LIBRARIES | ARCH

Data science masters theses.

The Master of Science in Data Science program requires the successful completion of 12 courses to obtain a degree. These requirements cover six core courses, a leadership or project management course, two required courses corresponding to a declared specialization, two electives, and a capstone project or thesis. This collection contains a selection of masters theses or capstone projects by MSDS graduates.

Collection Details

Grad Coach

Research Topics & Ideas: Data Science

50 Topic Ideas To Kickstart Your Research Project

Research topics and ideas about data science and big data analytics

If you’re just starting out exploring data science-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research by providing a hearty list of data science and analytics-related research ideas , including examples from recent studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . These topic ideas provided here are intentionally broad and generic , so keep in mind that you will need to develop them further. Nevertheless, they should inspire some ideas for your project.

To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan to fill that gap. If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, consider our 1-on-1 coaching service .

Research topic idea mega list

Data Science-Related Research Topics

  • Developing machine learning models for real-time fraud detection in online transactions.
  • The use of big data analytics in predicting and managing urban traffic flow.
  • Investigating the effectiveness of data mining techniques in identifying early signs of mental health issues from social media usage.
  • The application of predictive analytics in personalizing cancer treatment plans.
  • Analyzing consumer behavior through big data to enhance retail marketing strategies.
  • The role of data science in optimizing renewable energy generation from wind farms.
  • Developing natural language processing algorithms for real-time news aggregation and summarization.
  • The application of big data in monitoring and predicting epidemic outbreaks.
  • Investigating the use of machine learning in automating credit scoring for microfinance.
  • The role of data analytics in improving patient care in telemedicine.
  • Developing AI-driven models for predictive maintenance in the manufacturing industry.
  • The use of big data analytics in enhancing cybersecurity threat intelligence.
  • Investigating the impact of sentiment analysis on brand reputation management.
  • The application of data science in optimizing logistics and supply chain operations.
  • Developing deep learning techniques for image recognition in medical diagnostics.
  • The role of big data in analyzing climate change impacts on agricultural productivity.
  • Investigating the use of data analytics in optimizing energy consumption in smart buildings.
  • The application of machine learning in detecting plagiarism in academic works.
  • Analyzing social media data for trends in political opinion and electoral predictions.
  • The role of big data in enhancing sports performance analytics.
  • Developing data-driven strategies for effective water resource management.
  • The use of big data in improving customer experience in the banking sector.
  • Investigating the application of data science in fraud detection in insurance claims.
  • The role of predictive analytics in financial market risk assessment.
  • Developing AI models for early detection of network vulnerabilities.

Research topic evaluator

Data Science Research Ideas (Continued)

  • The application of big data in public transportation systems for route optimization.
  • Investigating the impact of big data analytics on e-commerce recommendation systems.
  • The use of data mining techniques in understanding consumer preferences in the entertainment industry.
  • Developing predictive models for real estate pricing and market trends.
  • The role of big data in tracking and managing environmental pollution.
  • Investigating the use of data analytics in improving airline operational efficiency.
  • The application of machine learning in optimizing pharmaceutical drug discovery.
  • Analyzing online customer reviews to inform product development in the tech industry.
  • The role of data science in crime prediction and prevention strategies.
  • Developing models for analyzing financial time series data for investment strategies.
  • The use of big data in assessing the impact of educational policies on student performance.
  • Investigating the effectiveness of data visualization techniques in business reporting.
  • The application of data analytics in human resource management and talent acquisition.
  • Developing algorithms for anomaly detection in network traffic data.
  • The role of machine learning in enhancing personalized online learning experiences.
  • Investigating the use of big data in urban planning and smart city development.
  • The application of predictive analytics in weather forecasting and disaster management.
  • Analyzing consumer data to drive innovations in the automotive industry.
  • The role of data science in optimizing content delivery networks for streaming services.
  • Developing machine learning models for automated text classification in legal documents.
  • The use of big data in tracking global supply chain disruptions.
  • Investigating the application of data analytics in personalized nutrition and fitness.
  • The role of big data in enhancing the accuracy of geological surveying for natural resource exploration.
  • Developing predictive models for customer churn in the telecommunications industry.
  • The application of data science in optimizing advertisement placement and reach.

Recent Data Science-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic, they are fairly generic and non-specific. So, it helps to look at actual studies in the data science and analytics space to see how this all comes together in practice.

Below, we’ve included a selection of recent studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • Data Science in Healthcare: COVID-19 and Beyond (Hulsen, 2022)
  • Auto-ML Web-application for Automated Machine Learning Algorithm Training and evaluation (Mukherjee & Rao, 2022)
  • Survey on Statistics and ML in Data Science and Effect in Businesses (Reddy et al., 2022)
  • Visualization in Data Science VDS @ KDD 2022 (Plant et al., 2022)
  • An Essay on How Data Science Can Strengthen Business (Santos, 2023)
  • A Deep study of Data science related problems, application and machine learning algorithms utilized in Data science (Ranjani et al., 2022)
  • You Teach WHAT in Your Data Science Course?!? (Posner & Kerby-Helm, 2022)
  • Statistical Analysis for the Traffic Police Activity: Nashville, Tennessee, USA (Tufail & Gul, 2022)
  • Data Management and Visual Information Processing in Financial Organization using Machine Learning (Balamurugan et al., 2022)
  • A Proposal of an Interactive Web Application Tool QuickViz: To Automate Exploratory Data Analysis (Pitroda, 2022)
  • Applications of Data Science in Respective Engineering Domains (Rasool & Chaudhary, 2022)
  • Jupyter Notebooks for Introducing Data Science to Novice Users (Fruchart et al., 2022)
  • Towards a Systematic Review of Data Science Programs: Themes, Courses, and Ethics (Nellore & Zimmer, 2022)
  • Application of data science and bioinformatics in healthcare technologies (Veeranki & Varshney, 2022)
  • TAPS Responsibility Matrix: A tool for responsible data science by design (Urovi et al., 2023)
  • Data Detectives: A Data Science Program for Middle Grade Learners (Thompson & Irgens, 2022)
  • MACHINE LEARNING FOR NON-MAJORS: A WHITE BOX APPROACH (Mike & Hazzan, 2022)
  • COMPONENTS OF DATA SCIENCE AND ITS APPLICATIONS (Paul et al., 2022)
  • Analysis on the Application of Data Science in Business Analytics (Wang, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

IT & Computer Science Research Topics

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Warning icon

Thesis/Capstone for Master's in Data Science | Northwestern SPS - Northwestern School of Professional Studies

  • Post-baccalaureate
  • Undergraduate
  • Professional Development
  • Pre-College
  • Center for Public Safety
  • Get Information

SPS Logo

Data Science

Capstone and thesis overview.

Capstone and thesis are similar in that they both represent a culminating, scholarly effort of high quality. Both should clearly state a problem or issue to be addressed. Both will allow students to complete a larger project and produce a product or publication that can be highlighted on their resumes. Students should consider the factors below when deciding whether a capstone or thesis may be more appropriate to pursue.

A capstone is a practical or real-world project that can emphasize preparation for professional practice. A capstone is more appropriate if:

  • you don't necessarily need or want the experience of the research process or writing a big publication
  • you want more input on your project, from fellow students and instructors
  • you want more structure to your project, including assignment deadlines and due dates
  • you want to complete the project or graduate in a timely manner

A student can enroll in MSDS 498 Capstone in any term. However, capstone specialization courses can provide a unique student experience and may be offered only twice a year. 

A thesis is an academic-focused research project with broader applicability. A thesis is more appropriate if:

  • you want to get a PhD or other advanced degree and want the experience of the research process and writing for publication
  • you want to work individually with a specific faculty member who serves as your thesis adviser
  • you are more self-directed, are good at managing your own projects with very little supervision, and have a clear direction for your work
  • you have a project that requires more time to pursue

Students can enroll in MSDS 590 Thesis as long as there is an approved thesis project proposal, identified thesis adviser, and all other required documentation at least two weeks before the start of any term.

From Faculty Director, Thomas W. Miller, PhD

Tom Miller

Capstone projects and thesis research give students a chance to study topics of special interest to them. Students can highlight analytical skills developed in the program. Work on capstone and thesis research projects often leads to publications that students can highlight on their resumes.”

A thesis is an individual research project that usually takes two to four terms to complete. Capstone course sections, on the other hand, represent a one-term commitment.

Students need to evaluate their options prior to choosing a capstone course section because capstones vary widely from one instructor to the next. There are both general and specialization-focused capstone sections. Some capstone sections offer in individual research projects, others offer team research projects, and a few give students a choice of individual or team projects.

Students should refer to the SPS Graduate Student Handbook for more information regarding registration for either MSDS 590 Thesis or MSDS 498 Capstone.

Capstone Experience

If students wish to engage with an outside organization to work on a project for capstone, they can refer to this checklist and lessons learned for some helpful tips.

Capstone Checklist

  • Start early — set aside a minimum of one to two months prior to the capstone quarter to determine the industry and modeling interests.
  • Networking — pitch your idea to potential organizations for projects and focus on the business benefits you can provide.
  • Permission request — make sure your final project can be shared with others in the course and the information can be made public.
  • Engagement — engage with the capstone professor prior to and immediately after getting the dataset to ensure appropriate scope for the 10 weeks.
  • Teambuilding — recruit team members who have similar interests for the type of project during the first week of the course.

Capstone Lesson Learned

  • Access to company data can take longer than expected; not having this access before or at the start of the term can severely delay the progress
  • Project timeline should align with coursework timeline as closely as possible
  • One point of contact (POC) for business facing to ensure streamlined messages and more effective time management with the organization
  • Expectation management on both sides: (business) this is pro-bono (students) this does not guarantee internship or job opportunities
  • Data security/masking not executed in time can risk the opportunity completely

Publication of Work

Northwestern University Libraries offers an option for students to publish their master’s thesis or capstone in Arch, Northwestern’s open access research and data repository.

Benefits for publishing your thesis:

  • Your work will be indexed by search engines and discoverable by researchers around the world, extending your work’s impact beyond Northwestern
  • Your work will be assigned a Digital Object Identifier (DOI) to ensure perpetual online access and to facilitate scholarly citation
  • Your work will help accelerate discovery and increase knowledge in your subject domain by adding to the global corpus of public scholarly information

Get started:

  • Visit Arch online
  • Log in with your NetID
  • Describe your thesis: title, author, date, keywords, rights, license, subject, etc.
  • Upload your thesis or capstone PDF and any related supplemental files (data, code, images, presentations, documentation, etc.)
  • Select a visibility: Public, Northwestern-only, Embargo (i.e. delayed release)
  • Save your work to the repository

Your thesis manuscript or capstone report will then be published on the MSDS page. You can view other published work here .

For questions or support in publishing your thesis or capstone, please contact [email protected] .

  • Press Enter to activate screen reader mode.

Department of Computer Science

Thesis projects and research in ds.

The Master's thesis is a mandatory course of the Master's program in Data Science. The thesis is supervised by a professor of the data science faculty list .

Research in Data Science is a core elective for students in Data Science under the supervision of a data science professor.

Research in Data Science

The project is in independent work under the supervision of a member of the faculty in data science

Only students who have passed at least one core course in Data Management and Processing, and one core course in Data Analysis can start with a research project.

Before starting, the project must be registered in mystudies and a project description must be submitted at the start of the project to the studies administration by e-mail (address see Contact in right column).

Master's Thesis

The Master's Thesis requires 6 months of full time study/work, and we strongly discourage you from attending any courses in parallel. We recommend that you acquire all course credits before the start of the Master’s thesis. The topic for the Master’s thesis must be chosen within Data Science.

Before starting a Master’s thesis, it is important to agree with your supervisor on the task and the assessment scheme. Both have to be documented thoroughly. You electronically register the Master’s thesis in mystudies.

It is possible to complete the Master’s thesis in industry provided that a professor involved in the Data Science Master’s program supervises the thesis and your tutor approves it.

Further details on internal regulations of the Master’s thesis can be downloaded from the following website: www.inf.ethz.ch/studies/forms-and-documents.html .

Overview Master's Theses Projects

Chair of programming methodology.

