If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology library

Course: biology library   >   unit 1, the scientific method.

  • Controlled experiments
  • The scientific method and experimental design

Introduction

  • Make an observation.
  • Ask a question.
  • Form a hypothesis , or testable explanation.
  • Make a prediction based on the hypothesis.
  • Test the prediction.
  • Iterate: use the results to make new hypotheses or predictions.

Scientific method example: Failure to toast

1. make an observation..

  • Observation: the toaster won't toast.

2. Ask a question.

  • Question: Why won't my toaster toast?

3. Propose a hypothesis.

  • Hypothesis: Maybe the outlet is broken.

4. Make predictions.

  • Prediction: If I plug the toaster into a different outlet, then it will toast the bread.

5. Test the predictions.

  • Test of prediction: Plug the toaster into a different outlet and try again.
  • If the toaster does toast, then the hypothesis is supported—likely correct.
  • If the toaster doesn't toast, then the hypothesis is not supported—likely wrong.

Logical possibility

Practical possibility, building a body of evidence, 6. iterate..

  • Iteration time!
  • If the hypothesis was supported, we might do additional tests to confirm it, or revise it to be more specific. For instance, we might investigate why the outlet is broken.
  • If the hypothesis was not supported, we would come up with a new hypothesis. For instance, the next hypothesis might be that there's a broken wire in the toaster.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Incredible Answer

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Statology

Statistics Made Easy

How to Write Hypothesis Test Conclusions (With Examples)

A   hypothesis test is used to test whether or not some hypothesis about a population parameter is true.

To perform a hypothesis test in the real world, researchers obtain a random sample from the population and perform a hypothesis test on the sample data, using a null and alternative hypothesis:

  • Null Hypothesis (H 0 ): The sample data occurs purely from chance.
  • Alternative Hypothesis (H A ): The sample data is influenced by some non-random cause.

If the p-value of the hypothesis test is less than some significance level (e.g. α = .05), then we reject the null hypothesis .

Otherwise, if the p-value is not less than some significance level then we fail to reject the null hypothesis .

When writing the conclusion of a hypothesis test, we typically include:

  • Whether we reject or fail to reject the null hypothesis.
  • The significance level.
  • A short explanation in the context of the hypothesis test.

For example, we would write:

We reject the null hypothesis at the 5% significance level.   There is sufficient evidence to support the claim that…

Or, we would write:

We fail to reject the null hypothesis at the 5% significance level.   There is not sufficient evidence to support the claim that…

The following examples show how to write a hypothesis test conclusion in both scenarios.

Example 1: Reject the Null Hypothesis Conclusion

Suppose a biologist believes that a certain fertilizer will cause plants to grow more during a one-month period than they normally do, which is currently 20 inches. To test this, she applies the fertilizer to each of the plants in her laboratory for one month.

She then performs a hypothesis test at a 5% significance level using the following hypotheses:

  • H 0 : μ = 20 inches (the fertilizer will have no effect on the mean plant growth)
  • H A : μ > 20 inches (the fertilizer will cause mean plant growth to increase)

Suppose the p-value of the test turns out to be 0.002.

Here is how she would report the results of the hypothesis test:

We reject the null hypothesis at the 5% significance level.   There is sufficient evidence to support the claim that this particular fertilizer causes plants to grow more during a one-month period than they normally do.

Example 2: Fail to Reject the Null Hypothesis Conclusion

Suppose the manager of a manufacturing plant wants to test whether or not some new method changes the number of defective widgets produced per month, which is currently 250. To test this, he measures the mean number of defective widgets produced before and after using the new method for one month.

He performs a hypothesis test at a 10% significance level using the following hypotheses:

  • H 0 : μ after = μ before (the mean number of defective widgets is the same before and after using the new method)
  • H A : μ after ≠ μ before (the mean number of defective widgets produced is different before and after using the new method)

Suppose the p-value of the test turns out to be 0.27.

Here is how he would report the results of the hypothesis test:

We fail to reject the null hypothesis at the 10% significance level.   There is not sufficient evidence to support the claim that the new method leads to a change in the number of defective widgets produced per month.

Additional Resources

The following tutorials provide additional information about hypothesis testing:

Introduction to Hypothesis Testing 4 Examples of Hypothesis Testing in Real Life How to Write a Null Hypothesis

Featured Posts

5 Regularization Techniques You Should Know

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike.  My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

Tree rings reveal summer 2023 was the hottest in 2 millennia

Aurora photos: Stunning northern lights glisten after biggest geomagnetic storm in 21 years

Jupiter's elusive 5th moon caught crossing the Great Red Spot in new NASA images

Most Popular

  • 2 China creates its largest ever quantum computing chip — and it could be key to building the nation's own 'quantum cloud'
  • 3 MIT gives AI the power to 'reason like humans' by creating hybrid architecture
  • 4 'Quantum-inspired' laser computing is more effective than both supercomputing and quantum computing, startup claims
  • 5 2,500-year-old Illyrian helmet found in burial mound likely caused 'awe in the enemy'
  • 3 Atoms squished closer together than ever before, revealing seemingly impossible quantum effects
  • 4 Sun launches strongest solar flare of current cycle in monster X8.7-class eruption

hypothesis not support

  • Food & Dining
  • Coronavirus
  • Real Estate
  • Seattle History
  • PNW Politics

What Is the Next Step if an Experiment Fails to Confirm Your Hypothesis?

Related articles, advantages of apa writing style, what is coefficient of variation used for in biology, how does the particle model of matter explain dissolving.

  • What Is the Purpose of Adding Starch to the Titration Mixture?
  • Can a Thesis Statement Pose a Question?

You had a question, designed an experiment, formulated a hypothesis and it was not supported. First, it is important to note that you can definitively disprove something, but it is impossible to prove or confirm a hypothesis, only to support it. Whether your hypothesis was supported or not, the experiment added to what you know about your initial question, and there are always more questions to answer.

The Scientific Method

The scientific method is a set of logical steps that helps scientists understand the world. It is process of inductive reasoning, or using the observation of phenomena to make generalizations about how the world works. This contrasts with deductive reasoning, which is taking a theory or rule and applying it to an individual situation. The scientific method goes through a progression of steps to create new knowledge. You make an observation, have a question about your observation, form a hypothesis about how it works, test your hypothesis and then form new questions and hypotheses based on the results. The results of your experiment represent a single iteration of the scientific method.

The Importance of Replication

You have the results of your experiment, but you may wonder if you made a mistake somewhere in your methods that caused the results to come out the way they did. Repetition and replication are both important to verify your findings. Repetition is when you do the experiment over several times. When scientists do this, they often get slightly different answers and then use statistics to decide whether their hypothesis is generally supported or not. Replication is when you give your methods to someone else and see if they get the same results. Both are ways of taking human error out of the equation.

What You Do Know

When you have replicated results that don’t support your hypothesis, you have still created knowledge. You can now exclude your initial hypothesis from the possible ways to answer your question; you know how the system doesn’t work. When you have a hypothesis that you are excited about, it can be disappointing to have it disproved, but it is important to keep in mind that you are still one step closer to the most reasonable explanation. "No" can be an important answer.

Formulating a New Hypothesis

You can go through the steps of the scientific method, but the process is never really complete. If the initial hypothesis is not supported, you can go back to the drawing board and hypothesize a new answer to the question and a new way to test it. If your hypothesis is supported, you might think of ways to refine your hypothesis and test those. Either way, the process of experimentation often leads to whole new questions to explore. The possibilities are infinite, and the search for knowledge is never-ending.

  • University of Miami : Solving Problems in Biology
  • Understanding Science: Copycats in Science: The Role of Replication
  • Science Made Simple: Understanding and Using the Scientific Method
  • Exploratorium: Evidence: How Do We Know What We Know?

Based in Wenatchee, Wash., Andrea Becker specializes in biology, ecology and environmental sciences. She has written peer-reviewed articles in the "Journal of Wildlife Management," policy documents,and educational materials. She holds a Master of Science in wildlife management from Iowa State University. She was once charged by a grizzly bear while on the job.

Eight Critical Thinking Guidelines in Psychology

Types of observation in the scientific method, how is the nclex graded, how to write an explanation essay, what is the level of treatment in a scientific experiment, what is feedback inhibition and why is it important in regulating enzyme activity, how to do an egg drop experiment for physics, the difference between photosynthesis and solar cells, what molecule is the result of dna translation, most popular.

  • 1 Eight Critical Thinking Guidelines in Psychology
  • 2 Types of Observation in the Scientific Method
  • 3 How Is the NCLEX Graded?
  • 4 How to Write an Explanation Essay

hypothesis not support

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6a.1 - introduction to hypothesis testing, basic terms section  .

The first step in hypothesis testing is to set up two competing hypotheses. The hypotheses are the most important aspect. If the hypotheses are incorrect, your conclusion will also be incorrect.

The two hypotheses are named the null hypothesis and the alternative hypothesis.

The goal of hypothesis testing is to see if there is enough evidence against the null hypothesis. In other words, to see if there is enough evidence to reject the null hypothesis. If there is not enough evidence, then we fail to reject the null hypothesis.

Consider the following example where we set up these hypotheses.

Example 6-1 Section  

A man, Mr. Orangejuice, goes to trial and is tried for the murder of his ex-wife. He is either guilty or innocent. Set up the null and alternative hypotheses for this example.

Putting this in a hypothesis testing framework, the hypotheses being tested are:

  • The man is guilty
  • The man is innocent

Let's set up the null and alternative hypotheses.

\(H_0\colon \) Mr. Orangejuice is innocent

\(H_a\colon \) Mr. Orangejuice is guilty

Remember that we assume the null hypothesis is true and try to see if we have evidence against the null. Therefore, it makes sense in this example to assume the man is innocent and test to see if there is evidence that he is guilty.

The Logic of Hypothesis Testing Section  

We want to know the answer to a research question. We determine our null and alternative hypotheses. Now it is time to make a decision.

The decision is either going to be...

  • reject the null hypothesis or...
  • fail to reject the null hypothesis.

Consider the following table. The table shows the decision/conclusion of the hypothesis test and the unknown "reality", or truth. We do not know if the null is true or if it is false. If the null is false and we reject it, then we made the correct decision. If the null hypothesis is true and we fail to reject it, then we made the correct decision.

So what happens when we do not make the correct decision?

When doing hypothesis testing, two types of mistakes may be made and we call them Type I error and Type II error. If we reject the null hypothesis when it is true, then we made a type I error. If the null hypothesis is false and we failed to reject it, we made another error called a Type II error.

