.

“As the saying goes, if you don’t count, then you don’t count,” said Neil Weare, co-director of Right to Democracy , an advocacy group for residents in U.S. territories. “If folks are serious about environmental justice, they need to be serious about addressing equity issues in U.S. territories, particularly when it comes to issues of data collection.” 

The GAO report doesn’t specifically mention climate change, but much of the missing data is closely related: demographics, economics and agriculture. For instance, of all the National Agricultural Statistics Services’ statistical products, only one includes data from the territories.

In American Samoa, where subsistence agriculture is becoming increasingly important to address gaps in food security and is also highly susceptible to the impacts of climate change, local officials say the census may undercount farms by relying too heavily on the presence of electric meters.

In this photo provided by the U.S. Coast Guard, Hagatna Bay in Hagatna, Guam, is shown Thursday, May 25, 2023, after Typhoon Mawar passed over the island. The powerful typhoon smashed the U.S. territory of Guam and continued lashing the Pacific island with high winds and heavy rain Thursday, knocking down trees, walls and power lines and creating a powerful storm surge that threatened to wash out low-lying areas. (Chief Warrant Officer Manny Pangalinan/U.S. Coast Guard via AP)

Some of the barriers to data collection are statutory: Federal legislation often leaves out U.S. territories. But other barriers include limited sample sizes due to relatively small populations; the high cost of collecting data, especially when agencies lack local staff; and technical challenges including a lack of residential postal addresses or postal delivery services on many islands that the Census Bureau normally relies on to mail surveys.

The Bureau of Labor Statistics includes Puerto Rico in just four of its 21 statistical products, and it doesn’t include American Samoa or the Commonwealth of the Northern Mariana Islands in any of them. The agency says it excludes Guam, American Samoa and the Northern Mariana Islands from many of its labor statistics in part because they don’t have local unemployment insurance programs.  

On Guam, local officials said they’re often excluded from the federal Social Vulnerability Index, which estimates communities’ susceptibility to natural disasters, and worry that the lack of inclusion leads to underestimates of their need for resources. Guam and the Northern Mariana Islands, which make up the same western Pacific archipelago, are frequently hit with typhoons and are still recovering from Typhoon Mawar and Yutu, the latter of which was the strongest storm in nearly a century to hit the U.S. 

The report said that the Biden administration should ensure that the chief statistician at the Office of Management and Budget develop a plan for how to address the data gaps in consultation with the territories. This is encouraging to Neil Weare, who says it puts the onus on the Biden administration to act quickly.

“One of the key takeaways from that report is that the Biden administration can take action on many, if not almost all, of these items without further congressional approval,” Weare said. “So this really does set the stage for the Biden administration to act on these issues.”

This article originally appeared in Grist . Read the original article here .

Grist is a nonprofit, independent media organization dedicated to telling stories of climate solutions and a just future.

--> Sign up for our FREE morning newsletter and face each day more informed. --> Sign up for our FREE morning newsletter and face each day more informed.

Only 1% of readers are donors to civil beat.

More than 600,000 people read Civil Beat articles every month, but only 7,000 of those readers also donate to support the news they count on. That’s only 1% of readers!

If you are among the 99% of Civil Beat readers who haven’t made a donation before in support of our independent local journalism, you can change that today . A small donation makes a big impact.

About the Author

Grist

Top Stories

Lahaina Teachers Say More Help Is Needed For Struggling West Maui Schools

Lahaina Teachers Say More Help Is Needed For Struggling West Maui Schools

Millions In Grants To Nonprofits Put On Hold After OHA Board Raises Concerns About Fairness

Millions In Grants To Nonprofits Put On Hold After OHA Board Raises Concerns About Fairness

Maui County’s Move Against Vacation Rentals Likely To Bog Down In Court

Maui County’s Move Against Vacation Rentals Likely To Bog Down In Court

Green: Hawaii Should Consider Liquefied Natural Gas As A ‘Bridge’ To 100% Renewable Energy

GET IN-DEPTH REPORTING ON HAWAII’S BIGGEST ISSUES

Sign up for our free morning newsletter.

You're officially signed up for our daily newsletter, the Morning Beat. A confirmation email will arrive shortly.

In the meantime, we have other newsletters that you might enjoy. Check the boxes for emails you'd like to receive.

  • Breaking News Alerts What's this? Be the first to hear about important news stories with these occasional emails.
  • Special Projects & Investigations What's this? You'll hear from us whenever Civil Beat publishes a major project or investigation.
  • Environment What's this? Get our latest environmental news on a monthly basis, including updates on Nathan Eagle's 'Hawaii 2040' series.
  • Ideas What's this? Get occasional emails highlighting essays, analysis and opinion from IDEAS, Civil Beat's commentary section.