  • Prof. Dr. Martin Vechev

Institute for Computing Platform

  • Prof. Dr. Gustavo Alonso
  • Prof. Dr. Torsten Hoefler
  • Prof. Dr. Ana Klimovic
  • Prof. Dr. Timothy Roscoe

Institute for Machine Learning

  • Prof. Dr. Valentina Boeva
  • Prof. Dr. Joachim Buhmann
  • Prof. Dr. Ryan Cotterell    
  • external page Prof. Dr. Menna El-Assady call_made   
  • Prof. Dr. Niao He
  • Prof. Dr. Thomas Hofmann
  • Prof. Dr. Andreas Krause
  • external page Prof. Dr. Fernando Perez Cruz call_made
  • Prof. Dr. Gunnar Rätsch
  • external page Prof. Dr. Mrinmaya Sachan call_made
  • external page Prof. Dr. Bernhard Schölkopf call_made  
  • Prof. Dr. Julia Vogt

Institute for Persasive Computing

  • Prof. Dr. Otmar Hilliges

Institute of Computer Systems

  • Prof. Dr. Markus Püschel

Institute of Information Security

  • Prof. Dr. David Basin
  • Prof. Dr. Srdjan Capkun
  • external page Prof. Dr. Florian Tramèr call_made

Institute of Theoretical Computer Science

  • Prof. Dr. Bernd Gärtner

Institute of Visual Computing

  • Prof. Dr. Markus Gross
  • Prof. Dr. Marc Pollefeys
  • Prof. Dr. Olga Sorkine
  • Prof. Dr. Siyu Tang

Disney Research Zurich

  • external page Prof. Dr. Robert Sumner call_made

Automatic Control Laboratory

  • Prof. Dr. Florian Dörfler
  • Prof. Dr. John Lygeros

Communication Technology Laboratory

  • Prof. Dr. Helmut Bölcskei

Computer Engineering and Networks Laboratory

  • Prof. Dr. Laurent Vanbever
  • Prof. Dr. Roger Wattenhofer

Computer Vision Laboratory

  • Prof. Dr. Ender Konukoglu
  • Prof. Dr. Luc Van Gool
  • Prof. Dr. Fisher Yu

Institute for Biomedical Engineering

  • Prof. Dr. Klaas Enno Stephan

Integrated Systems Laboratory

  • Prof. Dr. Luca Benini
  • Prof. Dr. Christoph Studer

Signal and Information Processing Laboratory (ISI)

  • Prof. Dr. Amos Lapidoth
  • Prof. Dr. Hans-Andrea Loeliger

D-MATH does not publish Master's Theses projects. In case of interest contact the professor directly.

FIM - Insitute for Mathematical Research

  • Prof. Dr. Alessio Figalli

Financial Mathematics

  • Prof. Dr. Josef Teichmann

Institute for Operations Research

  • Prof. Dr. Robert Weismantel
  • Prof. Dr. Rico Zenklusen

RiskLab Switzerland

  • external page Prof. Dr. Patrick Cheridito call_made
  • external page Prof. Dr. Mario Valentin Wüthrich call_made

Seminar for Applied Mathematics

  • Prof. Dr. Rima Alaifari
  • Prof. Dr. Siddhartha Mishra

Seminar for Statistics

  • Prof. Dr. Afonso Bandeira
  • Prof. Dr. Peter Bühlmann
  • Prof. Dr. Yuansi Chen
  • Prof. Dr. Nicolai Meinshausen
  • Prof. Dr. Jonas Peters
  • Prof. Dr. Johanna Ziegel

Law, Economics, and Data Science Group

  • Prof. Dr. Eliott Ash , D-GESS)

Institute for Geodesy and Photogrammetry

  • Prof. Dr. Konrad Schindler (D-BSSE)

Instructions for MSc Thesis

Before the thesis.

Before you start work on your thesis, it is important to put some thought into the choice of topic and familiarize yourself with the criteria and procedure. To do that, follow these steps, in this order:

Step 0: Read the university instructions .

Read the MSc thesis instructions and grading criteria on the university website. Computer Science Master's program: [link] . Data Science Master's program: [ link ].

Step 1: Choose a topic .

Choose a topic among the ones listed on the group's webpage [ link ].

You can also propose your own topic. In this case, you must explain what the main contribution of the thesis will be and identify at least one scientific publication that is related to the topic you propose.

Step 2: Contact us .

Submit the application form [ link ] to let us know of your interest to do your thesis in the group. Note : If you contact us, then please be ready to start work on the thesis within one month .

Step 3: Agree on the topic .

We have a brief discussion about the topic and devise a high-level plan for thesis work and content. We also discuss a start date , when you start work on the thesis. In addition, you should contact a second evaluator for the thesis.

Thesis timeline

Below you find the milestones after you have started work on the thesis. In parenthesis, you find an estimate of when each milestone occurs. The thesis work ends when you submit it for approval. The total duration from start to end of the thesis should be about four months.

Milestone #0: Thesis outline (at most 3 weeks from the start) .

You create a first outline of the thesis. The outline should contain the titles of the chapters, along with a (tentative) list of sections and contents. An indicative template for the outline is shown below on this page.

Milestone #1: A draft with first results (about 2 months from start) .

All chapters should contain some readable content (not necessarily polished). Most importantly, some results should already be described. Ideally, you should be able to complete and refine the results within one more month.

Milestone #2: A draft with all results (about 1 month before the end).

Most content should now be in the draft. Some polishing remains and some results may still be refined. Notify the second evaluator that you are near the end of the thesis work. Optionally, you may send the thesis draft and receive preliminary comments from the second evaluator.

Milestone #3: Submit the thesis for approval (end of thesis work).

You will receive a grade and comments after the next program board's meeting.

Supervision

What you can expect from the supervisor:

  • Comments for the thesis draft after each milestone (see timeline above) and, if necessary, a meeting.
  • Suggestions for how to proceed in cases when you encounter a major hurdle.

In addition, you are welcome to participate in the group meetings and discuss your thesis work with other group members.

Note however that one of the grading criteria for the thesis is whether you worked independently -- and in the end, the thesis should be your own work.

Template for Thesis Outline

Below you find a suggested template for the outline of the thesis. You may adapt it to your work, of course (e.g., change chapter titles or structure).

A summary of the thesis that mentions the broader topic of the thesis and why it is important; the research question or technical problem addressed by the thesis; the main thesis contributions (e.g., data gathering, developed methods and algorithms, experimental evaluation) and results.

Chapter 1: Introduction

The introduction should motivate the thesis and give a longer summary. It should be written in a way that allows anyone in your program to understand it, even if they are not experts in the topic.

  • What is the broader topic of the thesis?
  • Why is it important?
  • What research question(s) or technical problems does the thesis address?
  • What are the most related works from the literature on the topic? How does the thesis differ from what has already been done?
  • What are the main thesis contributions (e.g., data gathering, developed methods and algorithms, experimental evaluation)?
  • What are the results?

Chapter 2: Related literature

Organize this chapter in sections, with one section for each research area that is related to your thesis. For each research area, cite all the publications that are related to your topic, and describe at least the most important of them.

Chapter 3: Preliminaries

In this chapter, place the information that is necessary for you to describe the contributions and results of the thesis. It may be different from thesis to thesis, but could include sections about:

Setting. Define the terms and notation you will be using. State any assumptions you make across the thesis. Background on Methods . Describe existing methods from the literature (e.g., algorithms or ML models) that you use for your work. Data (esp. for a Data Science thesis). If the main contribution is data analysis, then describe the data here, before the analysis.

Chapter 4: Methodological contribution

For a Computer Science thesis, this part typically describes the algorithm(s) developed for the thesis. For a Data Science thesis, this part typically describes the method for the analysis.

Chapter 5: Results

This chapter describes the results obtained when the methods of Chapter 4 are used on data.

For a Computer Science thesis, this part typically describes the performance of the developed algorithm(s) on various synthetic and real datasets. For a Data Science thesis, this part typically describes the findings of the analysis.

The chapter should also describe what insights are obtained from the results.

Chapter 6: Conclusion

  • Summarize the contribution of the thesis.
  • Provide an evaluation: are the results conclusive, are there limitations in the contribution?
  • How would you extend the thesis, what can be done next on the same topic?

MSc in Data Science, Project Guide, 2018-2019

NEW: List of project areas is available!

Introduction

The project is an essential component of the Masters course. It is a substantial piece of full-time independent research in some area of data science. You will carry out your project under the individual supervision of a member of CDT staff.

The project will occupy a large part of your time during the Spring semester, and 100% of your time from late May/early June — once your examinations have completed — until mid-August. A dissertation describing the work must be submitted by a deadline in mid-August.

Choosing a Project

You are expected to choose a project at the end of Semester 1. Students are expected to find their own projects in consultation with supervisors. To help with this, staff will post some project ideas in late October. These will be indicative of their areas of interest, but they shouldn't be interpreted as a fixed menu; they are simply the starting point for discussion. The procedure for project selection is:

  • You should identify some research areas that interest you, on the basis of your coursework so far, your independent reading, the guest lectures in IRDS, and the set of project ideas proposed by staff in late October.
  • Arrange meetings with supervisors in those research areas to discuss potential MSc projects. Often supervisors will have several potential project ideas in mind, but you should of course bring up any potential directions that you have been thinking about.
  • IMPORTANT: Once you have identified a project and supervisor who is willing to take you on, you will need to fill out a brief form identifying the topic and supervisor. The deadline for this is the 12th of December, 2018 .
  • The project proposals will all be reviewed for suitability by the CDT project coordinator. However, your proposal is not a contract and we are not going to hold you to it. It should simply represent a good-faith attempt to identify a topic of mutual interest to you and your supervisor.

Schedule and Important Dates

The overall schedule is: You will meet with supervisors during Semester 1 and select a project shortly after Semester 1 classes end. Once you have selected a project, we recommend that you get a head start on your project over the winter break. During Semester 2, you will work approximately 50% on coursework and 50% on your project. After classes end in Semester 2, you will have a revision period for your exams — during this period we recommend that you focus on your exams. Once the exams complete, you should return to your project work, spending 100% time on it until the final deadline in mid-August.

Here are the important dates and deadlines for 2018-19:

  • November -- You should start meeting with potential MSc supervisors now (if you have not begun already)
  • 12 December 2018 -- MSc project selections due (RTDS students).
  • 11 January 2018, noon -- Interim Report due (RTDS+ students).
  • 1 March 2018, noon -- Interim Report due (RTDS students).
  • April - May 2018 -- Revision period and exams. During this period we would not expect you to be making much progress on your project
  • late May 2018 -- Begin full time work on project.
  • mid-August 2018 (exact date TBD, probably 16 Aug) -- Deadline for submission of dissertation.
  • October 2018 -- Board of Examiners meets and marks announced

Supervision

As part of choosing a project, you will also choose a supervisor. Your supervisor gives technical advice and also assists you in planning the research. Students should expect approximately weekly meetings with their supervisor. Backup supervisors may be allocated to cover periods of absence of the supervisor, if necessary.

Interim Report

At the beginning of March (or early January for RTDS+), you will submit an interim report about how your project has gone so far. This should be 6-8 pages. This report will not form part of the mark; it is solely for feedback, so it is in your best interest to complete it. The report should describe the research problem that you are considering, explain why it is important, what methods you expect to use, how you expect to evaluate your results, what results you have been able to obtain so far, and what your plans are for the summer. You should write this in such a way that you can re-use the text in your final MSc project report.

Relationship to Your PhD Project

The MSc project is designed to be a first research project that prepares you for the more extended work that you will do in your PhD. The project is intended to be novel research — we hope that in some cases the MSc projects will lead to publishable results, although this is not required and will not always be possible, depending on the nature of the project. Your supervisor should help you identify a topic that has the potential to lead into a larger PhD project, should you decide to continue research in the area.

That said, it is not required that your PhD research be in the same area as your MSc research. Some students will indeed continue their PhD work with the same research area and supervisor as their MSc. Others will choose a different PhD supervisor. Both of these outcomes are expected and are perfectly fine.

Of course if you do already have a good idea about your intended PhD topic, you will want to take this into account when selecting your MSc topic — whether it be to choose a topic in the same area, or to choose a topic that will provide you with complementary experience.

Projects with External Collaborators

Some students may wish to undertake a project which relates to the activities of one of our external partners. Alternatively, some projects that supervisors suggest to you may have a natural relationship with one of the CDT partners. This is encouraged. A student undertaking such a project will still need to find an academic supervisor who is willing to take on the project. During the project phase, students working on such projects have both an academic supervisor and a designated contact at the partner organization.