Types of errors

The “reality”, or truth, about the null hypothesis is unknown and therefore we do not know if we have made the correct decision or if we committed an error. We can, however, define the likelihood of these events.

\(\alpha\) and \(\beta\) are probabilities of committing an error so we want these values to be low. However, we cannot decrease both. As \(\alpha\) decreases, \(\beta\) increases.

Example 6-1 Cont'd... Section  

A man, Mr. Orangejuice, goes to trial and is tried for the murder of his ex-wife. He is either guilty or not guilty. We found before that...

  • \( H_0\colon \) Mr. Orangejuice is innocent
  • \( H_a\colon \) Mr. Orangejuice is guilty

Interpret Type I error, \(\alpha \), Type II error, \(\beta \).

As you can see here, the Type I error (putting an innocent man in jail) is the more serious error. Ethically, it is more serious to put an innocent man in jail than to let a guilty man go free. So to minimize the probability of a type I error we would choose a smaller significance level.

Try it! Section  

An inspector has to choose between certifying a building as safe or saying that the building is not safe. There are two hypotheses:

  • Building is safe
  • Building is not safe

Set up the null and alternative hypotheses. Interpret Type I and Type II error.

\( H_0\colon\) Building is not safe vs \(H_a\colon \) Building is safe

Power and \(\beta \) are complements of each other. Therefore, they have an inverse relationship, i.e. as one increases, the other decreases.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

hypothesis not support

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

hypothesis not support

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Popular searches

  • How to Get Participants For Your Study
  • How to Do Segmentation?
  • Conjoint Preference Share Simulator
  • MaxDiff Analysis
  • Likert Scales
  • Reliability & Validity

Request consultation

Do you need support in running a pricing or product study? We can help you with agile consumer research and conjoint analysis.

Looking for an online survey platform?

Conjointly offers a great survey tool with multiple question types, randomisation blocks, and multilingual support. The Basic tier is always free.

Research Methods Knowledge Base

  • Navigating the Knowledge Base
  • Five Big Words
  • Types of Research Questions
  • Time in Research
  • Types of Relationships
  • Types of Data
  • Unit of Analysis
  • Two Research Fallacies
  • Philosophy of Research
  • Ethics in Research
  • Conceptualizing
  • Evaluation Research
  • Measurement
  • Research Design
  • Table of Contents

Fully-functional online survey tool with various question types, logic, randomisation, and reporting for unlimited number of surveys.

Completely free for academics and students .

An hypothesis is a specific statement of prediction. It describes in concrete (rather than theoretical) terms what you expect will happen in your study. Not all studies have hypotheses. Sometimes a study is designed to be exploratory (see inductive research ). There is no formal hypothesis, and perhaps the purpose of the study is to explore some area more thoroughly in order to develop some specific hypothesis or prediction that can be tested in future research. A single study may have one or many hypotheses.

Actually, whenever I talk about an hypothesis, I am really thinking simultaneously about two hypotheses. Let’s say that you predict that there will be a relationship between two variables in your study. The way we would formally set up the hypothesis test is to formulate two hypothesis statements, one that describes your prediction and one that describes all the other possible outcomes with respect to the hypothesized relationship. Your prediction is that variable A and variable B will be related (you don’t care whether it’s a positive or negative relationship). Then the only other possible outcome would be that variable A and variable B are not related. Usually, we call the hypothesis that you support (your prediction) the alternative hypothesis, and we call the hypothesis that describes the remaining possible outcomes the null hypothesis. Sometimes we use a notation like HA or H1 to represent the alternative hypothesis or your prediction, and HO or H0 to represent the null case. You have to be careful here, though. In some studies, your prediction might very well be that there will be no difference or change. In this case, you are essentially trying to find support for the null hypothesis and you are opposed to the alternative.

If your prediction specifies a direction, and the null therefore is the no difference prediction and the prediction of the opposite direction, we call this a one-tailed hypothesis . For instance, let’s imagine that you are investigating the effects of a new employee training program and that you believe one of the outcomes will be that there will be less employee absenteeism. Your two hypotheses might be stated something like this:

The null hypothesis for this study is:

HO: As a result of the XYZ company employee training program, there will either be no significant difference in employee absenteeism or there will be a significant increase .

which is tested against the alternative hypothesis:

HA: As a result of the XYZ company employee training program, there will be a significant decrease in employee absenteeism.

In the figure on the left, we see this situation illustrated graphically. The alternative hypothesis – your prediction that the program will decrease absenteeism – is shown there. The null must account for the other two possible conditions: no difference, or an increase in absenteeism. The figure shows a hypothetical distribution of absenteeism differences. We can see that the term “one-tailed” refers to the tail of the distribution on the outcome variable.

When your prediction does not specify a direction, we say you have a two-tailed hypothesis . For instance, let’s assume you are studying a new drug treatment for depression. The drug has gone through some initial animal trials, but has not yet been tested on humans. You believe (based on theory and the previous research) that the drug will have an effect, but you are not confident enough to hypothesize a direction and say the drug will reduce depression (after all, you’ve seen more than enough promising drug treatments come along that eventually were shown to have severe side effects that actually worsened symptoms). In this case, you might state the two hypotheses like this:

HO: As a result of 300mg./day of the ABC drug, there will be no significant difference in depression.
HA: As a result of 300mg./day of the ABC drug, there will be a significant difference in depression.

The figure on the right illustrates this two-tailed prediction for this case. Again, notice that the term “two-tailed” refers to the tails of the distribution for your outcome variable.

The important thing to remember about stating hypotheses is that you formulate your prediction (directional or not), and then you formulate a second hypothesis that is mutually exclusive of the first and incorporates all possible alternative outcomes for that case. When your study analysis is completed, the idea is that you will have to choose between the two hypotheses. If your prediction was correct, then you would (usually) reject the null hypothesis and accept the alternative. If your original prediction was not supported in the data, then you will accept the null hypothesis and reject the alternative. The logic of hypothesis testing is based on these two basic principles:

  • the formulation of two mutually exclusive hypothesis statements that, together, exhaust all possible outcomes
  • the testing of these so that one is necessarily accepted and the other rejected

OK, I know it’s a convoluted, awkward and formalistic way to ask research questions. But it encompasses a long tradition in statistics called the hypothetical-deductive model , and sometimes we just have to do things because they’re traditions. And anyway, if all of this hypothesis testing was easy enough so anybody could understand it, how do you think statisticians would stay employed?

Cookie Consent

Conjointly uses essential cookies to make our site work. We also use additional cookies in order to understand the usage of the site, gather audience analytics, and for remarketing purposes.

For more information on Conjointly's use of cookies, please read our Cookie Policy .

Which one are you?

I am new to conjointly, i am already using conjointly.

Module 9: Hypothesis Testing With One Sample

Null and alternative hypotheses, learning outcomes.

  • Describe hypothesis testing in general and in practice

The actual test begins by considering two  hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 : The null hypothesis: It is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.

H a : The alternative hypothesis : It is a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make adecision. There are two options for a  decision . They are “reject H 0 ” if the sample information favors the alternative hypothesis or “do not reject H 0 ” or “decline to reject H 0 ” if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in  H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

H 0 : No more than 30% of the registered voters in Santa Clara County voted in the primary election. p ≤ 30

H a : More than 30% of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

H 0 : The drug reduces cholesterol by 25%. p = 0.25

H a : The drug does not reduce cholesterol by 25%. p ≠ 0.25

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

H 0 : μ = 2.0

H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 66 H a : μ __ 66

  • H 0 : μ = 66
  • H a : μ ≠ 66

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

H 0 : μ ≥ 5

H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : μ __ 45 H a : μ __ 45

  • H 0 : μ ≥ 45
  • H a : μ < 45

In an issue of U.S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

H 0 : p ≤ 0.066

H a : p > 0.066

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses. H 0 : p __ 0.40 H a : p __ 0.40

  • H 0 : p = 0.40
  • H a : p > 0.40

Concept Review

In a  hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis , typically denoted with H 0 . The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality (=, ≤ or ≥) Always write the alternative hypothesis , typically denoted with H a or H 1 , using less than, greater than, or not equals symbols, i.e., (≠, >, or <). If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis. Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

H 0 and H a are contradictory.

  • OpenStax, Statistics, Null and Alternative Hypotheses. Provided by : OpenStax. Located at : http://cnx.org/contents/[email protected]:58/Introductory_Statistics . License : CC BY: Attribution
  • Introductory Statistics . Authored by : Barbara Illowski, Susan Dean. Provided by : Open Stax. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Simple hypothesis testing | Probability and Statistics | Khan Academy. Authored by : Khan Academy. Located at : https://youtu.be/5D1gV37bKXY . License : All Rights Reserved . License Terms : Standard YouTube License

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

7.1: Basics of Hypothesis Testing

  • Last updated
  • Save as PDF
  • Page ID 16360

  • Kathryn Kozak
  • Coconino Community College

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

To understand the process of a hypothesis tests, you need to first have an understanding of what a hypothesis is, which is an educated guess about a parameter. Once you have the hypothesis, you collect data and use the data to make a determination to see if there is enough evidence to show that the hypothesis is true. However, in hypothesis testing you actually assume something else is true, and then you look at your data to see how likely it is to get an event that your data demonstrates with that assumption. If the event is very unusual, then you might think that your assumption is actually false. If you are able to say this assumption is false, then your hypothesis must be true. This is known as a proof by contradiction. You assume the opposite of your hypothesis is true and show that it can’t be true. If this happens, then your hypothesis must be true. All hypothesis tests go through the same process. Once you have the process down, then the concept is much easier. It is easier to see the process by looking at an example. Concepts that are needed will be detailed in this example.

Example \(\PageIndex{1}\) basics of hypothesis testing

Suppose a manufacturer of the XJ35 battery claims the mean life of the battery is 500 days with a standard deviation of 25 days. You are the buyer of this battery and you think this claim is inflated. You would like to test your belief because without a good reason you can’t get out of your contract.

What do you do?

Well first, you should know what you are trying to measure. Define the random variable.

Let x = life of a XJ35 battery

Now you are not just trying to find different x values. You are trying to find what the true mean is. Since you are trying to find it, it must be unknown. You don’t think it is 500 days. If you did, you wouldn’t be doing any testing. The true mean, \(\mu\), is unknown. That means you should define that too.

Let \(\mu\)= mean life of a XJ35 battery

You may want to collect a sample. What kind of sample?

You could ask the manufacturers to give you batteries, but there is a chance that there could be some bias in the batteries they pick. To reduce the chance of bias, it is best to take a random sample.

How big should the sample be?

A sample of size 30 or more means that you can use the central limit theorem. Pick a sample of size 30.