Inbox overcrowded? Don't worry, you can unsubscribe or update your preferences at any time.

IMAGES

  1. Climate Change and Global Health Research at Pitt

    climate change essay 2022

  2. Simple essay on global warming. Climate Change Essay For Students And

    climate change essay 2022

  3. 💐 Climate change introduction essay. Research Paper: “The Climate

    climate change essay 2022

  4. ≫ Climate Change and Global Warming Issue Free Essay Sample on Samploon.com

    climate change essay 2022

  5. Climate Change

    climate change essay 2022

  6. 💣 Global warming argumentative essay. Research Essay. 2022-10-24

    climate change essay 2022

VIDEO

  1. Essay on Climate change in English || Short essay on Climate change || Climate change essay

  2. Essay of Climate Change

  3. Essay On Impact Of Climate Change On Daily Life #likesharesubscribe

  4. CSS Essay Outline On Global Warming

  5. Climate change essay writing competitions

  6. Essay on Climate change in Urdu for Class 8 to 10 and 12

COMMENTS

  1. Beyond Catastrophe: A New Climate Reality Is Coming Into View

    The cost of global climate damage has already run into the trillions, and the bill for adaptation in the developing world could reach $300 billion annually by 2030. Galveston, Texas, is ...

  2. Climate change: a threat to human wellbeing and health of the planet

    Climate Change 2022: Impacts, Adaptation and Vulnerability. ... IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks ...

  3. The IPCC Climate Change 2022 Impacts Report: Why it matters

    On Monday, February 28, the United Nations Intergovernmental Panel on Climate Change offsite link (IPCC) will release its latest report, which will focus on climate solutions and regional and local adaptation. It will also assess the feasibility of various adaptation strategies to curb current and predicted impacts of climate change.

  4. Climate Change 2022: Impacts, Adaptation and Vulnerability

    Climate Change 2022: Impacts, Adaptation and Vulnerability ... The 18 Chapters and 7 Cross-Chapter Papers of the Working Group II Report assess the impacts of climate change on nature and humanity, and their capacities and limits for adaptation. Download. Figures. Press release Errata.

  5. These are the climate change trends to look out for in 2022

    Here are some of the climate and nature issues experts predict will be top priorities this year: Faster, bigger emissions cuts. Efforts need to be redoubled, especially by major greenhouse gas emitters, to slash carbon pollution this decade, in a bid to stick to the 1.5C warming ceiling and minimise climate-change harm to people and the planet ...

  6. UN climate report: It's 'now or never' to limit global warming to 1.5

    A new flagship UN report on climate change out Monday indicating that harmful carbon emissions from 2010-2019 have never been higher in human history, is proof that the world is on a "fast track" to disaster, António Guterres has warned, with scientists arguing that it's 'now or never' to limit global warming to 1.5 degrees.

  7. How researchers can help fight climate change in 2022 and beyond

    There are signs of renewed support for research and innovation in helping to address climate change. In Glasgow, 22 countries, as well as the European Commission (EC), announced plans to cooperate ...

  8. Climate Change Assay: A Spark Of Change

    Bahçeşehir College is committed to increasing students' awareness of the changing world we live in. This climate change essay competition saw many students submitting well thought out pieces of writing. These essays were marked on their format, creativity, organisation, clarity, unity/development of thought, and grammar/mechanics.

  9. Editorials in 2022

    Actors in the private sector are also setting out commitments, and climate action looks to be gaining momentum across society and around the globe. Editorial 10 Jan 2022. Nature Climate Change ...

  10. Analysis: The climate papers most featured in the media in 2022

    The top 25 climate papers of 2022 cover a huge range of topics and scope. The "Lancet Countdown on health and climate change" and "Global Carbon Budget" reports are epic annual publications, which review vast swathes of literature and have around 100 authors each.

  11. Nature Climate Change

    Nature Climate Change is dedicated to publishing the most significant research across the physical and social sciences on the impacts of global climate change and its implications for the economy ...

  12. Essay: Climate change, Covid, and the Arctic Refuge

    Essay: Climate change, Covid, and the Arctic Refuge. A first-person account of long-delayed, on-and-off-again rafting through arctic tundra during times of global and personal stress. by SueEllen Campbell August 28, 2022. A caribou herd in Alaska. (Photo credit: Ellen Wohl)

  13. A review of the global climate change impacts, adaptation, and

    Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide. Specifically, the agricultural sector's vulnerability is a globally concerning scenario, as ...