We strongly encourage you to discuss your projects with other students, talk informally about your progress, and get advice from your peers about any issues. Last year this happened as part of the CDT Tea meetings; this year, we will discuss whether to continue this or to have more formal tutorials.

The Dissertation

  • Title page with abstract.
  • Introduction : an introduction to the document, clearly stating the hypothesis or objective of the project, motivation for the work and the results achieved. The structure of the remainder of the document should also be outlined.
  • Background : background to the project, previous work, exposition of relevant literature, setting of the work in the proper context. This should contain sufficient information to allow the reader to appreciate the contribution you have made.
  • Description of the work undertaken : this may be divided into chapters describing the conceptual design work and the actual implementation separately. Any problems or difficulties and the suggested solutions should be mentioned. Alternative solutions and their evaluation should also be included.
  • Analysis or Evaluation : results and their critical analysis should be reported, whether the results conform to expectations or otherwise and how they compare with other related work. Where appropriate evaluation of the work against the original objectives should be presented.
  • Conclusion : concluding remarks and observations, unsolved problems, suggestions for further work.
  • Bibliography .

In addition, the dissertation must be accompanied by a statement declaring that the student has read and understood the University's plagiarism guidelines.

In the acknowledgments section of your dissertation, in addition to thanking anyone that you wish, you should also acknowledge the funding sources that have supported you during the year. Please follow these instructions for acknowledging your funding sources . You should get to know them well as you will also need to follow them for every paper that you publish during your PhD.

Students should write as they go , but should also budget several weeks towards the end of the project to focus on writing. Where appropriate the dissertation may additionally contain appendices in which relevant program listings, experimental data, circuit diagrams, formal proofs, etc. may be included. However, students should keep in mind that they are marked on the quality of the dissertation, not its length.

The dissertation must be word-processed using either LaTeX or a system with similar capabilities. The LaTeX thesis template can be found via the local packages web page. You don't have to use these packages, but your thesis must match the style (i.e., font size, text width etc) shown in the sample output for an Informatics thesis.

Computing Resources

Many projects will require computing resources. Please see the CDT handbook for information about what computing resources are available to CDT students.

If a project requires anything more, this needs to be requested at the time of writing the proposal, and the supervisor needs to explicitly ask for additional resources if necessary (start by talking to the CDT projects organizer, below).

Technical problems during project work are only considered for resources we provide; no technical support, compensation for lost data, extensions for time lost due to technical problems with external hard- and software as provided will be given, except where this is explicitly stated as part of a project specification and adequately resourced at the start of the project.

Students must submit their project by the deadline in mid August (see above). Students need to submit hard copy, electronic copy and archive software as detailed below.

  • Hard Copy. Two printed copies of the dissertation, bound with the soft covers provided by the School, must be submitted to the ITO before the deadline.
  • Electronic Copy. Students must follow the instructions for how to submit their project electronically. Please use the online submission form that is linked from there.
  • Software. Students are required to preserve any software they have generated, source, object and make files, together with any associated data that has been accumulated. When you submit the electronic copy of your thesis you will also be asked to provide an archive file (tar or zip) containing all the project materials. You should create a directory, for example named PROJECT , in your file space specifically for the purpose. Please follow the accepted practice of creating a README file which documents your files and their function. This directory should be compressed and then submitted, together with the electronic version of the thesis, via the online submission webpage. See these instructions for how to submit your project electronically.

Project Assessment

  • Understanding of the problem
  • Completion of the work
  • Quality of the work
  • Quality of the dissertation
  • Knowledge of the literature
  • Critical evaluation of previous work
  • Critical evaluation of own work
  • Justification of design decisions
  • Solution of conceptual problems
  • Amount of work
  • Evidence of outstanding merit e.g. originality
  • Inclusion of material worthy of publication

The project involves both the application of skills learned in the past and the acquisition of new skills. It allows students to demonstrate their ability to organise and carry out a major piece of work according to sound scientific and engineering principles. The types of activity involved in each project will vary but all will typically share the following features:

  • Research the literature and gather background information
  • Analyse requirements, compare alternatives and specify a solution
  • Design and implement the solution
  • Experiment and evaluate the solution
  • Develop written and oral presentation skills

You may have noticed that there is both a 90pt version of the project (RTDS) and a 120pt version (RTDS+). The 120pt version is for students who have a previous Master's degree in an area relating to data science along with a clear project and a supervisor in mind when they arrive, and therefore want to take fewer classes and a larger project. If you wish to choose this option, you must speak to the CDT Year 1 organizer during course registeration; see the MSc by Research Course Handbook for more information.

The RTDS+ project works the same as the RTDS project, except that: (a) You are expected to have selected a supervisor by 21 September; (b) You should commence work on your project part-time in the autumn; (c) You should submit an interim report by 11 January; and (d) The markers will look to see evidence of more work or a more advanced project, commensurate to the additional amount of time you have had. For example, a larger project might make a larger research contribution, apply more advanced methodology, contain more extensive experimental evaluation, etc.

This page is currently maintained by Adam Lopez .

eml header

37 Research Topics In Data Science To Stay On Top Of

Stewart Kaplan

  • February 22, 2024

As a data scientist, staying on top of the latest research in your field is essential.

The data science landscape changes rapidly, and new techniques and tools are constantly being developed.

To keep up with the competition, you need to be aware of the latest trends and topics in data science research.

In this article, we will provide an overview of 37 hot research topics in data science.

We will discuss each topic in detail, including its significance and potential applications.

These topics could be an idea for a thesis or simply topics you can research independently.

Stay tuned – this is one blog post you don’t want to miss!

37 Research Topics in Data Science

1.) predictive modeling.

Predictive modeling is a significant portion of data science and a topic you must be aware of.

Simply put, it is the process of using historical data to build models that can predict future outcomes.

Predictive modeling has many applications, from marketing and sales to financial forecasting and risk management.

As businesses increasingly rely on data to make decisions, predictive modeling is becoming more and more important.

While it can be complex, predictive modeling is a powerful tool that gives businesses a competitive advantage.

predictive modeling

2.) Big Data Analytics

These days, it seems like everyone is talking about big data.

And with good reason – organizations of all sizes are sitting on mountains of data, and they’re increasingly turning to data scientists to help them make sense of it all.

But what exactly is big data? And what does it mean for data science?

Simply put, big data is a term used to describe datasets that are too large and complex for traditional data processing techniques.

Big data typically refers to datasets of a few terabytes or more.

But size isn’t the only defining characteristic – big data is also characterized by its high Velocity (the speed at which data is generated), Variety (the different types of data), and Volume (the amount of the information).

Given the enormity of big data, it’s not surprising that organizations are struggling to make sense of it all.

That’s where data science comes in.

Data scientists use various methods to wrangle big data, including distributed computing and other decentralized technologies.

With the help of data science, organizations are beginning to unlock the hidden value in their big data.

By harnessing the power of big data analytics, they can improve their decision-making, better understand their customers, and develop new products and services.

3.) Auto Machine Learning

Auto machine learning is a research topic in data science concerned with developing algorithms that can automatically learn from data without intervention.

This area of research is vital because it allows data scientists to automate the process of writing code for every dataset.

This allows us to focus on other tasks, such as model selection and validation.

Auto machine learning algorithms can learn from data in a hands-off way for the data scientist – while still providing incredible insights.

This makes them a valuable tool for data scientists who either don’t have the skills to do their own analysis or are struggling.

Auto Machine Learning

4.) Text Mining

Text mining is a research topic in data science that deals with text data extraction.

This area of research is important because it allows us to get as much information as possible from the vast amount of text data available today.

Text mining techniques can extract information from text data, such as keywords, sentiments, and relationships.

This information can be used for various purposes, such as model building and predictive analytics.

5.) Natural Language Processing

Natural language processing is a data science research topic that analyzes human language data.

This area of research is important because it allows us to understand and make sense of the vast amount of text data available today.

Natural language processing techniques can build predictive and interactive models from any language data.

Natural Language processing is pretty broad, and recent advances like GPT-3 have pushed this topic to the forefront.

natural language processing

6.) Recommender Systems

Recommender systems are an exciting topic in data science because they allow us to make better products, services, and content recommendations.

Businesses can better understand their customers and their needs by using recommender systems.

This, in turn, allows them to develop better products and services that meet the needs of their customers.

Recommender systems are also used to recommend content to users.

This can be done on an individual level or at a group level.

Think about Netflix, for example, always knowing what you want to watch!

Recommender systems are a valuable tool for businesses and users alike.

7.) Deep Learning

Deep learning is a research topic in data science that deals with artificial neural networks.

These networks are composed of multiple layers, and each layer is formed from various nodes.

Deep learning networks can learn from data similarly to how humans learn, irrespective of the data distribution.

This makes them a valuable tool for data scientists looking to build models that can learn from data independently.

The deep learning network has become very popular in recent years because of its ability to achieve state-of-the-art results on various tasks.

There seems to be a new SOTA deep learning algorithm research paper on  https://arxiv.org/  every single day!

deep learning

8.) Reinforcement Learning

Reinforcement learning is a research topic in data science that deals with algorithms that can learn on multiple levels from interactions with their environment.

This area of research is essential because it allows us to develop algorithms that can learn non-greedy approaches to decision-making, allowing businesses and companies to win in the long term compared to the short.

9.) Data Visualization

Data visualization is an excellent research topic in data science because it allows us to see our data in a way that is easy to understand.

Data visualization techniques can be used to create charts, graphs, and other visual representations of data.

This allows us to see the patterns and trends hidden in our data.

Data visualization is also used to communicate results to others.

This allows us to share our findings with others in a way that is easy to understand.

There are many ways to contribute to and learn about data visualization.

Some ways include attending conferences, reading papers, and contributing to open-source projects.

data visualization

10.) Predictive Maintenance

Predictive maintenance is a hot topic in data science because it allows us to prevent failures before they happen.

This is done using data analytics to predict when a failure will occur.

This allows us to take corrective action before the failure actually happens.

While this sounds simple, avoiding false positives while keeping recall is challenging and an area wide open for advancement.

11.) Financial Analysis

Financial analysis is an older topic that has been around for a while but is still a great field where contributions can be felt.

Current researchers are focused on analyzing macroeconomic data to make better financial decisions.

This is done by analyzing the data to identify trends and patterns.

Financial analysts can use this information to make informed decisions about where to invest their money.

Financial analysis is also used to predict future economic trends.

This allows businesses and individuals to prepare for potential financial hardships and enable companies to be cash-heavy during good economic conditions.

Overall, financial analysis is a valuable tool for anyone looking to make better financial decisions.

Financial Analysis

12.) Image Recognition

Image recognition is one of the hottest topics in data science because it allows us to identify objects in images.

This is done using artificial intelligence algorithms that can learn from data and understand what objects you’re looking for.

This allows us to build models that can accurately recognize objects in images and video.

This is a valuable tool for businesses and individuals who want to be able to identify objects in images.

Think about security, identification, routing, traffic, etc.

Image Recognition has gained a ton of momentum recently – for a good reason.

13.) Fraud Detection

Fraud detection is a great topic in data science because it allows us to identify fraudulent activity before it happens.

This is done by analyzing data to look for patterns and trends that may be associated with the fraud.

Once our machine learning model recognizes some of these patterns in real time, it immediately detects fraud.

This allows us to take corrective action before the fraud actually happens.

Fraud detection is a valuable tool for anyone who wants to protect themselves from potential fraudulent activity.

fraud detection

14.) Web Scraping

Web scraping is a controversial topic in data science because it allows us to collect data from the web, which is usually data you do not own.

This is done by extracting data from websites using scraping tools that are usually custom-programmed.

This allows us to collect data that would otherwise be inaccessible.

For obvious reasons, web scraping is a unique tool – giving you data your competitors would have no chance of getting.

I think there is an excellent opportunity to create new and innovative ways to make scraping accessible for everyone, not just those who understand Selenium and Beautiful Soup.

15.) Social Media Analysis

Social media analysis is not new; many people have already created exciting and innovative algorithms to study this.

However, it is still a great data science research topic because it allows us to understand how people interact on social media.

This is done by analyzing data from social media platforms to look for insights, bots, and recent societal trends.

Once we understand these practices, we can use this information to improve our marketing efforts.

For example, if we know that a particular demographic prefers a specific type of content, we can create more content that appeals to them.

Social media analysis is also used to understand how people interact with brands on social media.

This allows businesses to understand better what their customers want and need.