Example \(\PageIndex{1}\) contains the data for the sample you collected:

Now what should you do? Looking at the data set, you see some of the times are above 500 and some are below. But looking at all of the numbers is too difficult. It might be helpful to calculate the mean for this sample.

The sample mean is \(\overline{x} = 490\) days. Looking at the sample mean, one might think that you are right. However, the standard deviation and the sample size also plays a role, so maybe you are wrong.

Before going any farther, it is time to formalize a few definitions.

You have a guess that the mean life of a battery is less than 500 days. This is opposed to what the manufacturer claims. There really are two hypotheses, which are just guesses here – the one that the manufacturer claims and the one that you believe. It is helpful to have names for them.

Definition \(\PageIndex{1}\)

Null Hypothesis : historical value, claim, or product specification. The symbol used is \(H_{o}\).

Definition \(\PageIndex{2}\)

Alternate Hypothesis : what you want to prove. This is what you want to accept as true when you reject the null hypothesis. There are two symbols that are commonly used for the alternative hypothesis: \(H_{A}\) or \(H_{I}\). The symbol \(H_{A}\) will be used in this book.

In general, the hypotheses look something like this:

\(H_{o} : \mu=\mu_{o}\)

\(H_{A} : \mu<\mu_{o}\)

where \(\mu_{o}\) just represents the value that the claim says the population mean is actually equal to.

Also, \(H_{A}\) can be less than, greater than, or not equal to.

For this problem:

\(H_{o} : \mu=500\) days, since the manufacturer says the mean life of a battery is 500 days.

\(H_{A} : \mu<500\) days, since you believe that the mean life of the battery is less than 500 days.

Now back to the mean. You have a sample mean of 490 days. Is this small enough to believe that you are right and the manufacturer is wrong? How small does it have to be?

If you calculated a sample mean of 235, you would definitely believe the population mean is less than 500. But even if you had a sample mean of 435 you would probably believe that the true mean was less than 500. What about 475? Or 483? There is some point where you would stop being so sure that the population mean is less than 500. That point separates the values of where you are sure or pretty sure that the mean is less than 500 from the area where you are not so sure. How do you find that point?

Well it depends on how much error you want to make. Of course you don’t want to make any errors, but unfortunately that is unavoidable in statistics. You need to figure out how much error you made with your sample. Take the sample mean, and find the probability of getting another sample mean less than it, assuming for the moment that the manufacturer is right. The idea behind this is that you want to know what is the chance that you could have come up with your sample mean even if the population mean really is 500 days.

You want to find \(P\left(\overline{x}<490 | H_{o} \text { is true }\right)=P(\overline{x}<490 | \mu=500)\)

To compute this probability, you need to know how the sample mean is distributed. Since the sample size is at least 30, then you know the sample mean is approximately normally distributed. Remember \(\mu_{\overline{x}}=\mu\) and \(\sigma_{\overline{x}}=\dfrac{\sigma}{\sqrt{n}}\)

A picture is always useful.

Screenshot (117).png

Before calculating the probability, it is useful to see how many standard deviations away from the mean the sample mean is. Using the formula for the z-score from chapter 6, you find

\(z=\dfrac{\overline{x}-\mu_{o}}{\sigma / \sqrt{n}}=\dfrac{490-500}{25 / \sqrt{30}}=-2.19\)

This sample mean is more than two standard deviations away from the mean. That seems pretty far, but you should look at the probability too.

On TI-83/84:

\(P(\overline{x}<490 | \mu=500)=\text { normalcdf }(-1 E 99,490,500,25 \div \sqrt{30}) \approx 0.0142\)

\(P(\overline{x}<490 \mu=500)=\text { pnorm }(490,500,25 / \operatorname{sqrt}(30)) \approx 0.0142\)

There is a 1.42% chance that you could find a sample mean less than 490 when the population mean is 500 days. This is really small, so the chances are that the assumption that the population mean is 500 days is wrong, and you can reject the manufacturer’s claim. But how do you quantify really small? Is 5% or 10% or 15% really small? How do you decide?

Before you answer that question, a couple more definitions are needed.

Definition \(\PageIndex{3}\)

Test Statistic : \(z=\dfrac{\overline{x}-\mu_{o}}{\sigma / \sqrt{n}}\) since it is calculated as part of the testing of the hypothesis.

Definition \(\PageIndex{4}\)

p – value : probability that the test statistic will take on more extreme values than the observed test statistic, given that the null hypothesis is true. It is the probability that was calculated above.

Now, how small is small enough? To answer that, you really want to know the types of errors you can make.

There are actually only two errors that can be made. The first error is if you say that \(H_{o}\) is false, when in fact it is true. This means you reject \(H_{o}\) when \(H_{o}\) was true. The second error is if you say that \(H_{o}\) is true, when in fact it is false. This means you fail to reject \(H_{o}\) when \(H_{o}\) is false. The following table organizes this for you:

Type of errors:

Definition \(\PageIndex{5}\)

Type I Error is rejecting \(H_{o}\) when \(H_{o}\) is true, and

Definition \(\PageIndex{6}\)

Type II Error is failing to reject \(H_{o}\) when \(H_{o}\) is false.

Since these are the errors, then one can define the probabilities attached to each error.

Definition \(\PageIndex{7}\)

\(\alpha\) = P(type I error) = P(rejecting \(H_{o} / H_{o}\) is true)

Definition \(\PageIndex{8}\)

\(\beta\) = P(type II error) = P(failing to reject \(H_{o} / H_{o}\) is false)

\(\alpha\) is also called the level of significance .

Another common concept that is used is Power = \(1-\beta \).

Now there is a relationship between \(\alpha\) and \(\beta\). They are not complements of each other. How are they related?

If \(\alpha\) increases that means the chances of making a type I error will increase. It is more likely that a type I error will occur. It makes sense that you are less likely to make type II errors, only because you will be rejecting \(H_{o}\) more often. You will be failing to reject \(H_{o}\) less, and therefore, the chance of making a type II error will decrease. Thus, as \(\alpha\) increases, \(\beta\) will decrease, and vice versa. That makes them seem like complements, but they aren’t complements. What gives? Consider one more factor – sample size.

Consider if you have a larger sample that is representative of the population, then it makes sense that you have more accuracy then with a smaller sample. Think of it this way, which would you trust more, a sample mean of 490 if you had a sample size of 35 or sample size of 350 (assuming a representative sample)? Of course the 350 because there are more data points and so more accuracy. If you are more accurate, then there is less chance that you will make any error. By increasing the sample size of a representative sample, you decrease both \(\alpha\) and \(\beta\).

Summary of all of this:

  • For a certain sample size, n , if \(\alpha\) increases, \(\beta\) decreases.
  • For a certain level of significance, \(\alpha\), if n increases, \(\beta\) decreases.

Now how do you find \(\alpha\) and \(\beta\)? Well \(\alpha\) is actually chosen. There are only three values that are usually picked for \(\alpha\): 0.01, 0.05, and 0.10. \(\beta\) is very difficult to find, so usually it isn’t found. If you want to make sure it is small you take as large of a sample as you can afford provided it is a representative sample. This is one use of the Power. You want \(\beta\) to be small and the Power of the test is large. The Power word sounds good.

Which pick of \(\alpha\) do you pick? Well that depends on what you are working on. Remember in this example you are the buyer who is trying to get out of a contract to buy these batteries. If you create a type I error, you said that the batteries are bad when they aren’t, most likely the manufacturer will sue you. You want to avoid this. You might pick \(\alpha\) to be 0.01. This way you have a small chance of making a type I error. Of course this means you have more of a chance of making a type II error. No big deal right? What if the batteries are used in pacemakers and you tell the person that their pacemaker’s batteries are good for 500 days when they actually last less, that might be bad. If you make a type II error, you say that the batteries do last 500 days when they last less, then you have the possibility of killing someone. You certainly do not want to do this. In this case you might want to pick \(\alpha\) as 0.10. If both errors are equally bad, then pick \(\alpha\) as 0.05.

The above discussion is why the choice of \(\alpha\) depends on what you are researching. As the researcher, you are the one that needs to decide what \(\alpha\) level to use based on your analysis of the consequences of making each error is.

If a type I error is really bad, then pick \(\alpha\) = 0.01.

If a type II error is really bad, then pick \(\alpha\) = 0.10

If neither error is bad, or both are equally bad, then pick \(\alpha\) = 0.05

The main thing is to always pick the \(\alpha\) before you collect the data and start the test.

The above discussion was long, but it is really important information. If you don’t know what the errors of the test are about, then there really is no point in making conclusions with the tests. Make sure you understand what the two errors are and what the probabilities are for them.

Now it is time to go back to the example and put this all together. This is the basic structure of testing a hypothesis, usually called a hypothesis test. Since this one has a test statistic involving z, it is also called a z-test. And since there is only one sample, it is usually called a one-sample z-test.

Example \(\PageIndex{2}\) battery example revisited

  • State the random variable and the parameter in words.
  • State the null and alternative hypothesis and the level of significance.
  • A random sample of size n is taken.
  • The population standard derivation is known.
  • The sample size is at least 30 or the population of the random variable is normally distributed.
  • Find the sample statistic, test statistic, and p-value.
  • Interpretation

1. x = life of battery

\(\mu\) = mean life of a XJ35 battery

2. \(H_{o} : \mu=500\) days

\(H_{A} : \mu<500\) days

\(\alpha = 0.10\) (from above discussion about consequences)

3. Every hypothesis has some assumptions that be met to make sure that the results of the hypothesis are valid. The assumptions are different for each test. This test has the following assumptions.

  • This occurred in this example, since it was stated that a random sample of 30 battery lives were taken.
  • This is true, since it was given in the problem.
  • The sample size was 30, so this condition is met.

4. The test statistic depends on how many samples there are, what parameter you are testing, and assumptions that need to be checked. In this case, there is one sample and you are testing the mean. The assumptions were checked above.

Sample statistic:

\(\overline{x} = 490\)

Test statistic:

Screenshot (139).png

Using TI-83/84:

\(P(\overline{x}<490 | \mu=500)=\text { normalcdf }(-1 \mathrm{E} 99,490,500,25 / \sqrt{30}) \approx 0.0142\)

\(P(\overline{x}<490 | \mu=500)=\operatorname{pnorm}(490,500,25 / \operatorname{sqrt}(30)) \approx 0.0142\)

5. Now what? Well, this p-value is 0.0142. This is a lot smaller than the amount of error you would accept in the problem -\(\alpha\) = 0.10. That means that finding a sample mean less than 490 days is unusual to happen if \(H_{o}\) is true. This should make you think that \(H_{o}\) is not true. You should reject \(H_{o}\).