  14. Causes and Effects of Climate Change

    Fossil fuels - coal, oil and gas - are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent ...

  15. Climate Changes, So Should We...

    In conclusion, climate change is the most significant problem facing the world. Global warming is increasing day by day. If we cannot prevent it as soon as possible, our world will face undesirable consequences. Artificial intelligence and machine learning, which have been quite advanced recently, is our immense weapon in the fight against ...

  16. A review of the global climate change impacts, adaptation, and

    Abstract. Climate change is a long-lasting change in the weather arrays across tropics to polls. It is a global threat that has embarked on to put stress on various sectors. This study is aimed to conceptually engineer how climate variability is deteriorating the sustainability of diverse sectors worldwide.

  17. Effects of Climate Change

    According to the 2018 National Climate Assessment, unless action is taken, climate change will cost the U.S. economy as much as $500 billion per year by the end of the century.

  18. What Causes Climate Change? Human and Natural Causes

    Natural causes of climate change. Some amount of climate change can be attributed to natural phenomena. Over the course of Earth's existence, volcanic eruptions, fluctuations in solar radiation ...

  19. Climate Change 2022: Impacts, Adaptation and Vulnerability

    Download. 2022/08/PR 28 February 2022. Climate change: a threat to human wellbeing and health of the planet. Taking action now can secure our future. BERLIN, Feb 28 - Human-induced climate change is causing dangerous and widespread disruption in nature and affecting the lives of billions of people around the world, despite efforts to reduce the risks.

  20. Climate Change Essay

    500 Words Essay on Climate Change. A shift in the world's climatic pattern is referred to as climate change. Over the centuries, the climate pattern of our planet has undergone modifications. ... SC student enrollment sees 44% increase from 2014 to 2022: NCBC. 19/05/2024, 07:06:39. Download Careers360 App's. Regular exam updates, QnA ...

  21. You're concerned about climate change: do your choices make an impact

    The climate movement discourse has shifted from focusing almost exclusively on individual action to prioritizing systemic remedies at the societal, corporate, and policy levels. Organizations originally placed most of the burden on individuals to reduce pollution. The climate movement now primarily assigns responsibility for climate change to corporations and governments.

  22. The Macroeconomic Impact of Climate Change: Global vs. Local

    Issue Date May 2024. This paper estimates that the macroeconomic damages from climate change are six times larger than previously thought. We exploit natural variability in global temperature and rely on time-series variation. A 1°C increase in global temperature leads to a 12% decline in world GDP. Global temperature shocks correlate much ...

  23. Climate change is affecting mental health literally everywhere

    Although mental illnesses are often viewed as an individual problem, the experts made clear that climate change is contributing to mental health challenges everywhere. The Connecting Climate Minds youth ambassador from Borneo, Jhonatan Yuditya Pratama, said his Indigenous community views nature as a sacred extension of being.

  24. Climate change and human behaviour

    In 2022, this was also explicitly acknowledged in the report of the Intergovernmental Panel on Climate Change (IPCC). For the first time, the IPCC directly discussed behavioural, social and ...

  25. Future climate scenarios and their impact on heating, ventilation and

    Designers of commercial building's heating, ventilation and air-conditioning (HVAC) systems use typical weather data adjusted with global climate models (known as "morphing") to obtain data reflecting climate change. Previous studies have found that climate change will increase annual cooling energy by 27-47% and peak cooling demand between 28 and 59% by 2070, but have not explored 2050 ...

  26. The Great Barrier Reef is seeing unprecedented coral bleaching

    Essay; Schools brief; Business & economics. ... Despite two more, less lethal, bleachings in 2020 and 2022, it made a remarkable recovery. ... or visit our climate-change hub.

  27. How Data Gaps Could Put US Territories At Greater Risk For Climate Change

    A coastal road and village in American Samoa in 2019. All U.S. territories are experiencing the impacts of warming oceans, more frequent and violent storms and bleaching coral reefs. (Nathan Eagle ...

  28. Estimation of the Short-Term Impact of Climate-Change-Related ...

    Abstract. In this study, we analyzed in situ data from the years 2018-2022 encompassing entire forest plantations in Poland. Based on data regarding stand density and the occurrence of fungal, water-related, climate-related, fire, and insect factors that may intensify with climate changes, we determined the correlation between their occurrence and the decline in wood increments for six tree ...