Overall, social media analysis is valuable for anyone who wants to improve their marketing efforts or understand how customers interact with brands.

social media

16.) GPU Computing

GPU computing is a fun new research topic in data science because it allows us to process data much faster than traditional CPUs .

Due to how GPUs are made, they’re incredibly proficient at intense matrix operations, outperforming traditional CPUs by very high margins.

While the computation is fast, the coding is still tricky.

There is an excellent research opportunity to bring these innovations to non-traditional modules, allowing data science to take advantage of GPU computing outside of deep learning.

17.) Quantum Computing

Quantum computing is a new research topic in data science and physics because it allows us to process data much faster than traditional computers.

It also opens the door to new types of data.

There are just some problems that can’t be solved utilizing outside of the classical computer.

For example, if you wanted to understand how a single atom moved around, a classical computer couldn’t handle this problem.

You’ll need to utilize a quantum computer to handle quantum mechanics problems.

This may be the “hottest” research topic on the planet right now, with some of the top researchers in computer science and physics worldwide working on it.

You could be too.

quantum computing

18.) Genomics

Genomics may be the only research topic that can compete with quantum computing regarding the “number of top researchers working on it.”

Genomics is a fantastic intersection of data science because it allows us to understand how genes work.

This is done by sequencing the DNA of different organisms to look for insights into our and other species.

Once we understand these patterns, we can use this information to improve our understanding of diseases and create new and innovative treatments for them.

Genomics is also used to study the evolution of different species.

Genomics is the future and a field begging for new and exciting research professionals to take it to the next step.

19.) Location-based services

Location-based services are an old and time-tested research topic in data science.

Since GPS and 4g cell phone reception became a thing, we’ve been trying to stay informed about how humans interact with their environment.

This is done by analyzing data from GPS tracking devices, cell phone towers, and Wi-Fi routers to look for insights into how humans interact.

Once we understand these practices, we can use this information to improve our geotargeting efforts, improve maps, find faster routes, and improve cohesion throughout a community.

Location-based services are used to understand the user, something every business could always use a little bit more of.

While a seemingly “stale” field, location-based services have seen a revival period with self-driving cars.

GPS

20.) Smart City Applications

Smart city applications are all the rage in data science research right now.

By harnessing the power of data, cities can become more efficient and sustainable.

But what exactly are smart city applications?

In short, they are systems that use data to improve city infrastructure and services.

This can include anything from traffic management and energy use to waste management and public safety.

Data is collected from various sources, including sensors, cameras, and social media.

It is then analyzed to identify tendencies and habits.

This information can make predictions about future needs and optimize city resources.

As more and more cities strive to become “smart,” the demand for data scientists with expertise in smart city applications is only growing.

21.) Internet Of Things (IoT)

The Internet of Things, or IoT, is exciting and new data science and sustainability research topic.

IoT is a network of physical objects embedded with sensors and connected to the internet.

These objects can include everything from alarm clocks to refrigerators; they’re all connected to the internet.

That means that they can share data with computers.

And that’s where data science comes in.

Data scientists are using IoT data to learn everything from how people use energy to how traffic flows through a city.

They’re also using IoT data to predict when an appliance will break down or when a road will be congested.

Really, the possibilities are endless.

With such a wide-open field, it’s easy to see why IoT is being researched by some of the top professionals in the world.

internet of things

22.) Cybersecurity

Cybersecurity is a relatively new research topic in data science and in general, but it’s already garnering a lot of attention from businesses and organizations.

After all, with the increasing number of cyber attacks in recent years, it’s clear that we need to find better ways to protect our data.

While most of cybersecurity focuses on infrastructure, data scientists can leverage historical events to find potential exploits to protect their companies.

Sometimes, looking at a problem from a different angle helps, and that’s what data science brings to cybersecurity.

Also, data science can help to develop new security technologies and protocols.

As a result, cybersecurity is a crucial data science research area and one that will only become more important in the years to come.

23.) Blockchain

Blockchain is an incredible new research topic in data science for several reasons.

First, it is a distributed database technology that enables secure, transparent, and tamper-proof transactions.

Did someone say transmitting data?

This makes it an ideal platform for tracking data and transactions in various industries.

Second, blockchain is powered by cryptography, which not only makes it highly secure – but is a familiar foe for data scientists.

Finally, blockchain is still in its early stages of development, so there is much room for research and innovation.

As a result, blockchain is a great new research topic in data science that vows to revolutionize how we store, transmit and manage data.

blockchain

24.) Sustainability

Sustainability is a relatively new research topic in data science, but it is gaining traction quickly.

To keep up with this demand, The Wharton School of the University of Pennsylvania has  started to offer an MBA in Sustainability .

This demand isn’t shocking, and some of the reasons include the following:

Sustainability is an important issue that is relevant to everyone.

Datasets on sustainability are constantly growing and changing, making it an exciting challenge for data scientists.

There hasn’t been a “set way” to approach sustainability from a data perspective, making it an excellent opportunity for interdisciplinary research.

As data science grows, sustainability will likely become an increasingly important research topic.

25.) Educational Data

Education has always been a great topic for research, and with the advent of big data, educational data has become an even richer source of information.

By studying educational data, researchers can gain insights into how students learn, what motivates them, and what barriers these students may face.

Besides, data science can be used to develop educational interventions tailored to individual students’ needs.

Imagine being the researcher that helps that high schooler pass mathematics; what an incredible feeling.

With the increasing availability of educational data, data science has enormous potential to improve the quality of education.

online education

26.) Politics

As data science continues to evolve, so does the scope of its applications.

Originally used primarily for business intelligence and marketing, data science is now applied to various fields, including politics.

By analyzing large data sets, political scientists (data scientists with a cooler name) can gain valuable insights into voting patterns, campaign strategies, and more.

Further, data science can be used to forecast election results and understand the effects of political events on public opinion.

With the wealth of data available, there is no shortage of research opportunities in this field.

As data science evolves, so does our understanding of politics and its role in our world.

27.) Cloud Technologies

Cloud technologies are a great research topic.

It allows for the outsourcing and sharing of computer resources and applications all over the internet.

This lets organizations save money on hardware and maintenance costs while providing employees access to the latest and greatest software and applications.

I believe there is an argument that AWS could be the greatest and most technologically advanced business ever built (Yes, I know it’s only part of the company).

Besides, cloud technologies can help improve team members’ collaboration by allowing them to share files and work on projects together in real-time.

As more businesses adopt cloud technologies, data scientists must stay up-to-date on the latest trends in this area.

By researching cloud technologies, data scientists can help organizations to make the most of this new and exciting technology.

cloud technologies

28.) Robotics

Robotics has recently become a household name, and it’s for a good reason.

First, robotics deals with controlling and planning physical systems, an inherently complex problem.

Second, robotics requires various sensors and actuators to interact with the world, making it an ideal application for machine learning techniques.

Finally, robotics is an interdisciplinary field that draws on various disciplines, such as computer science, mechanical engineering, and electrical engineering.

As a result, robotics is a rich source of research problems for data scientists.

29.) HealthCare

Healthcare is an industry that is ripe for data-driven innovation.

Hospitals, clinics, and health insurance companies generate a tremendous amount of data daily.

This data can be used to improve the quality of care and outcomes for patients.

This is perfect timing, as the healthcare industry is undergoing a significant shift towards value-based care, which means there is a greater need than ever for data-driven decision-making.

As a result, healthcare is an exciting new research topic for data scientists.

There are many different ways in which data can be used to improve healthcare, and there is a ton of room for newcomers to make discoveries.

healthcare

30.) Remote Work

There’s no doubt that remote work is on the rise.

In today’s global economy, more and more businesses are allowing their employees to work from home or anywhere else they can get a stable internet connection.

But what does this mean for data science? Well, for one thing, it opens up a whole new field of research.

For example, how does remote work impact employee productivity?

What are the best ways to manage and collaborate on data science projects when team members are spread across the globe?

And what are the cybersecurity risks associated with working remotely?

These are just a few of the questions that data scientists will be able to answer with further research.

So if you’re looking for a new topic to sink your teeth into, remote work in data science is a great option.

31.) Data-Driven Journalism

Data-driven journalism is an exciting new field of research that combines the best of both worlds: the rigor of data science with the creativity of journalism.

By applying data analytics to large datasets, journalists can uncover stories that would otherwise be hidden.

And telling these stories compellingly can help people better understand the world around them.

Data-driven journalism is still in its infancy, but it has already had a major impact on how news is reported.

In the future, it will only become more important as data becomes increasingly fluid among journalists.

It is an exciting new topic and research field for data scientists to explore.

journalism

32.) Data Engineering

Data engineering is a staple in data science, focusing on efficiently managing data.

Data engineers are responsible for developing and maintaining the systems that collect, process, and store data.

In recent years, there has been an increasing demand for data engineers as the volume of data generated by businesses and organizations has grown exponentially.

Data engineers must be able to design and implement efficient data-processing pipelines and have the skills to optimize and troubleshoot existing systems.

If you are looking for a challenging research topic that would immediately impact you worldwide, then improving or innovating a new approach in data engineering would be a good start.

33.) Data Curation

Data curation has been a hot topic in the data science community for some time now.

Curating data involves organizing, managing, and preserving data so researchers can use it.

Data curation can help to ensure that data is accurate, reliable, and accessible.

It can also help to prevent research duplication and to facilitate the sharing of data between researchers.

Data curation is a vital part of data science. In recent years, there has been an increasing focus on data curation, as it has become clear that it is essential for ensuring data quality.

As a result, data curation is now a major research topic in data science.

There are numerous books and articles on the subject, and many universities offer courses on data curation.

Data curation is an integral part of data science and will only become more important in the future.

businessman

34.) Meta-Learning

Meta-learning is gaining a ton of steam in data science. It’s learning how to learn.

So, if you can learn how to learn, you can learn anything much faster.

Meta-learning is mainly used in deep learning, as applications outside of this are generally pretty hard.

In deep learning, many parameters need to be tuned for a good model, and there’s usually a lot of data.

You can save time and effort if you can automatically and quickly do this tuning.

In machine learning, meta-learning can improve models’ performance by sharing knowledge between different models.

For example, if you have a bunch of different models that all solve the same problem, then you can use meta-learning to share the knowledge between them to improve the cluster (groups) overall performance.

I don’t know how anyone looking for a research topic could stay away from this field; it’s what the  Terminator  warned us about!

35.) Data Warehousing

A data warehouse is a system used for data analysis and reporting.

It is a central data repository created by combining data from multiple sources.

Data warehouses are often used to store historical data, such as sales data, financial data, and customer data.

This data type can be used to create reports and perform statistical analysis.

Data warehouses also store data that the organization is not currently using.

This type of data can be used for future research projects.

Data warehousing is an incredible research topic in data science because it offers a variety of benefits.

Data warehouses help organizations to save time and money by reducing the need for manual data entry.

They also help to improve the accuracy of reports and provide a complete picture of the organization’s performance.

Data warehousing feels like one of the weakest parts of the Data Science Technology Stack; if you want a research topic that could have a monumental impact – data warehousing is an excellent place to look.

data warehousing

36.) Business Intelligence

Business intelligence aims to collect, process, and analyze data to help businesses make better decisions.

Business intelligence can improve marketing, sales, customer service, and operations.

It can also be used to identify new business opportunities and track competition.

BI is business and another tool in your company’s toolbox to continue dominating your area.

Data science is the perfect tool for business intelligence because it combines statistics, computer science, and machine learning.

Data scientists can use business intelligence to answer questions like, “What are our customers buying?” or “What are our competitors doing?” or “How can we increase sales?”

Business intelligence is a great way to improve your business’s bottom line and an excellent opportunity to dive deep into a well-respected research topic.

37.) Crowdsourcing

One of the newest areas of research in data science is crowdsourcing.

Crowdsourcing is a process of sourcing tasks or projects to a large group of people, typically via the internet.

This can be done for various purposes, such as gathering data, developing new algorithms, or even just for fun (think: online quizzes and surveys).

But what makes crowdsourcing so powerful is that it allows businesses and organizations to tap into a vast pool of talent and resources they wouldn’t otherwise have access to.

And with the rise of social media, it’s easier than ever to connect with potential crowdsource workers worldwide.

Imagine if you could effect that, finding innovative ways to improve how people work together.

That would have a huge effect.

crowd sourcing

Final Thoughts, Are These Research Topics In Data Science For You?

Thirty-seven different research topics in data science are a lot to take in, but we hope you found a research topic that interests you.