In fact, in general:

Reject \(H_{o}\) if the p-value < \(\alpha\) and

Fail to reject \(H_{o}\) if the p-value \(\geq \alpha\).

6. Since you rejected \(H_{o}\), what does this mean in the real world? That is what goes in the interpretation. Since you rejected the claim by the manufacturer that the mean life of the batteries is 500 days, then you now can believe that your hypothesis was correct. In other words, there is enough evidence to show that the mean life of the battery is less than 500 days.

Now that you know that the batteries last less than 500 days, should you cancel the contract? Statistically, there is evidence that the batteries do not last as long as the manufacturer says they should. However, based on this sample there are only ten days less on average that the batteries last. There may not be practical significance in this case. Ten days do not seem like a large difference. In reality, if the batteries are used in pacemakers, then you would probably tell the patient to have the batteries replaced every year. You have a large buffer whether the batteries last 490 days or 500 days. It seems that it might not be worth it to break the contract over ten days. What if the 10 days was practically significant? Are there any other things you should consider? You might look at the business relationship with the manufacturer. You might also look at how much it would cost to find a new manufacturer. These are also questions to consider before making any changes. What this discussion should show you is that just because a hypothesis has statistical significance does not mean it has practical significance. The hypothesis test is just one part of a research process. There are other pieces that you need to consider.

That’s it. That is what a hypothesis test looks like. All hypothesis tests are done with the same six steps. Those general six steps are outlined below.

  • State the random variable and the parameter in words. This is where you are defining what the unknowns are in this problem. x = random variable \(\mu\) = mean of random variable, if the parameter of interest is the mean. There are other parameters you can test, and you would use the appropriate symbol for that parameter.
  • State the null and alternative hypotheses and the level of significance \(H_{o} : \mu=\mu_{o}\), where \(\mu_{o}\) is the known mean \(H_{A} : \mu<\mu_{o}\) \(H_{A} : \mu>\mu_{o}\), use the appropriate one for your problem \(H_{A} : \mu \neq \mu_{o}\) Also, state your \(\alpha\) level here.
  • State and check the assumptions for a hypothesis test. Each hypothesis test has its own assumptions. They will be stated when the different hypothesis tests are discussed.
  • Find the sample statistic, test statistic, and p-value. This depends on what parameter you are working with, how many samples, and the assumptions of the test. The p-value depends on your \(H_{A}\). If you are doing the \(H_{A}\) with the less than, then it is a left-tailed test, and you find the probability of being in that left tail. If you are doing the \(H_{A}\) with the greater than, then it is a right-tailed test, and you find the probability of being in the right tail. If you are doing the \(H_{A}\) with the not equal to, then you are doing a two-tail test, and you find the probability of being in both tails. Because of symmetry, you could find the probability in one tail and double this value to find the probability in both tails.
  • Conclusion This is where you write reject \(H_{o}\) or fail to reject \(H_{o}\). The rule is: if the p-value < \(\alpha\), then reject \(H_{o}\). If the p-value \(\geq \alpha\), then fail to reject \(H_{o}\).
  • Interpretation This is where you interpret in real world terms the conclusion to the test. The conclusion for a hypothesis test is that you either have enough evidence to show \(H_{A}\) is true, or you do not have enough evidence to show \(H_{A}\) is true.

Sorry, one more concept about the conclusion and interpretation. First, the conclusion is that you reject \(H_{o}\) or you fail to reject \(H_{o}\). Why was it said like this? It is because you never accept the null hypothesis. If you wanted to accept the null hypothesis, then why do the test in the first place? In the interpretation, you either have enough evidence to show \(H_{A}\) is true, or you do not have enough evidence to show \(H_{A}\) is true. You wouldn’t want to go to all this work and then find out you wanted to accept the claim. Why go through the trouble? You always want to show that the alternative hypothesis is true. Sometimes you can do that and sometimes you can’t. It doesn’t mean you proved the null hypothesis; it just means you can’t prove the alternative hypothesis. Here is an example to demonstrate this.

Example \(\PageIndex{3}\) conclusion in hypothesis tests

In the U.S. court system a jury trial could be set up as a hypothesis test. To really help you see how this works, let’s use OJ Simpson as an example. In the court system, a person is presumed innocent until he/she is proven guilty, and this is your null hypothesis. OJ Simpson was a football player in the 1970s. In 1994 his ex-wife and her friend were killed. OJ Simpson was accused of the crime, and in 1995 the case was tried. The prosecutors wanted to prove OJ was guilty of killing his wife and her friend, and that is the alternative hypothesis

\(H_{0}\): OJ is innocent of killing his wife and her friend

\(H_{A}\): OJ is guilty of killing his wife and her friend

In this case, a verdict of not guilty was given. That does not mean that he is innocent of this crime. It means there was not enough evidence to prove he was guilty. Many people believe that OJ was guilty of this crime, but the jury did not feel that the evidence presented was enough to show there was guilt. The verdict in a jury trial is always guilty or not guilty!

The same is true in a hypothesis test. There is either enough or not enough evidence to show that alternative hypothesis. It is not that you proved the null hypothesis true.

When identifying hypothesis, it is important to state your random variable and the appropriate parameter you want to make a decision about. If count something, then the random variable is the number of whatever you counted. The parameter is the proportion of what you counted. If the random variable is something you measured, then the parameter is the mean of what you measured. (Note: there are other parameters you can calculate, and some analysis of those will be presented in later chapters.)

Example \(\PageIndex{4}\) stating hypotheses

Identify the hypotheses necessary to test the following statements:

  • The average salary of a teacher is more than $30,000.
  • The proportion of students who like math is less than 10%.
  • The average age of students in this class differs from 21.

a. x = salary of teacher

\(\mu\) = mean salary of teacher

The guess is that \(\mu>\$ 30,000\) and that is the alternative hypothesis.

The null hypothesis has the same parameter and number with an equal sign.

\(\begin{array}{l}{H_{0} : \mu=\$ 30,000} \\ {H_{A} : \mu>\$ 30,000}\end{array}\)

b. x = number od students who like math

p = proportion of students who like math

The guess is that p < 0.10 and that is the alternative hypothesis.

\(\begin{array}{l}{H_{0} : p=0.10} \\ {H_{A} : p<0.10}\end{array}\)

c. x = age of students in this class

\(\mu\) = mean age of students in this class

The guess is that \(\mu \neq 21\) and that is the alternative hypothesis.

\(\begin{array}{c}{H_{0} : \mu=21} \\ {H_{A} : \mu \neq 21}\end{array}\)

Example \(\PageIndex{5}\) Stating Type I and II Errors and Picking Level of Significance

  • The plant-breeding department at a major university developed a new hybrid raspberry plant called YumYum Berry. Based on research data, the claim is made that from the time shoots are planted 90 days on average are required to obtain the first berry with a standard deviation of 9.2 days. A corporation that is interested in marketing the product tests 60 shoots by planting them and recording the number of days before each plant produces its first berry. The sample mean is 92.3 days. The corporation wants to know if the mean number of days is more than the 90 days claimed. State the type I and type II errors in terms of this problem, consequences of each error, and state which level of significance to use.
  • A concern was raised in Australia that the percentage of deaths of Aboriginal prisoners was higher than the percent of deaths of non-indigenous prisoners, which is 0.27%. State the type I and type II errors in terms of this problem, consequences of each error, and state which level of significance to use.

a. x = time to first berry for YumYum Berry plant

\(\mu\) = mean time to first berry for YumYum Berry plant

\(\begin{array}{l}{H_{0} : \mu=90} \\ {H_{A} : \mu>90}\end{array}\)

Type I Error: If the corporation does a type I error, then they will say that the plants take longer to produce than 90 days when they don’t. They probably will not want to market the plants if they think they will take longer. They will not market them even though in reality the plants do produce in 90 days. They may have loss of future earnings, but that is all.

Type II error: The corporation do not say that the plants take longer then 90 days to produce when they do take longer. Most likely they will market the plants. The plants will take longer, and so customers might get upset and then the company would get a bad reputation. This would be really bad for the company.

Level of significance: It appears that the corporation would not want to make a type II error. Pick a 10% level of significance, \(\alpha = 0.10\).

b. x = number of Aboriginal prisoners who have died

p = proportion of Aboriginal prisoners who have died

\(\begin{array}{l}{H_{o} : p=0.27 \%} \\ {H_{A} : p>0.27 \%}\end{array}\)

Type I error: Rejecting that the proportion of Aboriginal prisoners who died was 0.27%, when in fact it was 0.27%. This would mean you would say there is a problem when there isn’t one. You could anger the Aboriginal community, and spend time and energy researching something that isn’t a problem.

Type II error: Failing to reject that the proportion of Aboriginal prisoners who died was 0.27%, when in fact it is higher than 0.27%. This would mean that you wouldn’t think there was a problem with Aboriginal prisoners dying when there really is a problem. You risk causing deaths when there could be a way to avoid them.

Level of significance: It appears that both errors may be issues in this case. You wouldn’t want to anger the Aboriginal community when there isn’t an issue, and you wouldn’t want people to die when there may be a way to stop it. It may be best to pick a 5% level of significance, \(\alpha = 0.05\).

Hypothesis testing is really easy if you follow the same recipe every time. The only differences in the various problems are the assumptions of the test and the test statistic you calculate so you can find the p-value. Do the same steps, in the same order, with the same words, every time and these problems become very easy.

Exercise \(\PageIndex{1}\)

For the problems in this section, a question is being asked. This is to help you understand what the hypotheses are. You are not to run any hypothesis tests and come up with any conclusions in this section.