If not, don’t worry – there are plenty of other great topics to explore.

The important thing is to get started with your research and find ways to apply what you learn to real-world problems.

We wish you the best of luck as you begin your data science journey!

Other Data Science Articles

We love talking about data science; here are a couple of our favorite articles:

  • Why Are You Interested In Data Science?
  • Recent Posts

Stewart Kaplan

  • Does Google Fi Use Software or SIM Card? [Find Out How It Works] - May 18, 2024
  • How Machine Learning Enhances Software Development [Must-Read Insights] - May 18, 2024
  • Do Software Engineers Need a Portfolio Website? [Unlock Success Now] - May 18, 2024

MIT Libraries home DSpace@MIT

  • DSpace@MIT Home
  • MIT Libraries

This collection of MIT Theses in DSpace contains selected theses and dissertations from all MIT departments. Please note that this is NOT a complete collection of MIT theses. To search all MIT theses, use MIT Libraries' catalog .

MIT's DSpace contains more than 58,000 theses completed at MIT dating as far back as the mid 1800's. Theses in this collection have been scanned by the MIT Libraries or submitted in electronic format by thesis authors. Since 2004 all new Masters and Ph.D. theses are scanned and added to this collection after degrees are awarded.

MIT Theses are openly available to all readers. Please share how this access affects or benefits you. Your story matters.

If you have questions about MIT theses in DSpace, [email protected] . See also Access & Availability Questions or About MIT Theses in DSpace .

If you are a recent MIT graduate, your thesis will be added to DSpace within 3-6 months after your graduation date. Please email [email protected] with any questions.

Permissions

MIT Theses may be protected by copyright. Please refer to the MIT Libraries Permissions Policy for permission information. Note that the copyright holder for most MIT theses is identified on the title page of the thesis.

Theses by Department

  • Comparative Media Studies
  • Computation for Design and Optimization
  • Computational and Systems Biology
  • Department of Aeronautics and Astronautics
  • Department of Architecture
  • Department of Biological Engineering
  • Department of Biology
  • Department of Brain and Cognitive Sciences
  • Department of Chemical Engineering
  • Department of Chemistry
  • Department of Civil and Environmental Engineering
  • Department of Earth, Atmospheric, and Planetary Sciences
  • Department of Economics
  • Department of Electrical Engineering and Computer Sciences
  • Department of Humanities
  • Department of Linguistics and Philosophy
  • Department of Materials Science and Engineering
  • Department of Mathematics
  • Department of Mechanical Engineering
  • Department of Nuclear Science and Engineering
  • Department of Ocean Engineering
  • Department of Physics
  • Department of Political Science
  • Department of Urban Studies and Planning
  • Engineering Systems Division
  • Harvard-MIT Program of Health Sciences and Technology
  • Institute for Data, Systems, and Society
  • Media Arts & Sciences
  • Operations Research Center
  • Program in Real Estate Development
  • Program in Writing and Humanistic Studies
  • Science, Technology & Society
  • Science Writing
  • Sloan School of Management
  • Supply Chain Management
  • System Design & Management
  • Technology and Policy Program

Collections in this community

Doctoral theses, graduate theses, undergraduate theses, recent submissions.

Thumbnail

The pulse amplifier in theory and experiment 

Thumbnail

Optical studies of the nature of metallic surfaces 

Thumbnail

A controlled community for Waterbury, Connecticut 

feed

  • Thesis Option

Data Science master’s students can choose to satisfy the research experience requirement by selecting the thesis option. Students will spend the majority of their second year working on a substantial data science project that culminates in the submission and oral defense of a master’s thesis. While all thesis projects must be related to data science, students are given leeway in finding a project in a domain of study that fits with their background and interest.

All students choosing the thesis option must find a research advisor and submit a thesis proposal by mid-April of their first year of study. Thesis proposals will be evaluated by the Data Science faculty committee and only those students whose proposals are accepted will be allowed to continue with the thesis option.  

To account for the time spent on thesis research, students choosing the thesis option are able substitute three required courses (the Capstone and two "free" elective courses (as defined in the final bullet point on the degree requirement page )) with AC 302.

In Applied Computation

  • How to Apply
  • Learning Outcomes
  • Master of Science Degree Requirements
  • Master of Engineering Degree Requirements
  • CSE courses
  • Degree Requirements
  • Data Science courses
  • Data Science FAQ
  • Secondary Field Requirements
  • Advising and Other Activities
  • AB/SM Information
  • Alumni Stories
  • Financing the Degree
  • Student FAQ

Chapman University Digital Commons

Home > Dissertations and Theses > Computational and Data Sciences (PhD) Dissertations

Computational and Data Sciences (PhD) Dissertations

Below is a selection of dissertations from the Doctor of Philosophy in Computational and Data Sciences program in Schmid College that have been included in Chapman University Digital Commons. Additional dissertations from years prior to 2019 are available through the Leatherby Libraries' print collection or in Proquest's Dissertations and Theses database.

Dissertations from 2024 2024

A Novel Correction for the Multivariate Ljung-Box Test , Minhao Huang

Machine Learning and Geostatistical Approaches for Discovery of Weather and Climate Events Related to El Niño Phenomena , Sachi Perera

Global to Glocal: A Confluence of Data Science and Earth Observations in the Advancement of the SDGs , Rejoice Thomas

Dissertations from 2023 2023

Computational Analysis of Antibody Binding Mechanisms to the Omicron RBD of SARS-CoV-2 Spike Protein: Identification of Epitopes and Hotspots for Developing Effective Therapeutic Strategies , Mohammed Alshahrani

Integration of Computer Algebra Systems and Machine Learning in the Authoring of the SANYMS Intelligent Tutoring System , Sam Ford

Voluntary Action and Conscious Intention , Jake Gavenas

Random Variable Spaces: Mathematical Properties and an Extension to Programming Computable Functions , Mohammed Kurd-Misto

Computational Modeling of Superconductivity from the Set of Time-Dependent Ginzburg-Landau Equations for Advancements in Theory and Applications , Iris Mowgood

Application of Machine Learning Algorithms for Elucidation of Biological Networks from Time Series Gene Expression Data , Krupa Nagori

Stochastic Processes and Multi-Resolution Analysis: A Trigonometric Moment Problem Approach and an Analysis of the Expenditure Trends for Diabetic Patients , Isaac Nwi-Mozu

Applications of Causal Inference Methods for the Estimation of Effects of Bone Marrow Transplant and Prescription Drugs on Survival of Aplastic Anemia Patients , Yesha M. Patel

Causal Inference and Machine Learning Methods in Parkinson's Disease Data Analysis , Albert Pierce

Causal Inference Methods for Estimation of Survival and General Health Status Measures of Alzheimer’s Disease Patients , Ehsan Yaghmaei

Dissertations from 2022 2022

Computational Approaches to Facilitate Automated Interchange between Music and Art , Rao Hamza Ali

Causal Inference in Psychology and Neuroscience: From Association to Causation , Dehua Liang

Advances in NLP Algorithms on Unstructured Medical Notes Data and Approaches to Handling Class Imbalance Issues , Hanna Lu

Novel Techniques for Quantifying Secondhand Smoke Diffusion into Children's Bedroom , Sunil Ramchandani

Probing the Boundaries of Human Agency , Sook Mun Wong

Dissertations from 2021 2021

Predicting Eye Movement and Fixation Patterns on Scenic Images Using Machine Learning for Children with Autism Spectrum Disorder , Raymond Anden

Forecasting the Prices of Cryptocurrencies using a Novel Parameter Optimization of VARIMA Models , Alexander Barrett

Applications of Machine Learning to Facilitate Software Engineering and Scientific Computing , Natalie Best

Exploring Behaviors of Software Developers and Their Code Through Computational and Statistical Methods , Elia Eiroa Lledo

Assessing the Re-Identification Risk in ECG Datasets and an Application of Privacy Preserving Techniques in ECG Analysis , Arin Ghazarian

Multi-Modal Data Fusion, Image Segmentation, and Object Identification using Unsupervised Machine Learning: Conception, Validation, Applications, and a Basis for Multi-Modal Object Detection and Tracking , Nicholas LaHaye

Machine-Learning-Based Approach to Decoding Physiological and Neural Signals , Elnaz Lashgari

Learning-Based Modeling of Weather and Climate Events Related To El Niño Phenomenon via Differentiable Programming and Empirical Decompositions , Justin Le

Quantum State Estimation and Tracking for Superconducting Processors Using Machine Learning , Shiva Lotfallahzadeh Barzili

Novel Applications of Statistical and Machine Learning Methods to Analyze Trial-Level Data from Cognitive Measures , Chelsea Parlett

Optimal Analytical Methods for High Accuracy Cardiac Disease Classification and Treatment Based on ECG Data , Jianwei Zheng

Dissertations from 2020 2020

Development of Integrated Machine Learning and Data Science Approaches for the Prediction of Cancer Mutation and Autonomous Drug Discovery of Anti-Cancer Therapeutic Agents , Steven Agajanian

Allocation of Public Resources: Bringing Order to Chaos , Lance Clifner

A Novel Correction for the Adjusted Box-Pierce Test — New Risk Factors for Emergency Department Return Visits within 72 hours for Children with Respiratory Conditions — General Pediatric Model for Understanding and Predicting Prolonged Length of Stay , Sidy Danioko

A Computational and Experimental Examination of the FCC Incentive Auction , Logan Gantner

Exploring the Employment Landscape for Individuals with Autism Spectrum Disorders using Supervised and Unsupervised Machine Learning , Kayleigh Hyde

Integrated Machine Learning and Bioinformatics Approaches for Prediction of Cancer-Driving Gene Mutations , Oluyemi Odeyemi

On Quantum Effects of Vector Potentials and Generalizations of Functional Analysis , Ismael L. Paiva

Long Term Ground Based Precipitation Data Analysis: Spatial and Temporal Variability , Luciano Rodriguez

Gaining Computational Insight into Psychological Data: Applications of Machine Learning with Eating Disorders and Autism Spectrum Disorder , Natalia Rosenfield

Connecting the Dots for People with Autism: A Data-driven Approach to Designing and Evaluating a Global Filter , Viseth Sean

Novel Statistical and Machine Learning Methods for the Forecasting and Analysis of Major League Baseball Player Performance , Christopher Watkins

Dissertations from 2019 2019

Contributions to Variable Selection in Complexly Sampled Case-control Models, Epidemiology of 72-hour Emergency Department Readmission, and Out-of-site Migration Rate Estimation Using Pseudo-tagged Longitudinal Data , Kyle Anderson

Bias Reduction in Machine Learning Classifiers for Spatiotemporal Analysis of Coral Reefs using Remote Sensing Images , Justin J. Gapper

Estimating Auction Equilibria using Individual Evolutionary Learning , Kevin James

Employing Earth Observations and Artificial Intelligence to Address Key Global Environmental Challenges in Service of the SDGs , Wenzhao Li

Image Restoration using Automatic Damaged Regions Detection and Machine Learning-Based Inpainting Technique , Chloe Martin-King

Theses from 2017 2017

Optimized Forecasting of Dominant U.S. Stock Market Equities Using Univariate and Multivariate Time Series Analysis Methods , Michael Schwartz

  • Collections
  • Disciplines

Advanced Search

  • Notify me via email or RSS

Author Corner

  • Submit Research
  • Rights and Terms of Use
  • Leatherby Libraries
  • Chapman University

ISSN 2572-1496

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

  • Zur Metanavigation
  • Zur Hauptnavigation
  • Zur Subnavigation
  • Zum Seitenfuss

Photo: Sarah Buth

Bachelor and Master Thesis

We offer a variety of cutting-edge and exciting research topics for Bachelor's and Master's theses. We cover a wide range of topics from Data Science, Natural Language Processing, Argument Mining, the Use of AI in Business, Ethics in AI and Multimodal AI. We are always open to suggestions for your own topics, so please feel free to contact us. We supervise students from all disciplines of business administration, business informatics, computer science and industrial engineering.

Thesis Topics

Example topics could be:

  • Conversational Artificial Intelligence in Insurance and Finance
  • Natural Language Processing for Understanding Financial Narratives: An Overview
  • Ethics at the Intersection of Finance and AI: A Comprehensive Literature Review
  • Explainable Natural Language Processing for Credit Risk Assessment Models: A Literature Review

Thesis Template

  • Latex Template for bachelor and master theses
  • How to use the latex template

Q1: How many pages do I need to write?