  • Eyeglassomatic manufactures eyeglasses for different retailers. They test to see how many defective lenses they made in a given time period and found that 11% of all lenses had defects of some type. Looking at the type of defects, they found in a three-month time period that out of 34,641 defective lenses, 5865 were due to scratches. Are there more defects from scratches than from all other causes? State the random variable, population parameter, and hypotheses.
  • According to the February 2008 Federal Trade Commission report on consumer fraud and identity theft, 23% of all complaints in 2007 were for identity theft. In that year, Alaska had 321 complaints of identity theft out of 1,432 consumer complaints ("Consumer fraud and," 2008). Does this data provide enough evidence to show that Alaska had a lower proportion of identity theft than 23%? State the random variable, population parameter, and hypotheses.
  • The Kyoto Protocol was signed in 1997, and required countries to start reducing their carbon emissions. The protocol became enforceable in February 2005. In 2004, the mean CO2 emission was 4.87 metric tons per capita. Is there enough evidence to show that the mean CO2 emission is lower in 2010 than in 2004? State the random variable, population parameter, and hypotheses.
  • The FDA regulates that fish that is consumed is allowed to contain 1.0 mg/kg of mercury. In Florida, bass fish were collected in 53 different lakes to measure the amount of mercury in the fish. The data for the average amount of mercury in each lake is in Example \(\PageIndex{5}\) ("Multi-disciplinary niser activity," 2013). Do the data provide enough evidence to show that the fish in Florida lakes has more mercury than the allowable amount? State the random variable, population parameter, and hypotheses.
  • Eyeglassomatic manufactures eyeglasses for different retailers. They test to see how many defective lenses they made in a given time period and found that 11% of all lenses had defects of some type. Looking at the type of defects, they found in a three-month time period that out of 34,641 defective lenses, 5865 were due to scratches. Are there more defects from scratches than from all other causes? State the type I and type II errors in this case, consequences of each error type for this situation from the perspective of the manufacturer, and the appropriate alpha level to use. State why you picked this alpha level.
  • According to the February 2008 Federal Trade Commission report on consumer fraud and identity theft, 23% of all complaints in 2007 were for identity theft. In that year, Alaska had 321 complaints of identity theft out of 1,432 consumer complaints ("Consumer fraud and," 2008). Does this data provide enough evidence to show that Alaska had a lower proportion of identity theft than 23%? State the type I and type II errors in this case, consequences of each error type for this situation from the perspective of the state of Arizona, and the appropriate alpha level to use. State why you picked this alpha level.
  • The Kyoto Protocol was signed in 1997, and required countries to start reducing their carbon emissions. The protocol became enforceable in February 2005. In 2004, the mean CO2 emission was 4.87 metric tons per capita. Is there enough evidence to show that the mean CO2 emission is lower in 2010 than in 2004? State the type I and type II errors in this case, consequences of each error type for this situation from the perspective of the agency overseeing the protocol, and the appropriate alpha level to use. State why you picked this alpha level.
  • The FDA regulates that fish that is consumed is allowed to contain 1.0 mg/kg of mercury. In Florida, bass fish were collected in 53 different lakes to measure the amount of mercury in the fish. The data for the average amount of mercury in each lake is in Example \(\PageIndex{5}\) ("Multi-disciplinary niser activity," 2013). Do the data provide enough evidence to show that the fish in Florida lakes has more mercury than the allowable amount? State the type I and type II errors in this case, consequences of each error type for this situation from the perspective of the FDA, and the appropriate alpha level to use. State why you picked this alpha level.

1. \(H_{o} : p=0.11, H_{A} : p>0.11\)

3. \(H_{o} : \mu=4.87 \text { metric tons per capita, } H_{A} : \mu<4.87 \text { metric tons per capita }\)

5. See solutions

7. See solutions

What Is a Hypothesis? (Science)

If...,Then...

Angela Lumsden/Getty Images

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject.

In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X , then Y ."

In common usage, a hypothesis is simply a proposed explanation or prediction, which may or may not be tested.

Writing a Hypothesis

Most scientific hypotheses are proposed in the if-then format because it's easy to design an experiment to see whether or not a cause and effect relationship exists between the independent variable and the dependent variable . The hypothesis is written as a prediction of the outcome of the experiment.

  • Null Hypothesis and Alternative Hypothesis

Statistically, it's easier to show there is no relationship between two variables than to support their connection. So, scientists often propose the null hypothesis . The null hypothesis assumes changing the independent variable will have no effect on the dependent variable.

In contrast, the alternative hypothesis suggests changing the independent variable will have an effect on the dependent variable. Designing an experiment to test this hypothesis can be trickier because there are many ways to state an alternative hypothesis.

For example, consider a possible relationship between getting a good night's sleep and getting good grades. The null hypothesis might be stated: "The number of hours of sleep students get is unrelated to their grades" or "There is no correlation between hours of sleep and grades."

An experiment to test this hypothesis might involve collecting data, recording average hours of sleep for each student and grades. If a student who gets eight hours of sleep generally does better than students who get four hours of sleep or 10 hours of sleep, the hypothesis might be rejected.

But the alternative hypothesis is harder to propose and test. The most general statement would be: "The amount of sleep students get affects their grades." The hypothesis might also be stated as "If you get more sleep, your grades will improve" or "Students who get nine hours of sleep have better grades than those who get more or less sleep."

In an experiment, you can collect the same data, but the statistical analysis is less likely to give you a high confidence limit.

Usually, a scientist starts out with the null hypothesis. From there, it may be possible to propose and test an alternative hypothesis, to narrow down the relationship between the variables.

Example of a Hypothesis

Examples of a hypothesis include:

  • If you drop a rock and a feather, (then) they will fall at the same rate.
  • Plants need sunlight in order to live. (if sunlight, then life)
  • Eating sugar gives you energy. (if sugar, then energy)
  • White, Jay D.  Research in Public Administration . Conn., 1998.
  • Schick, Theodore, and Lewis Vaughn.  How to Think about Weird Things: Critical Thinking for a New Age . McGraw-Hill Higher Education, 2002.
  • Null Hypothesis Definition and Examples
  • Definition of a Hypothesis
  • What Are the Elements of a Good Hypothesis?
  • Six Steps of the Scientific Method
  • Independent Variable Definition and Examples
  • What Are Examples of a Hypothesis?
  • Understanding Simple vs Controlled Experiments
  • Scientific Method Flow Chart
  • Scientific Method Vocabulary Terms
  • What Is a Testable Hypothesis?
  • Null Hypothesis Examples
  • What 'Fail to Reject' Means in a Hypothesis Test
  • How To Design a Science Fair Experiment
  • What Is an Experiment? Definition and Design
  • Hypothesis Test for the Difference of Two Population Proportions

What is The Null Hypothesis & When Do You Reject The Null Hypothesis

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A null hypothesis is a statistical concept suggesting no significant difference or relationship between measured variables. It’s the default assumption unless empirical evidence proves otherwise.

The null hypothesis states no relationship exists between the two variables being studied (i.e., one variable does not affect the other).

The null hypothesis is the statement that a researcher or an investigator wants to disprove.

Testing the null hypothesis can tell you whether your results are due to the effects of manipulating ​ the dependent variable or due to random chance. 

How to Write a Null Hypothesis

Null hypotheses (H0) start as research questions that the investigator rephrases as statements indicating no effect or relationship between the independent and dependent variables.

It is a default position that your research aims to challenge or confirm.

For example, if studying the impact of exercise on weight loss, your null hypothesis might be:

There is no significant difference in weight loss between individuals who exercise daily and those who do not.

Examples of Null Hypotheses

When do we reject the null hypothesis .

We reject the null hypothesis when the data provide strong enough evidence to conclude that it is likely incorrect. This often occurs when the p-value (probability of observing the data given the null hypothesis is true) is below a predetermined significance level.

If the collected data does not meet the expectation of the null hypothesis, a researcher can conclude that the data lacks sufficient evidence to back up the null hypothesis, and thus the null hypothesis is rejected. 

Rejecting the null hypothesis means that a relationship does exist between a set of variables and the effect is statistically significant ( p > 0.05).

If the data collected from the random sample is not statistically significance , then the null hypothesis will be accepted, and the researchers can conclude that there is no relationship between the variables. 

You need to perform a statistical test on your data in order to evaluate how consistent it is with the null hypothesis. A p-value is one statistical measurement used to validate a hypothesis against observed data.

Calculating the p-value is a critical part of null-hypothesis significance testing because it quantifies how strongly the sample data contradicts the null hypothesis.

The level of statistical significance is often expressed as a  p  -value between 0 and 1. The smaller the p-value, the stronger the evidence that you should reject the null hypothesis.

Probability and statistical significance in ab testing. Statistical significance in a b experiments

Usually, a researcher uses a confidence level of 95% or 99% (p-value of 0.05 or 0.01) as general guidelines to decide if you should reject or keep the null.

When your p-value is less than or equal to your significance level, you reject the null hypothesis.

In other words, smaller p-values are taken as stronger evidence against the null hypothesis. Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis.

In this case, the sample data provides insufficient data to conclude that the effect exists in the population.

Because you can never know with complete certainty whether there is an effect in the population, your inferences about a population will sometimes be incorrect.

When you incorrectly reject the null hypothesis, it’s called a type I error. When you incorrectly fail to reject it, it’s called a type II error.

Why Do We Never Accept The Null Hypothesis?

The reason we do not say “accept the null” is because we are always assuming the null hypothesis is true and then conducting a study to see if there is evidence against it. And, even if we don’t find evidence against it, a null hypothesis is not accepted.

A lack of evidence only means that you haven’t proven that something exists. It does not prove that something doesn’t exist. 

It is risky to conclude that the null hypothesis is true merely because we did not find evidence to reject it. It is always possible that researchers elsewhere have disproved the null hypothesis, so we cannot accept it as true, but instead, we state that we failed to reject the null. 

One can either reject the null hypothesis, or fail to reject it, but can never accept it.

Why Do We Use The Null Hypothesis?

We can never prove with 100% certainty that a hypothesis is true; We can only collect evidence that supports a theory. However, testing a hypothesis can set the stage for rejecting or accepting this hypothesis within a certain confidence level.

The null hypothesis is useful because it can tell us whether the results of our study are due to random chance or the manipulation of a variable (with a certain level of confidence).

A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis.

Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists. 

Hypothesis testing is a critical part of the scientific method as it helps decide whether the results of a research study support a particular theory about a given population. Hypothesis testing is a systematic way of backing up researchers’ predictions with statistical analysis.

It helps provide sufficient statistical evidence that either favors or rejects a certain hypothesis about the population parameter. 

Purpose of a Null Hypothesis 

  • The primary purpose of the null hypothesis is to disprove an assumption. 
  • Whether rejected or accepted, the null hypothesis can help further progress a theory in many scientific cases.
  • A null hypothesis can be used to ascertain how consistent the outcomes of multiple studies are.

Do you always need both a Null Hypothesis and an Alternative Hypothesis?

The null (H0) and alternative (Ha or H1) hypotheses are two competing claims that describe the effect of the independent variable on the dependent variable. They are mutually exclusive, which means that only one of the two hypotheses can be true. 

While the null hypothesis states that there is no effect in the population, an alternative hypothesis states that there is statistical significance between two variables. 

The goal of hypothesis testing is to make inferences about a population based on a sample. In order to undertake hypothesis testing, you must express your research hypothesis as a null and alternative hypothesis. Both hypotheses are required to cover every possible outcome of the study. 

What is the difference between a null hypothesis and an alternative hypothesis?