A: In general, the number of pages is only a poor indicator of the quality of a thesis. However, as a rule of thumb, bachelor theses should have around 30 pages, while master theses should be around 60 pages of main content (that is, without the appendix and lists of tables, symbols, figures, references etc.).

Q2: How often should I meet with my supervisor?

A: Your supervisors are typically very busy people. However, don't hesitate to ask in case you have questions. For instance, if you are unsure of some requirements, or in case you have methodological problems, it is absolutely necessary to talk to your supervisor. As a rule of thumb, you should meet at least three times (once in the beginning, once in the middle, and once before the submission).

Q3: Am I allowed to use any AI models in the process of writing my thesis?

A: In general, we neither forbid nor recommend the use of AI for writing support. However, if you use AI, please inform your supervisor. Also, you need to adhere to the recommendations on the use of AI writing assistants given by the faculty.

Q4: How much time do I have?

A: The exact timing is dependent on your study program! Thus, please check the examination requirements before the official start of your thesis -- you are responsible for sticking to the rules.

data science master thesis example

BSc/MSc Thesis

Our research group offers various interesting topics for a BSc or MSc thesis, the latter both in Computer Science and Scientific Computing . These topics are typically closely related to ongoing research projects (see our Research Page and Publications ). Below, we outline the basic procedure you should follow when planning to do a thesis in our group. Please read the following carefully! You also might want to take a quick look at past topics students covered in their theses. Please also note that we currently cannot accommodate all requests for advising a thesis as in current semester  as well as in the upcoming summer semester 2024 we are already advising numerous MSc and BSc theses.

Requirements

A key requirement is that you have taken some advanced courses offered by our group. This includes Data Science for Text Analytics  or  Complex Network Analysis (ICNA) and the more recent master level class on Natural Language Processing with Transformers  (INLPT). Student should also have some background in machine learning, ideally in combination with NLP. We also strongly recommend that prior to starting a thesis (especially a BSc thesis) in our group, you do an advanced software practical to become familiar with the data and tools we use in many of our projects. Most students typically do this in the semester before they officially start their thesis. Further requirements include

  • very good programming experience with Python (strongly preferred, including framework like pandas and numpy)
  • solid background in statistics and linear algebra
  • (optionally) experience with the machine learning frameworks such as PyTorch
  • (optionally) experience with NLP frameworks such as spaCy, gensim, LangChain
  • (optionally) experience with Opensearch or Elasticsearch
  • knowledge using tools such as Github and Docker

It is also advantageous if you have taken some graduate courses in the areas of efficient algorithms (e.g., IEA1 ) and in particular machine learning (e.g., IML , IFML or IAI ). Being familiar with frameworks like scikit-learn , Keras or PyTorch is advantageous.

If you have only taken the undergraduate course introduction to databases (IDB) and none of the other above courses, it is unlikely that we can accommodate your request.

Make also sure that you are familiar with the examination regulations ("Prüfungsordnung") that apply to your program of study.

Getting in Contact

Prior to getting in contact with us you should, of course, read this page in its entirety. If you think your interests and expertise are a good fit for our group and research activities, send an email to Prof. Michael Gertz with the subject "Anfrage BSc Arbeit" or "Anfrage MSc Arbeit" and include the following information:

  • your current transcript (as PDF). You can download this from the LSF .
  • information about your field of application ("Anwendungsfach"), in particular the courses you have taken
  • your programming experience and projects you worked on
  • areas of interest based on the research conducted in our group
  • any other information you think might strengthen your request

We will then review this information and get back to you with the scheduling of an appointment in person to discuss further details.

Thesis Expose

Once we agree on a topic for your thesis, before you officially register for a thesis, we would like to get an idea of how you approach scientific research and whether you are able to do scientific writing. For this, we require that you write an expose of your planned thesis research (see, e.g., here or here ) . This document is about 4-6 pages and has to include a description of

  • the context of your project and research
  • problem statement(s)
  • objectives and planned approaches
  • related work
  • milestones towards a timely completion of the thesis

Especially for the related work, it is important that you get a good overview  early on in your thesis project; of course, your advisor will give you some starting points. Most of the time, such an expose becomes an integral part of the introductory chapter of your thesis, so there is no time and effort wasted. The expose needs to be submitted to your advisor on schedule (which you arrange with your advisor), who will then discuss the expose with you and coordinate the next steps. Occasionally we also have students give a 10-15 minute presentation of their research plan in front of the members of our group in order to get further ideas, comments, suggestions, and pointers on their thesis.

Official Registration

In agreement with your advisor, after you have submitted an expose of good quality, you plan for an official start date of the thesis. For this, please fill out the  form suitable for your program of study:

  • Für Anmeldung einer Bachelorarbeit, siehe hier . 
  • For officially registering your master's thesis, see here . 
  • Registration form for a MSc thesis in Scientific Computing (please see Mrs. Kiesel to obtain a form).

Hand in this form to Prof. Michael Gertz who will then turn in the signed form.

Thesis Research and Advising

  • Here are some hints on grammar and style we maintain locally.
  • Some easy, purely syntactic  hints  on writing good research papers (from Prof. Felix Naumann )
  • Dos and don'ts, Universität Heidelberg, Prof. Dr. Anette Frank
  • Leitfaden zur Abfassung wissenschaftlicher Arbeiten, Ruhr-Universität Bochum, Katarina Klein
  • Leitfaden zur Abfassung wissenschaftlicher Arbeiten, TU Dresden, Maria Lieber

In addition, you can find a detailed description how to write a seminar paper using our template for seminar papers. The hints in this template might also be crucial when you are writing a thesis: [ seminar template .zip ] [ report sample pdf ] [ slides english pdf ] [ slides german pdf ]

Feel also free to ask us for copies of BSc/MSc thesis students did in the past in our group.

Thesis Template

  • Thesis template [.zip] ; see a sample PDF here .

Thesis Presentation

  • English LaTeX-Beamer template for the presentation: template [.zip] , sample PDF
  • German LaTeX-Beamer template for the presentation: template [.zip] , sample PDF

CUNY Academic Works

Home > Dissertations, Theses & Capstones Projects by Program > Data Analysis & Visualization Master’s Theses and Capstone Projects

Data Analysis & Visualization Master’s Theses and Capstone Projects

Dissertations/theses/capstones from 2024 2024.

The Charge Forward: An Assessment of Electric Vehicle Charging Infrastructure in New York City , Christopher S. Cali

Visualizing a Life, Uprooted: An Interactive, Web-Map and Scroll-Driven Exploration of the Oral History of my Great-Grandfather – from Ottoman Cilicia to Lebanon and Beyond , Alyssa Campbell

Examining the Health Risks of Particulate Matter 2.5 in New York City: How it Affects Marginalized Groups and the Steps Needed to Reduce Air Pollution , Freddy Castro

Clustering of Patients with Heart Disease , Mukadder Cinar

Modeling of COVID-19 Clinical Outcomes in Mexico: An Analysis of Demographic, Clinical, and Chronic Disease Factors , Livia Clarete

Invisible Hand of Socioeconomic Factors in Rising Trend of Maternal Mortality Rates in the U.S. , Disha Kanada

Multi-Perspective Analysis for Derivative Financial Product Prediction with Stacked Recurrent Neural Networks, Natural Language Processing and Large Language Model , Ethan Lo

What Does One Billion Dollars Look Like?: Visualizing Extreme Wealth , William Mahoney Luckman

Making Sense of Making Parole in New York , Alexandra McGlinchy

Employment Outcomes in Higher Education , Yunxia Wei

Dissertations/Theses/Capstones from 2023 2023

Phantom Shootings , Allan Ambris

Naming Venus: An Exploration of Goddesses, Heroines, and Famous Women , Kavya Beheraj

Social Impacts of Robotics on the Labor and Employment Market , Kelvin Espinal

Fighting the Invisibility of Domestic Violence , Yesenny Fernandez

Navigating Through World’s Military Spending Data with Scroll-Event Driven Visualization , Hong Beom Hur

Evocative Visualization of Void and Fluidity , Tomiko Karino

Analyzing Relationships with Machine Learning , Oscar Ko

Analyzing ‘Fight the Power’ Part 1: Music and Longevity Across Evolving Marketing Eras , Shokolatte Tachikawa

Stand-up Comedy Visualized , Berna Yenidogan

Dissertations/Theses/Capstones from 2022 2022

El Ritmo del Westside: Exploring the Musical Landscape of San Antonio’s Historic Westside , Valeria Alderete

A Comparison of Machine Learning Techniques for Validating Students’ Proficiency in Mathematics , Alexander Avdeev

A Machine Learning Approach to Predicting the Onset of Type II Diabetes in a Sample of Pima Indian Women , Meriem Benarbia

Disrepair, Displacement and Distress: Finding Housing Stories Through Data Visualizations , Jennifer Cheng

Blockchain: Key Principles , Nadezda Chikurova

Data for Power: A Visual Tool for Organizing Unions , Shay Culpepper

Happiness From a Different Perspective , Suparna Das

Happiness and Policy Implications: A Sociological View , Sarah M. Kahl

Heating Fire Incidents in New York City , Merissa K. Lissade

NYC vs. Covid-19: The Human and Financial Resources Deployed to Fight the Most Expensive Health Emergency in History in NYC during the Year 2020 , Elmer A. Maldonado Ramirez

Slices of the Big Apple: A Visual Explanation and Analysis of the New York City Budget , Joanne Ramadani

The Value of NFTs , Angelina Tham

Air Pollution, Climate Change, and Our Health , Kathia Vargas Feliz

Peru's Fishmeal Industry: Its Societal and Environmental Impact , Angel Vizurraga

Why, New York City? Gauging the Quality of Life Through the Thoughts of Tweeters , Sheryl Williams

Dissertations/Theses/Capstones from 2021 2021

Data Analysis and Visualization to Dismantle Gender Discrimination in the Field of Technology , Quinn Bolewicki

Remaking Cinema: Black Hollywood Films, Filmmakers, and Finances , Kiana A. Carrington

Detecting Stance on Covid-19 Vaccine in a Polarized Media , Rodica Ceslov

Dota 2 Hero Selection Analysis , Zhan Gong

An Analysis of Machine Learning Techniques for Economic Recession Prediction , Sheridan Kamal

Black Women in Romance , Vianny C. Lugo Aracena

The Public Innovations Explorer: A Geo-Spatial & Linked-Data Visualization Platform For Publicly Funded Innovation Research In The United States , Seth Schimmel

Making Space for Unquantifiable Data: Hand-drawn Data Visualization , Eva Sibinga

Who Pays? New York State Political Donor Matching with Machine Learning , Annalisa Wilde

  • Colleges, Schools, Centers
  • Disciplines

Advanced Search

  • Notify me via email or RSS

Author Corner

  • Data Analysis & Visualization Program

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

data science master thesis example

The chair typically offers various thesis topics each semester in the areas computational statistics, machine learning, data mining, optimization and statistical software. You are welcome to suggest your own topic as well .

Before you apply for a thesis topic make sure that you fit the following profile:

  • Knowledge in machine learning.
  • Good R or python skills.

Before you start writing your thesis you must look for a supervisor within the group.

Send an email to the contact person listed in the potential theses topics files with the following information:

  • Planned starting date of your thesis.
  • Thesis topic (of the list of thesis topics or your own suggestion).
  • Previously attended classes on machine learning and programming with R.

Your application will only be processed if it contains all required information.

Potential Thesis Topics

[Potential Thesis Topics] [Student Research Projects] [Current Theses] [Completed Theses]

Below is a list of potential thesis topics. Before you start writing your thesis you must look for a supervisor within the group.

Available thesis topics

Disputation.

The disputation of a thesis lasts about 60-90 minutes and consists of two parts. Only the first part is relevant for the grade and takes 30 minutes (bachelor thesis) and 40 minutes (master thesis). Here, the student is expected to summarize his/her main results of the thesis in a presentation. The supervisor(s) will ask questions regarding the content of the thesis in between. In the second part (after the presentation), the supervisors will give detailed feedback and discuss the thesis with the student. This will take about 30 minutes.

  • How do I prepare for the disputation?

You have to prepare a presentation and if there is a bigger time gap between handing in your thesis and the disputation you might want to reread your thesis.

  • How many slides should I prepare?

That’s up to you, but you have to respect the time limit. Prepariong more than 20 slides for a Bachelor’s presentation and more than 30 slides for a Master’s is VERY likely a very bad idea.