The alternative hypothesis is the complement to the null hypothesis. The null hypothesis states that there is no effect or no relationship between variables, while the alternative hypothesis claims that there is an effect or relationship in the population.

It is the claim that you expect or hope will be true. The null hypothesis and the alternative hypothesis are always mutually exclusive, meaning that only one can be true at a time.

What are some problems with the null hypothesis?

One major problem with the null hypothesis is that researchers typically will assume that accepting the null is a failure of the experiment. However, accepting or rejecting any hypothesis is a positive result. Even if the null is not refuted, the researchers will still learn something new.

Why can a null hypothesis not be accepted?

We can either reject or fail to reject a null hypothesis, but never accept it. If your test fails to detect an effect, this is not proof that the effect doesn’t exist. It just means that your sample did not have enough evidence to conclude that it exists.

We can’t accept a null hypothesis because a lack of evidence does not prove something that does not exist. Instead, we fail to reject it.

Failing to reject the null indicates that the sample did not provide sufficient enough evidence to conclude that an effect exists.

If the p-value is greater than the significance level, then you fail to reject the null hypothesis.

Is a null hypothesis directional or non-directional?

A hypothesis test can either contain an alternative directional hypothesis or a non-directional alternative hypothesis. A directional hypothesis is one that contains the less than (“<“) or greater than (“>”) sign.

A nondirectional hypothesis contains the not equal sign (“≠”).  However, a null hypothesis is neither directional nor non-directional.

A null hypothesis is a prediction that there will be no change, relationship, or difference between two variables.

The directional hypothesis or nondirectional hypothesis would then be considered alternative hypotheses to the null hypothesis.

Gill, J. (1999). The insignificance of null hypothesis significance testing.  Political research quarterly ,  52 (3), 647-674.

Krueger, J. (2001). Null hypothesis significance testing: On the survival of a flawed method.  American Psychologist ,  56 (1), 16.

Masson, M. E. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.  Behavior research methods ,  43 , 679-690.

Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an old and continuing controversy.  Psychological methods ,  5 (2), 241.

Rozeboom, W. W. (1960). The fallacy of the null-hypothesis significance test.  Psychological bulletin ,  57 (5), 416.

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

Advertisement

As Seinfeld Receives Honorary Degree at Duke, Students Walk Out in Protest

Following the walkout, the comedian, who has been vocal about his support for Israel, opted to take a lighter approach in his commencement speech.

  • Share full article

Dozens of Students Walk Out of Duke Commencement Ceremony

As the comedian jerry seinfeld received an honorary degree at duke university’s commencement, dozens of students walked out and chanted, “free palestine.” some also chanted mr. seinfeld’s name during the walkout..

From stage: “Big deal about our commencement speaker?” [crowd boos and cheers] Some in crowd: “Free Palestine!” Some in crowd: “Free Palestine!” Some in crowd: “Jerry! Jerry! Jerry!” From stage: “Thank you.”

Video player loading

By Eduardo Medina and Emily Cataneo

Reporting from Duke University’s campus in Durham N.C.

  • May 12, 2024

Jerry Seinfeld knows his way around handling awkward moments onstage. Even so, the initial reception he faced at Duke University’s commencement on Sunday reflected a more complicated audience than usual.

As Mr. Seinfeld, who has recently been vocal about his support for Israel, received an honorary degree, dozens of students walked out and chanted, “Free, free Palestine,” while the comedian looked on and smiled tensely.

Many in the crowd jeered the protesters. Minutes later, as the last of the protesters were filing out, he approached the mic. His first words were: “Thank you. Oh my God, what a beautiful day.”

In his commencement speech, Mr. Seinfeld was mostly cautious, opting for a tight comedic script interspersed with life advice instead of a full-on response to the protests against his presence.

Still, in one part of his speech, he defended various types of privilege and appeared to hint at the elephant in the room.

“I grew up a Jewish boy from New York,” he said to applause from the crowd. “That is a privilege if you want to be a comedian.”

Outside Duke’s stadium, graduates walked around campus, chanting: “Disclose, divest, we will not stop, we will not rest.” When they arrived at a green space, they were joined by hundreds of other people — including faculty, relatives and other protesters — who organized a makeshift graduation for them.

As they prepared to throw their caps in the air, Mr. Seinfeld continued his speech inside Wallace Wade Stadium, telling students that while he admired their generation’s commitment to inclusivity and not hurting other people’s feelings, “it is worth the sacrifice of occasional discomfort to have some laughs.”

Mr. Seinfeld, who has two children who have attended Duke, has been uncharacteristically vocal about his support for Jews in Israel while doing press in recent weeks for his latest film, “Unfrosted,” which chronicles the invention of Pop-Tarts .

Typically an apolitical comedian who prefers punchy takes on ordinary observations, Mr. Seinfeld is now engaging in the type of celebrity activism that few associate with him, and that has drawn criticism and praise. Since the attacks of Oct. 7 in Israel, he has signed a letter in support of the country and posted an earnest message on social media about his devotion to it.

His wife, Jessica Seinfeld, a cookbook author, recently promoted on Instagram a counterprotest at the University of California, Los Angeles, that she said she had helped bankroll. (She condemned the violence that occurred at a later counterprotest.)

In December, Mr. Seinfeld traveled to Tel Aviv to meet with the families of hostages, soberly recounting afterward the missile attack that occurred during the trip.

Still, his comments on the issues have been somewhat modest.

“I don’t preach about it,” he told GQ last month. “I have my personal feelings about it that I discuss privately. It’s not part of what I can do comedically, but my feelings are very strong.”

On Sunday, Mr. Seinfeld played to the crowd, telling students: “You’re never going to believe this: Harvard used to be a great place to go to school. Now it’s Duke.”

Not everyone at Duke, however, was laughing at Mr. Seinfeld’s jokes.

The Rev. Dr. Stefan Weathers Sr., an ordained minister in the American Baptist Church who was awarded a Ph.D. in divinity, had written a letter before the ceremony to the university asking that the comedian be replaced, citing Mr. Seinfeld’s ongoing and strong support for Israel.

Shreya Joshi, a graduate and one of the organizers of the protest, said that after Duke selected Mr. Seinfeld as the speaker, she and other seniors, faculty members and pro-Palestinian supporters began organizing the walkout and an alternate graduation.

Ms. Joshi, 21, who studied history at Duke and will be attending law school at the University of Chicago, said that it was painful to have lost out on a high school graduation ceremony in 2020 because of the pandemic, and the seniors still wanted one this year, even if it meant creating one outside of the university’s official channels.

And that pain, she added, paled in comparison to what people in Gaza are experiencing.

“The fact that we were going to sit here and celebrate our own?” Ms. Joshi said. “It felt trivial in the face of all that. Have you seen the tiny violin? That’s how it felt.”

Ms. Joshi said that they had tried to leave the main commencement ceremony in the least disruptive way possible. They chose to leave as the honorary degree was being given to Mr. Seinfeld because “none of us particularly wanted to listen to Seinfeld.”

Eduardo Medina is a Times reporter covering the South. An Alabama native, he is now based in Durham, N.C. More about Eduardo Medina

Our Coverage of the U.S. Campus Protests

News and Analysis

N.Y.U.: In what New York University calls a “restorative practice,” it is forcing student protestors  to write apology letters. The students call it a coerced confession.

Columbia: Approximately 550 students, professors and religious leaders gathered near the campus for what organizers called an alternative graduation ceremony , featuring speeches by pro-Palestinian activists and writers, and clergy from various faiths.

Harvard: A Republican-dominated congressional committee released a scathing report of Harvard’s efforts  to combat antisemitism on campus, accusing it of suppressing the findings of its antisemitism advisory group and avoiding implementing its recommendations.

Norway's wealth fund asks Shell for more climate policy details

  • Medium Text

LNG 2023 energy trade show in Vancouver

  • Norway's wealth fund is Shell's 2nd largest shareholder
  • Asks Shell to give more information on revised climate target
  • Fund will not back climate resolution by other shareholders

Sign up here.

Reporting by Terje Solsvik; Editing by Louise Rasmussen and Mark Potter

Our Standards: The Thomson Reuters Trust Principles. New Tab , opens new tab

Afghanistan floods devastate villages, killing over 300

Sustainability Chevron

Fifty dead in heavy rain, floods in central afghanistan, official says.

At least 50 people are dead following a fresh bout of heavy rain and flooding in central Afghanistan, an official said on Saturday.

A arrives at the U.S. District Bankruptcy Court for the Southern District of New York in New York

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Broad Public Support for Legal Abortion Persists 2 Years After Dobbs

By more than 2 to 1, americans say medication abortion should be legal, table of contents.

  • Other abortion attitudes
  • Overall attitudes about abortion
  • Americans’ views on medication abortion in their states
  • How statements about abortion resonate with Americans
  • Acknowledgments
  • The American Trends Panel survey methodology

Pew Research Center conducted this study to understand Americans’ views on the legality of abortion, as well as their perceptions of abortion access. For this analysis, we surveyed 8,709 adults from April 8 to 14, 2024. Everyone who took part in this survey is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used for the report and its methodology .

Nearly two years after the Supreme Court overturned the 1973 Roe v. Wade decision guaranteeing a national right to abortion, a majority of Americans continue to express support for abortion access.

Chart shows Majority of Americans say abortion should be legal in all or most cases

About six-in-ten (63%) say abortion should be legal in all or most cases. This share has grown 4 percentage points since 2021 – the year prior to the 2022 decision in Dobbs v. Jackson Women’s Health Organization that overturned Roe.

The new Pew Research Center survey, conducted April 8-14, 2024, among 8,709 adults, surfaces ongoing – and often partisan – divides over abortion attitudes:

  • Democrats and Democratic-leaning independents (85%) overwhelmingly say abortion should be legal in all or most cases, with near unanimous support among liberal Democrats.
  • By comparison, Republicans and Republican leaners (41%) are far less likely to say abortion should be legal in all or most cases. However, two-thirds of moderate and liberal Republicans still say it should be.

Chart shows Partisan divide over abortion has widened over the past decade

Since before Roe was overturned, both parties have seen a modest uptick in the share who say abortion should be legal.

As in the past, relatively few Americans (25%) say abortion should be legal in all cases, while even fewer (8%) say it should be illegal in all cases. About two-thirds of Americans do not take an absolutist view: 38% say it should be legal in most cases, and 28% say it should be illegal in most cases.

Related: Americans overwhelmingly say access to IVF is a good thing

Women’s abortion decisions

Chart shows A majority of Americans say the decision to have an abortion should belong solely to the pregnant woman; about a third say embryos are people with rights

A narrow majority of Americans (54%) say the statement “the decision about whether to have an abortion should belong solely to the pregnant woman” describes their views extremely or very well. Another 19% say it describes their views somewhat well, and 26% say it does not describe their views well.

Views on an embryo’s rights

About a third of Americans (35%) say the statement “human life begins at conception, so an embryo is a person with rights” describes their views extremely or very well, while 45% say it does not describe their views well.

But many Americans are cross-pressured in their views: 32% of Americans say both statements about women’s decisions and embryos’ rights describe their views at least somewhat well.

Abortion access

About six-in-ten Americans in both parties say getting an abortion in the area where they live would be at least somewhat easy, compared with four-in-ten or fewer who say it would be difficult.

Chart shows About 6 in 10 Americans say it would be easy to get an abortion in their area

However, U.S. adults are divided over whether getting an abortion should be easier or harder:

  • 31% say it should be easier for someone to get an abortion in their area, while 25% say it should be harder. Four-in-ten say the ease of access should be about what it is now.
  • 48% of Democrats say that obtaining an abortion should be easier than it is now, while just 15% of Republicans say this. Instead, 40% of Republicans say it should be harder (just 11% of Democrats say this).

As was the case last year, views about abortion access vary widely between those who live in states where abortion is legal and those who live in states where it is not allowed.

For instance, 20% of adults in states where abortion is legal say it would be difficult to get an abortion where they live, but this share rises to 71% among adults in states where abortion is prohibited.

Medication abortion

Americans say medication abortion should be legal rather than illegal by a margin of more than two-to-one (54% vs. 20%). A quarter say they are not sure.

Chart shows Most Democrats say medication abortion should be legal; Republicans are divided

Like opinions on the legality of abortion overall, partisans differ greatly in their views of medication abortion:

  • Republicans are closely split but are slightly more likely to say it should be legal (37%) than illegal (32%). Another 30% aren’t sure.
  • Democrats (73%) overwhelmingly say medication abortion should be legal. Just 8% say it should be illegal, while 19% are not sure.

Across most other demographic groups, Americans are generally more supportive than not of medication abortion.

Chart shows Younger Americans are more likely than older adults to say abortion should be legal in all or most cases

Across demographic groups, support for abortion access has changed little since this time last year.

Today, roughly six-in-ten (63%) say abortion should be legal in all (25%) or most (38%) cases. And 36% say it should be illegal in all (8%) or most (28%) cases.

While differences are only modest by gender, other groups vary more widely in their views.

Race and ethnicity

Support for legal abortion is higher among Black (73%) and Asian (76%) adults compared with White (60%) and Hispanic (59%) adults.

Compared with older Americans, adults under 30 are particularly likely to say abortion should be legal: 76% say this, versus about six-in-ten among other age groups.

Those with higher levels of formal education express greater support for legal abortion than those with lower levels of educational attainment.

About two-thirds of Americans with a bachelor’s degree or more education (68%) say abortion should be legal in all or most cases, compared with six-in-ten among those without a degree.

White evangelical Protestants are about three times as likely to say abortion should be illegal (73%) as they are to say it should be legal (25%).

By contrast, majorities of White nonevangelical Protestants (64%), Black Protestants (71%) and Catholics (59%) say abortion should be legal. And religiously unaffiliated Americans are especially likely to say abortion should be legal (86% say this).

Partisanship and ideology

Democrats (85%) are about twice as likely as Republicans (41%) to say abortion should be legal in all or most cases.

But while more conservative Republicans say abortion should be illegal (76%) than legal (27%), the reverse is true for moderate and liberal Republicans (67% say legal, 31% say illegal).

By comparison, a clear majority of conservative and moderate Democrats (76%) say abortion should be legal, with liberal Democrats (96%) overwhelmingly saying this.

Views of abortion access by state

About six-in-ten Americans (58%) say it would be easy for someone to get an abortion in the area where they live, while 39% say it would be difficult.

Chart shows Americans vary widely in their views over how easy it would be to get an abortion based on where they live

This marks a slight shift since last year, when 54% said obtaining an abortion would be easy. But Americans are still less likely than before the Dobbs decision to say obtaining an abortion would be easy.

Still, Americans’ views vary widely depending on whether they live in a state that has banned or restricted abortion.

In states that prohibit abortion, Americans are about three times as likely to say it would be difficult to obtain an abortion where they live as they are to say it would be easy (71% vs. 25%). The share saying it would be difficult has risen 19 points since 2019.

In states where abortion is restricted or subject to legal challenges, 51% say it would be difficult to get an abortion where they live. This is similar to the share who said so last year (55%), but higher than the share who said this before the Dobbs decision (38%).

By comparison, just 20% of adults in states where abortion is legal say it would be difficult to get one. This is little changed over the past five years.

Americans’ attitudes about whether it should be easier or harder to get an abortion in the area where they live also varies by geography.

Chart shows Americans living in states with abortion bans or restrictions are more likely to say it should be easier than it currently is to obtain an abortion

Overall, a decreasing share of Americans say it should be harder to obtain an abortion: 33% said this in 2019, compared with 25% today.

This is particularly true of those in states where abortion is now prohibited or restricted.

In both types of states, the shares of Americans saying it should be easier to obtain an abortion have risen 12 points since before Roe was overturned, as the shares saying it should be harder have gradually declined.

By comparison, changes in views among those living in states where abortion is legal have been more modest.

While Americans overall are more supportive than not of medication abortion (54% say it should be legal, 20% say illegal), there are modest differences in support across groups:

Chart shows Across most groups, more say medication abortion should be legal than illegal in their states

  • Younger Americans are somewhat more likely to say medication abortion should be legal than older Americans. While 59% of adults ages 18 to 49 say it should be legal, 48% of those 50 and older say the same.
  • Asian adults (66%) are particularly likely to say medication abortion should be legal compared with White (55%), Black (51%) and Hispanic (47%) adults.
  • White evangelical Protestants oppose medication abortion by about two-to-one (45% vs. 23%), with White nonevangelicals, Black Protestants, Catholics and religiously unaffiliated adults all being more likely than not to say medication abortion should be legal.
  • Republicans are closely divided over medication abortion: 37% say it should be legal while 32% say it should be illegal. But similar to views on abortion access overall, conservative Republicans are more opposed (43% illegal, 27% legal), while moderate and liberals are more supportive (55% legal, 14% illegal).

Just over half of Americans (54%) say “the decision about whether to have an abortion should belong solely to the pregnant woman” describes their views extremely or very well, compared with 19% who say somewhat well and 26% who say not too or not at all well.

Chart shows Wide partisan divides over whether pregnant women should be the sole deciders of abortion decisions and whether an embryo is a person with rights

Democrats (76%) overwhelmingly say this statement describes their views extremely or very well, with just 8% saying it does not describe their views well.

Republicans are more divided: 44% say it does not describe their views well while 33% say it describes them extremely or very well. Another 22% say it describes them somewhat well.

Fewer Americans (35%) say the statement “human life begins at conception, so an embryo is a person with rights” describes their views extremely or very well. Another 19% say it describes their views somewhat well while 45% say it describes them not too or not at all well.

(The survey asks separately whether “a fetus is a person with rights.” The results are roughly similar: 37% say that statement describes their views extremely or very well.)

Republicans are about three times as likely as Democrats to say “an embryo is a person with rights” describes their views extremely or very well (53% vs. 18%). In turn, Democrats (66%) are far more likely than Republicans (25%) to say it describes their views not too or not at all well.

Some Americans are cross-pressured about abortion

Chart shows Nearly a third of U.S. adults say embryos are people with rights and pregnant women should be the ones to make abortion decisions

When results on the two statements are combined, 41% of Americans say the statement about a pregnant woman’s right to choose describes their views at least somewhat well , but not the statement about an embryo being a person with rights. About two-in-ten (21%) say the reverse.

But for nearly a third of U.S. adults (32%), both statements describe their views at least somewhat well.

Just 4% of Americans say neither statement describes their views well.

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Partisanship & Issues

Support for legal abortion is widespread in many places, especially in Europe

Public opinion on abortion, americans overwhelmingly say access to ivf is a good thing, what the data says about abortion in the u.s., nearly a year after roe’s demise, americans’ views of abortion access increasingly vary by where they live, most popular, report materials.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

About the security content of tvOS 17.5

This document describes the security content of tvOS 17.5.

About Apple security updates

For our customers' protection, Apple doesn't disclose, discuss, or confirm security issues until an investigation has occurred and patches or releases are available. Recent releases are listed on the  Apple security releases page.

Apple security documents reference vulnerabilities by  CVE-ID  when possible.

For more information about security, see the  Apple Product Security  page.

hypothesis not support

Released May 13, 2024

Available for: Apple TV HD and Apple TV 4K (all models)

Impact: An app may be able to cause unexpected system termination

Description: The issue was addressed with improved memory handling.

CVE-2024-27804: Meysam Firouzi (@R00tkitSMM)

AppleMobileFileIntegrity

Impact: An attacker may be able to access user data

Description: A logic issue was addressed with improved checks.

CVE-2024-27816: Mickey Jin (@patch1t)

Impact: An app may be able to read sensitive location information

Description: A path handling issue was addressed with improved validation.

CVE-2024-27810: LFY@secsys of Fudan University

RemoteViewServices

Impact: An attacker with arbitrary read and write capability may be able to bypass Pointer Authentication

Description: The issue was addressed with improved checks.

WebKit Bugzilla: 272750 CVE-2024-27834: Manfred Paul (@_manfp) working with Trend Micro's Zero Day Initiative

Additional recognition

We would like to acknowledge an anonymous researcher for their assistance.

We would like to acknowledge Adrian Cable for their assistance.

Managed Configuration

We would like to acknowledge 遥遥领先 (@晴天组织) for their assistance.

Information about products not manufactured by Apple, or independent websites not controlled or tested by Apple, is provided without recommendation or endorsement. Apple assumes no responsibility with regard to the selection, performance, or use of third-party websites or products. Apple makes no representations regarding third-party website accuracy or reliability. Contact the vendor for additional information.

Start a discussion in Apple Support Communities

What are you looking for?

hypothesis not support

Suggested Searches

NO SUGGESTIONS

Search History

Related Searches

Matched Contents

Samsung TV is not playing 5.1 audio through the optical output

You Are About To Be Redirected To Investor Relations Information for U.S.

Redirect notification.

  • * For Samsung Supplies information go to: www.hp.com/go/samsungsupplies
  • * For S.T.A.R. Program cartridge return & recycling go to: www.hp.com/go/suppliesrecycling
  • * For Samsung printer support or service go to: www.hp.com/support/samsung

Select CONTINUE to visit HP's website.