  • Where do I present?

Bernd’s office, in front of the big TV. At least one PhD will be present, maybe more. If you want to present in front of a larger audience in the seminar room or the old library, please book the room yourself and inform us.

  • English or German?

We do not care, you can choose.

  • What do I have to bring with me?

A document (Prüfungsprotokoll) which you get from “Prüfungsamt” (Frau Maxa or Frau Höfner) for the disputation.Your laptop or a USB stick with the presentation. You can also email Bernd a PDF.

  • How does the grading work?

The student will be graded regarding the quality of the thesis, the presentation and the oral discussion of the work. The grade is mainly determined by the written thesis itself, but the grade can improve or drop depending on the presentation and your answers to defense questions.

  • What should the presentation cover?

The presentation should cover your thesis, including motivation, introduction, description of new methods and results of your research. Please do NOT explain already existing methods in detail here, put more focus on novel work and the results.

  • What kind of questions will be asked after the presentation?

The questions will be directly connected to your thesis and related theory.

Student Research Projects

We are always interested in mentoring interesting student research projects. Please contact us directly with an interesting resarch idea. In the future you will also be able to find research project topics below.

Available projects

Currently we are not offering any student research projects.

For more information please visit the official web page Studentische Forschungsprojekte (Lehre@LMU)

Current Theses (With Working Titles)

Completed theses, completed theses (lmu munich), completed theses (supervised by bernd bischl at tu dortmund).

Google Custom Search

Wir verwenden Google für unsere Suche. Mit Klick auf „Suche aktivieren“ aktivieren Sie das Suchfeld und akzeptieren die Nutzungsbedingungen.

Hinweise zum Einsatz der Google Suche

Technical University of Munich

  • Data Analytics and Machine Learning Group
  • TUM School of Computation, Information and Technology
  • Technical University of Munich

Technical University of Munich

Open Topics

We offer multiple Bachelor/Master theses, Guided Research projects and IDPs in the area of data mining/machine learning. A  non-exhaustive list of open topics is listed below.

If you are interested in a thesis or a guided research project, please send your CV and transcript of records to Prof. Stephan Günnemann via email and we will arrange a meeting to talk about the potential topics.

Graph Neural Networks for Spatial Transcriptomics

Type:  Master's Thesis

Prerequisites:

  • Strong machine learning knowledge
  • Proficiency with Python and deep learning frameworks (PyTorch, TensorFlow, JAX)
  • Knowledge of graph neural networks (e.g., GCN, MPNN)
  • Optional: Knowledge of bioinformatics and genomics

Description:

Spatial transcriptomics is a cutting-edge field at the intersection of genomics and spatial analysis, aiming to understand gene expression patterns within the context of tissue architecture. Our project focuses on leveraging graph neural networks (GNNs) to unlock the full potential of spatial transcriptomic data. Unlike traditional methods, GNNs can effectively capture the intricate spatial relationships between cells, enabling more accurate modeling and interpretation of gene expression dynamics across tissues. We seek motivated students to explore novel GNN architectures tailored for spatial transcriptomics, with a particular emphasis on addressing challenges such as spatial heterogeneity, cell-cell interactions, and spatially varying gene expression patterns.

Contact : Filippo Guerranti , Alessandro Palma

References:

  • Cell clustering for spatial transcriptomics data with graph neural network
  • Unsupervised spatially embedded deep representation of spatial transcriptomics
  • SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  • DeepST: identifying spatial domains in spatial transcriptomics by deep learning
  • Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder

GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data

Generative Models for Drug Discovery

Type:  Mater Thesis / Guided Research

  • Proficiency with Python and deep learning frameworks (PyTorch or TensorFlow)
  • Knowledge of graph neural networks (e.g. GCN, MPNN)
  • No formal education in chemistry, physics or biology needed!

Effectively designing molecular geometries is essential to advancing pharmaceutical innovations, a domain which has experienced great attention through the success of generative models. These models promise a more efficient exploration of the vast chemical space and generation of novel compounds with specific properties by leveraging their learned representations, potentially leading to the discovery of molecules with unique properties that would otherwise go undiscovered. Our topics lie at the intersection of generative models like diffusion/flow matching models and graph representation learning, e.g., graph neural networks. The focus of our projects can be model development with an emphasis on downstream tasks ( e.g., diffusion guidance at inference time ) and a better understanding of the limitations of existing models.

Contact :  Johanna Sommer , Leon Hetzel

Equivariant Diffusion for Molecule Generation in 3D

Equivariant Flow Matching with Hybrid Probability Transport for 3D Molecule Generation

Structure-based Drug Design with Equivariant Diffusion Models

Efficient Machine Learning: Pruning, Quantization, Distillation, and More - DAML x Pruna AI

Type: Master's Thesis / Guided Research / Hiwi

  • Strong knowledge in machine learning
  • Proficiency with Python and deep learning frameworks (TensorFlow or PyTorch)

The efficiency of machine learning algorithms is commonly evaluated by looking at target performance, speed and memory footprint metrics. Reduce the costs associated to these metrics is of primary importance for real-world applications with limited ressources (e.g. embedded systems, real-time predictions). In this project, you will work in collaboration with the DAML research group and the Pruna AI startup on investigating solutions to improve the efficiency of machine leanring models by looking at multiple techniques like pruning, quantization, distillation, and more.

Contact: Bertrand Charpentier

  • The Efficiency Misnomer
  • A Gradient Flow Framework for Analyzing Network Pruning
  • Distilling the Knowledge in a Neural Network
  • A Survey of Quantization Methods for Efficient Neural Network Inference

Deep Generative Models

Type:  Master Thesis / Guided Research

  • Strong machine learning and probability theory knowledge
  • Knowledge of generative models and their basics (e.g., Normalizing Flows, Diffusion Models, VAE)
  • Optional: Neural ODEs/SDEs, Optimal Transport, Measure Theory

With recent advances, such as Diffusion Models, Transformers, Normalizing Flows, Flow Matching, etc., the field of generative models has gained significant attention in the machine learning and artificial intelligence research community. However, many problems and questions remain open, and the application to complex data domains such as graphs, time series, point processes, and sets is often non-trivial. We are interested in supervising motivated students to explore and extend the capabilities of state-of-the-art generative models for various data domains.

Contact : Marcel Kollovieh , David Lüdke

  • Flow Matching for Generative Modeling
  • Auto-Encoding Variational Bayes
  • Denoising Diffusion Probabilistic Models 
  • Structured Denoising Diffusion Models in Discrete State-Spaces

Active Learning for Multi Agent 3D Object Detection 

Type: Master's Thesis  Industrial partner: BMW 

Prerequisites: 

  • Strong knowledge in machine learning 
  • Knowledge in Object Detection 
  • Excellent programming skills 
  • Proficiency with Python and deep learning frameworks (TensorFlow or PyTorch) 

Description: 

In autonomous driving, state-of-the-art deep neural networks are used for perception tasks like for example 3D object detection. To provide promising results, these networks often require a lot of complex annotation data for training. These annotations are often costly and redundant. Active learning is used to select the most informative samples for annotation and cover a dataset with as less annotated data as possible.   

The objective is to explore active learning approaches for 3D object detection using combined uncertainty and diversity based methods.  

Contact: Sebastian Schmidt

References: 

  • Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving   
  • Efficient Uncertainty Estimation for Semantic Segmentation in Videos   
  • KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection
  • Towards Open World Active Learning for 3D Object Detection   

Graph Neural Networks

Type:  Master's thesis / Bachelor's thesis / guided research

  • Knowledge of graph/network theory

Graph neural networks (GNNs) have recently achieved great successes in a wide variety of applications, such as chemistry, reinforcement learning, knowledge graphs, traffic networks, or computer vision. These models leverage graph data by updating node representations based on messages passed between nodes connected by edges, or by transforming node representation using spectral graph properties. These approaches are very effective, but many theoretical aspects of these models remain unclear and there are many possible extensions to improve GNNs and go beyond the nodes' direct neighbors and simple message aggregation.

Contact: Simon Geisler

  • Semi-supervised classification with graph convolutional networks
  • Relational inductive biases, deep learning, and graph networks
  • Diffusion Improves Graph Learning
  • Weisfeiler and leman go neural: Higher-order graph neural networks
  • Reliable Graph Neural Networks via Robust Aggregation

Physics-aware Graph Neural Networks

Type:  Master's thesis / guided research

  • Proficiency with Python and deep learning frameworks (JAX or PyTorch)
  • Knowledge of graph neural networks (e.g. GCN, MPNN, SchNet)
  • Optional: Knowledge of machine learning on molecules and quantum chemistry

Deep learning models, especially graph neural networks (GNNs), have recently achieved great successes in predicting quantum mechanical properties of molecules. There is a vast amount of applications for these models, such as finding the best method of chemical synthesis or selecting candidates for drugs, construction materials, batteries, or solar cells. However, GNNs have only been proposed in recent years and there remain many open questions about how to best represent and leverage quantum mechanical properties and methods.

Contact: Nicholas Gao

  • Directional Message Passing for Molecular Graphs
  • Neural message passing for quantum chemistry
  • Learning to Simulate Complex Physics with Graph Network
  • Ab initio solution of the many-electron Schrödinger equation with deep neural networks
  • Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
  • Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds

Robustness Verification for Deep Classifiers

Type: Master's thesis / Guided research

  • Strong machine learning knowledge (at least equivalent to IN2064 plus an advanced course on deep learning)
  • Strong background in mathematical optimization (preferably combined with Machine Learning setting)
  • Proficiency with python and deep learning frameworks (Pytorch or Tensorflow)
  • (Preferred) Knowledge of training techniques to obtain classifiers that are robust against small perturbations in data

Description : Recent work shows that deep classifiers suffer under presence of adversarial examples: misclassified points that are very close to the training samples or even visually indistinguishable from them. This undesired behaviour constraints possibilities of deployment in safety critical scenarios for promising classification methods based on neural nets. Therefore, new training methods should be proposed that promote (or preferably ensure) robust behaviour of the classifier around training samples.

Contact: Aleksei Kuvshinov

References (Background):

  • Intriguing properties of neural networks
  • Explaining and harnessing adversarial examples
  • SoK: Certified Robustness for Deep Neural Networks
  • Certified Adversarial Robustness via Randomized Smoothing
  • Formal guarantees on the robustness of a classifier against adversarial manipulation
  • Towards deep learning models resistant to adversarial attacks
  • Provable defenses against adversarial examples via the convex outer adversarial polytope
  • Certified defenses against adversarial examples
  • Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks

Uncertainty Estimation in Deep Learning

Type: Master's Thesis / Guided Research

  • Strong knowledge in probability theory

Safe prediction is a key feature in many intelligent systems. Classically, Machine Learning models compute output predictions regardless of the underlying uncertainty of the encountered situations. In contrast, aleatoric and epistemic uncertainty bring knowledge about undecidable and uncommon situations. The uncertainty view can be a substantial help to detect and explain unsafe predictions, and therefore make ML systems more robust. The goal of this project is to improve the uncertainty estimation in ML models in various types of task.

Contact: Tom Wollschläger ,   Dominik Fuchsgruber ,   Bertrand Charpentier

  • Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
  • Predictive Uncertainty Estimation via Prior Networks
  • Posterior Network: Uncertainty Estimation without OOD samples via Density-based Pseudo-Counts
  • Evidential Deep Learning to Quantify Classification Uncertainty
  • Weight Uncertainty in Neural Networks

Hierarchies in Deep Learning

Type:  Master's Thesis / Guided Research

Multi-scale structures are ubiquitous in real life datasets. As an example, phylogenetic nomenclature naturally reveals a hierarchical classification of species based on their historical evolutions. Learning multi-scale structures can help to exhibit natural and meaningful organizations in the data and also to obtain compact data representation. The goal of this project is to leverage multi-scale structures to improve speed, performances and understanding of Deep Learning models.

Contact: Marcel Kollovieh , Bertrand Charpentier

  • Tree Sampling Divergence: An Information-Theoretic Metricfor Hierarchical Graph Clustering
  • Hierarchical Graph Representation Learning with Differentiable Pooling
  • Gradient-based Hierarchical Clustering
  • Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space

Popular Searches

  • Transcripts
  • Career Services
  • Human Resources

Our Campuses

  • Daytona Beach, FL
  • Prescott, AZ
  • Embry-Riddle Online

Degrees & Programs

  • Certificate Programs
  • Associate's Degrees
  • Bachelor's Degrees
  • Master's Degrees
  • Doctoral Degrees

Embry-Riddle Aeronautical University

Master of Science in Computer Science

The Master of Science in Computer Science enhances cybersecurity careers in developing and maintaining secure networked systems.

About the Master of Science in Computer Science

Computer Science careers are on the rise in both public and private sectors worldwide, ranging in everything from research in artificial intelligence and machine learning to secure systems design to software development. A Master of Science in Computer Science from Embry‑Riddle prepares graduates to either begin or further advance their careers in the fields of technology and cybersecurity.

The Electrical Engineering and Computer Science’s (EECS) Industry Advisory Board ensures that curriculum and research activities are aligned with what’s going on in the software industry. The accelerated program is a cutting-edge degree in a dynamic, growing field.

Student Learning Outcomes

What you will learn while pursuing a Computer Science degree: 

  • Apply fundamental computer science professional practices to analyze, design and implement systems.
  • Apply knowledge of advanced topics in cybersecurity engineering and in computer science.
  • Communicate effectively on issues pertaining to computer science and cybersecurity.

Computer Science Career Opportunities

Careers and employers.

Computer Science master's graduates often secure positions such as:

  • AI researchers
  • Computer scientists
  • Cybersecurity consultants
  • Cybersecurity engineers
  • Digital forensics investigators
  • Machine learning engineers
  • Software engineers

Computer Science Salary Information

As of 2023, graduates with a degree in Computer Science receive competitive salaries , with an average income of $112,000 annually.

About Computer Science at the Daytona Beach, FL Campus

About computer science at the daytona beach campus.

Housed in the Electrical Engineering and Computer Science Department in the College of Engineering , the Master of Science in Computer Science prepares students to address challenges in the development of algorithms and data structures as well as maintaining secure operations and cybersecurity policy.

The Daytona Beach Campus is home to the Cybersecurity Engineering Laboratory (CybEL), a Real-Time Systems Laboratory, a Digital Systems Laboratory and a Software Development Laboratory, all of which offer students systems design and hands-on experience as it relates to cybersecurity attacks and corresponding mitigations, as well as software development and programming.

Tracks/Specialties and/or Certificates

Computer Science graduates may select one of two areas of concentration: 

  • Computer Science: 9 credits
  • Cybersecurity Engineering: 9 credits

Computer Science Information 

  • Credits: 30
  • Online or In-Person: In-Person
  • Thesis: Thesis & Graduate Research Project Options

Helpful Links 

  • Tour our Daytona Beach Campus
  • Discover the Department's Faculty
  • Explore the Fields of Study: Engineering & Computer & Technology & Security, Intelligence and Safety
  • Find Related Clubs & Organizations

Students will:

  • Have an ability to apply fundamental computer science professional practices to analyze, design, and implement security-critical systems.
  • Have an ability to apply knowledge of advanced topics in cybersecurity engineering and/or computer science.
  • Have an ability to communicate effectively on issues pertaining to computer science and/or cybersecurity.

Degree Requirements

The Master of Science in  Computer Science degree is granted to students who complete the coursework described below. The program consists of  nine  hours of core  courses, nine hours of Area of Concentration courses,  and  nine hours of open   electives for the Graduate Research Project Option or six hours of open electives for the Thesis Option.

Program Core Requirements

Area of concentration.

Students may choose one of the two Areas of Concentration as shown below.

Computer Science

Cybersecurity engineering.

Students may choose the Graduate Research Project or Thesis option, as shown below.

Graduate Research Project Option

Thesis option, get started now:.

Estimate your tuition by using the Tuition Calculator

View Financial Aid Information

Learn about our General Education

Student Achievement Data

Find out about transferring credits to this degree

Learn more about our Veterans & Military  benefits

View our Academic Calendar

Play Video

RELATED DEGREES

You may be interested in the following degrees:

Master of Science in Cyber Intelligence & Security

data science master thesis example

Master of Science in Engineering Management

data science master thesis example

Master of Science in Software Engineering

data science master thesis example

IMAGES

  1. Table of Contents for Dissertation/ Research Paper & Example

    data science master thesis example

  2. Master thesis proposal data mining

    data science master thesis example

  3. Master Thesis Data Mining

    data science master thesis example

  4. How should a statement of purpose for Masters in Data science be?

    data science master thesis example

  5. Master Thesis Images

    data science master thesis example

  6. Master Thesis Thesis Abstract Sample

    data science master thesis example

VIDEO

  1. Education Data Science master's (MS) degree program

  2. LJMU

  3. Important Update: Day-wise Notes and Assignments for Data Science Master Course Now on GitHub!

  4. What Is a master's Thesis (5 Characteristics of an A Plus Thesis)

  5. Lesson

  6. 5G LTE Big Data Projects

COMMENTS

  1. How to write a great data science thesis

    They will stress the importance of structure, substance and style. They will urge you to write down your methodology and results first, then progress to the literature review, introduction and conclusions and to write the summary or abstract last. To write clearly and directly with the reader's expectations always in mind.

  2. Data Science Masters Theses // Arch : Northwestern University

    Data Science Masters Theses. The Master of Science in Data Science program requires the successful completion of 12 courses to obtain a degree. These requirements cover six core courses, a leadership or project management course, two required courses corresponding to a declared specialization, two electives, and a capstone project or thesis.

  3. Research Topics & Ideas: Data Science

    If you're just starting out exploring data science-related topics for your dissertation, thesis or research project, you've come to the right place. In this post, we'll help kickstart your research by providing a hearty list of data science and analytics-related research ideas, including examples from recent studies.. PS - This is just the start…

  4. PDF Master Thesis: Data Science and Marketing Analytics

    Erasmus School of Economics. Master Thesis: Data Science and Marketing Analytics. Interpretable Machine Learning for Attribution Modeling. A Machine Learning Approach for Conversion Attribution in Digital Marketing Student name: Jordy Martodipoetro Student number: 454072 Supervisor: Dr. Kathrin Gruber Second assessor: Prof. Bas Donkers Date ...

  5. 10 Best Research and Thesis Topic Ideas for Data Science in 2022

    In this article, we have listed 10 such research and thesis topic ideas to take up as data science projects in 2022. Handling practical video analytics in a distributed cloud: With increased dependency on the internet, sharing videos has become a mode of data and information exchange. The role of the implementation of the Internet of Things ...

  6. Thesis/Capstone for Master's in Data Science

    Thesis. A thesis is an academic-focused research project with broader applicability. A thesis is more appropriate if: you want to get a PhD or other advanced degree and want the experience of the research process and writing for publication; you want to work individually with a specific faculty member who serves as your thesis adviser

  7. PDF Thesis topics for the master thesis Data Science and Business Analytics

    The task of this thesis is to (1) describe the methods (without too many theoretical details and proofs), (2) use the methods in a simulation comparison. This can involve several aspects, varying sample sizes and number of covariates, including models that are misspecified, variables that are redundant or missing, etc. The quantile gradient ...

  8. Prize-Winning Thesis and Dissertation Examples

    Prize-Winning Thesis and Dissertation Examples. Published on September 9, 2022 by Tegan George.Revised on July 18, 2023. It can be difficult to know where to start when writing your thesis or dissertation.One way to come up with some ideas or maybe even combat writer's block is to check out previous work done by other students on a similar thesis or dissertation topic to yours.

  9. Thesis Projects and Research in DS

    The topic for the Master's thesis must be chosen within Data Science. Before starting a Master's thesis, it is important to agree with your supervisor on the task and the assessment scheme. Both have to be documented thoroughly. You electronically register the Master's thesis in mystudies. It is possible to complete the Master's thesis ...

  10. Instructions for MSc Thesis

    For a Data Science thesis, this part typically describes the method for the analysis. Chapter 5: Results. This chapter describes the results obtained when the methods of Chapter 4 are used on data. For a Computer Science thesis, this part typically describes the performance of the developed algorithm(s) on various synthetic and real datasets.

  11. PDF Big data in healthcare

    So to disruptively innovate in healthcare by the use of data science, first the information asymmetry should be mitigated. Note that data science is often noted as a direct driver of innovation in healthcare (Bates et al., 2014). This research shows that without mitigating the information asymmetry, data science in itself cannot

  12. MSc in Data Science, Project Guide

    RTDS+ (120-point thesis option) Contact Introduction. The project is an essential component of the Masters course. It is a substantial piece of full-time independent research in some area of data science. You will carry out your project under the individual supervision of a member of CDT staff.

  13. 37 Research Topics In Data Science To Stay On Top Of » EML

    9.) Data Visualization. Data visualization is an excellent research topic in data science because it allows us to see our data in a way that is easy to understand. Data visualization techniques can be used to create charts, graphs, and other visual representations of data.

  14. MIT Theses

    MIT's DSpace contains more than 58,000 theses completed at MIT dating as far back as the mid 1800's. Theses in this collection have been scanned by the MIT Libraries or submitted in electronic format by thesis authors. Since 2004 all new Masters and Ph.D. theses are scanned and added to this collection after degrees are awarded.

  15. Thesis Option

    Data Science master's students can choose to satisfy the research experience requirement by selecting the thesis option. Students will spend the majority of their second year working on a substantial data science project that culminates in the submission and oral defense of a master's thesis. While all thesis projects must be related to data science, students are given leeway in finding a ...

  16. Computational and Data Sciences (PhD) Dissertations

    Computational and Data Sciences (PhD) Dissertations. Below is a selection of dissertations from the Doctor of Philosophy in Computational and Data Sciences program in Schmid College that have been included in Chapman University Digital Commons. Additional dissertations from years prior to 2019 are available through the Leatherby Libraries ...

  17. Bachelor and Master Thesis : Professorship of Data Science

    Bachelor and Master Thesis. We offer a variety of cutting-edge and exciting research topics for Bachelor's and Master's theses. We cover a wide range of topics from Data Science, Natural Language Processing, Argument Mining, the Use of AI in Business, Ethics in AI and Multimodal AI. We are always open to suggestions for your own topics, so ...

  18. BSc/MSc Thesis

    BSc/MSc Thesis. Our research group offers various interesting topics for a BSc or MSc thesis, the latter both in Computer Science and Scientific Computing. These topics are typically closely related to ongoing research projects (see our Research Page and Publications ). Below, we outline the basic procedure you should follow when planning to do ...

  19. Data Analysis & Visualization Master's Theses and Capstone Projects

    Data Analysis and Visualization to Dismantle Gender Discrimination in the Field of Technology, Quinn Bolewicki. PDF. Remaking Cinema: Black Hollywood Films, Filmmakers, and Finances, Kiana A. Carrington. PDF. Detecting Stance on Covid-19 Vaccine in a Polarized Media, Rodica Ceslov. PDF. Dota 2 Hero Selection Analysis, Zhan Gong. PDF

  20. Statistical Learning and Data Science Chair :: Theses

    The disputation of a thesis lasts about 60-90 minutes and consists of two parts. Only the first part is relevant for the grade and takes 30 minutes (bachelor thesis) and 40 minutes (master thesis). Here, the student is expected to summarize his/her main results of the thesis in a presentation.

  21. Thesis topic for MSc in Data Science

    Faisal Hussain. Al-Khawarizmi Institute of Computer Science (KICS) Lahore Pakistan. Taki Uddin, with respect to your expertise in IoT and interest in data science, I would suggest you to work on ...

  22. Open Theses

    Open Topics We offer multiple Bachelor/Master theses, Guided Research projects and IDPs in the area of data mining/machine learning. A non-exhaustive list of open topics is listed below.. If you are interested in a thesis or a guided research project, please send your CV and transcript of records to Prof. Stephan Günnemann via email and we will arrange a meeting to talk about the potential ...

  23. PDF MASTER THESIS BY MIKE PADBERG Big Data and Business Intelligence: a

    MASTER THESIS Big Data and Business Intelligence: a data-driven strategy for e-commerce ... This research is the final result of my Master Thesis project to obtain the Master of Science ... and the theoretical examples of Big Data. In section 2.3 an overview will be given of the history, the definition, and the theoretical examples of Business

  24. Master's Degree in Computer Science

    The Master of Science in Computer Science degree is granted to students who complete the coursework described below. The program consists of nine hours of core courses, nine hours of Area of Concentration courses, and nine hours of open electives for the Graduate Research Project Option or six hours of open electives for the Thesis Option.