We’ve analyzed the Eagles’ 2024 schedule. Sorry, they’re going to lose every single game.

Usually, predicting how an NFL team will fare week to week is a fool's errand. Not this time. We're certain it'll be a long season for Nick Sirianni & Co.

Eagles coach Nick Sirianni is better off keeping his eyes closed if the season ends up this way.

Having conducted a rigorous analysis of the Eagles’ 2024 regular-season schedule, I have some bad news.

They’re going to go 0-17.

I wish there were another reasonable projection to make or conclusion to draw. Alas, there is not. Usually, predicting the outcome of each game in an NFL team’s season within hours after the schedule has been made public — before the end of the offseason, before training camp, before rosters have been set, before any significant players around the league have suffered any significant injuries — is the most foolish of fool’s errands. Not in this case. This Eagles season is sunk before it starts. Here’s how it will unfold:

Week 1: The Eagles open against Jordan Love and the Green Bay Packers in São Paulo, the largest, most cosmopolitan city in Brazil. Its social scene, according to TheCultureTrip.com , “is considered one of the most vibrant and diverse on the continent.” Can you say DISTRACTION? I knew you could. Packers 34, Eagles 14.

Week 2: The Eagles are favored against the Atlanta Falcons. Problem is, everyone at Lincoln Financial Field gets bummed out after listening to Jason Kelce weep uncontrollably for 45 minutes during the Monday Night Football telecast. Falcons 17, Eagles 13.

Week 3: First São Paulo, now New Orleans. Nightlife. Weakens. Legs. Plus, ever since Drew Brees retired and Sean Payton left, the Saints have been the most nondescript franchise in the NFL. No one knows who coaches the Saints. No one knows who plays for the Saints. So how can the Eagles possibly prepare to beat the Saints? New Orleans 21, Eagles 20.

Week 4: Tampa. In a desperate move to inspire his 0-3 team, Nick Sirianni shows film from the Eagles’ 32-9 wild-card loss to the Buccaneers. “Remember this?” Sirianni asks. “Nope,” Kellen Moore says. Jalen Hurts drops back to pass 46 times. He scrambles to his left and throws the ball out of bounds 46 times. Bucs 10, Eagles 0 .

» READ MORE: The Eagles are like everyone else when it comes to the NFL draft: They know nothing. Judge them accordingly.

Week 5: The bye week. Adam Schefter reports that the Eagles have been communicating with Schefter’s new colleague at ESPN: Bill Belichick. WIP’s Howard Eskin reports that the Eagles are the best 0-4 team in NFL history.

Week 6: Cleveland’s Myles Garrett sacks Hurts seven times. “You can send me dead flowers every morning,” Sirianni says during his postgame press conference, “but don’t forget to put roses on my grave.” A.J. Brown declines to speak to reporters. Later, photos of Kenny Pickett, Dak Prescott, and the starting quarterback from St. Joseph’s Prep appear on his Twitter/X account. Browns 19, Eagles 3 .

Week 7: On the first play of his first game back at MetLife Stadium, Saquon Barkley gets his first carry of the season. He makes a cut and, untouched, immediately goes down with a torn ACL. On the sideline, Sirianni screams, “Put Boston Scott in!” In the coaches’ booth, Moore says, “Who?” Giants 23, Eagles 13 .

Week 8: In Cincinnati, 19 Eagles are inactive against the Bengals after a Saturday night team dinner at Skyline Chili goes horribly wrong. Joe Burrow throws for 347 yards and three touchdowns. “Hey, I played great,” Darius Slay says. Bengals 42, Eagles 17 .

Week 9: The NFL flexes Eagles-Jaguars from Sunday at 8:20 p.m. to Tuesday at 10:20 a.m. Doug Pederson calls the “Philly Special” twice, then phones Nick Foles from the sideline to have him call it once. All three plays result in touchdowns. Bryce Huff picks up his first sack of the season. Jacksonville 27, Eagles 24 .

Week 10: Three hours before kickoff at AT&T Stadium, the Eagles announce via press release that Vic Fangio has been demoted from defensive coordinator to quality-control assistant. His replacement, Joe Judge, has Huff drop into coverage 17 times against the Cowboys. Brandon Graham plays every defensive snap. Dallas 37, Eagles 20 .

Week 11: Washington Commanders owner Josh Harris arrives at the Linc for his team’s Thursday night matchup against the Eagles wearing gold trousers, a burgundy turtleneck, and a New Jersey Devils baseball cap. “Regardless of the Sixers’ arena situation,” he says in a brief pregame interview, “the Sixers are committed to keeping the Sixers in Philadelphia.” Commanders 24, Eagles 19 .

Week 12: Two days before the Eagles leave for Los Angeles to take on the Rams, The Inquirer’s Jeff McLane tracks down Fangio at the Philadium while the former DC is having lunch. “Team needs to practice more,” Fangio says between bites of his buffalo wings. “Leave it at that.” Matthew Stafford throws for 377 yards and four touchdowns. “I shut down my guy,” Slay says. Rams 49, Eagles 30 .

Week 13: While Belichick is sitting next to him during Sunday NFL Countdown , Schefter reports that behind-the-scenes talks between Belichick and the Eagles have heated up. “We’re on to Carolina,” Belichick mumbles. Eskin reports that Sirianni’s job has never been safer. In the third quarter at M&T Stadium, Lamar Jackson gains 27 yards on a scramble near the visitors’ sideline. There, Eagles head of security Dom DiSandro unveils a samurai sword and challenges him to a duel. Ravens 38, Eagles 28 .

Week 14: In a clash of winless teams, Carolina collects minus-3 yards of total offense before its final possession, when it drives 97 yards for the winning touchdown. Hurts finishes 10-for-29 for 145 yards and two interceptions. “The main thing is the main thing,” he says, “and we have to keep the main thing the main thing because the main thing is what the main thing is.” Panthers 10, Eagles 9 .

Week 15: Sirianni benches Hurts for Pickett ahead of a home game against the Steelers. “The standard is the standard,” Hurts says. “Only I know what the standard is, and no one knows if I was playing to the standard. Was I? Were you? Who am I? Why am I here?” Against his former team, Pickett throws three interceptions. McLane reports that at the trade deadline, Howie Roseman had offered the Steelers four future sixth-round picks, then six future fourth-round picks, for Russell Wilson. Steelers 16, Eagles 10 .

» READ MORE: The NFL wants to rule the world. Jeffrey Lurie is happy to have the Eagles help.

Week 16: Commanders rookie Jaylen Daniels throws for 447 yards and five touchdowns. “I’ve never played better,” Slay says. An empty section of seats at FedEx Field collapses for no apparent reason. “This is a disgrace, Mike Quick,” Merrill Reese says during the radio broadcast. “Yep,” Quick responds, “and the stadium is awful, too.” Washington 45, Eagles 28 .

Week 17: The Eagles hold a pregame ceremony to celebrate the career of Fletcher Cox, who then signs a one-day contract and starts for them at defensive tackle. The Cowboys’ Ezekiel Elliott rushes for 154 yards on 21 carries, then retires. Tanner McKee gets his first NFL start and completes 17 of 29 passes for 177 yards. The next day, a parade is held in Fox Chase in his honor. Dallas 26, Eagles 16 .

Week 18: Schefter reports that the Eagles will make a decision about Sirianni’s future after consulting with Belichick on the matter. Eskin reports that he never liked Sirianni who was never a good coach anyway. Nolan Smith takes down Daniel Jones for his first sack of the season. Giants 28, Eagles 14 .

IMAGES

  1. What to do if your hypotheses are not supported

    hypothesis not support

  2. PPT

    hypothesis not support

  3. Guide to Hypothesis Testing for Data Scientists

    hypothesis not support

  4. PPT

    hypothesis not support

  5. hypothesis test formula statistics

    hypothesis not support

  6. 🔥 How to right a hypothesis. How to Write a Strong Hypothesis in 6

    hypothesis not support

VIDEO

  1. Hypothesis treated as fact #openpanel

  2. HOW TO: Create Hypothesis-enabled readings in D2L Brightspace using the new assignment workflow

  3. Hypothesis Testing for Population Proportion Using Rejection Region and P-value (Cell Phone Example)

  4. Part 1: Hypothesis testing (Null & Alternative hypothesis)

  5. Hypothsis Testing in Statistics Part 2 Steps to Solving a Problem

  6. What is Simulation Hypothesis of the universe? 🤔

COMMENTS

  1. Support or Reject Null Hypothesis in Easy Steps

    Use the P-Value method to support or reject null hypothesis. Step 1: State the null hypothesis and the alternate hypothesis ("the claim"). H o :p ≤ 0.23; H 1 :p > 0.23 (claim) Step 2: Compute by dividing the number of positive respondents from the number in the random sample: 63 / 210 = 0.3.

  2. PDF Results and Discussion

    temptation. In the first place, your goal is not to support your hypothesis but to test your hypothesis, and the answer to the test may be "no." There is no shame in not supporting your hypothesis. In fact, that is the most likely outcome when you have low statistical power. Active voice. APA recommends writing in the active voice rather ...

  3. The scientific method (article)

    Results that support a hypothesis can't conclusively prove that it's correct, but they do mean it's likely to be correct. On the other hand, if results contradict a hypothesis, that hypothesis is probably not correct. Unless there was a flaw in the test—a possibility we should always consider—a contradictory result means that we can discard ...

  4. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  5. What is a Hypothesis

    When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon. ... This means that it must be possible to collect data that will either support or refute the hypothesis. Falsifiable: A hypothesis must be able to be proven false if it is not supported ...

  6. Hypothesis Testing

    Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  7. Don't talk about hypotheses as being "either confirmed, partially

    Rejection of null hypothesis A taken as support for, or confirmation of, favored alternative hypothesis B. 4. Dichotomization—or, one might say, premature dichotomization—throwing away information at all stages of a study, from design and data collection through coding and data analysis. ... There may not be true zeroes, but there may be ...

  8. How to Write Hypothesis Test Conclusions (With Examples)

    There is sufficient evidence to support the claim that… Or, we would write: We fail to reject the null hypothesis at the 5% significance level. There is not sufficient evidence to support the claim that… The following examples show how to write a hypothesis test conclusion in both scenarios. Example 1: Reject the Null Hypothesis Conclusion

  9. What is a scientific hypothesis?

    Bibliography. A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an ...

  10. Scientific hypothesis

    scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world.The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ability to be supported or refuted through observation and experimentation.

  11. 9.1: Introduction to Hypothesis Testing

    This page titled 9.1: Introduction to Hypothesis Testing is shared under a CC BY 2.0 license and was authored, remixed, and/or curated by Kyle Siegrist ( Random Services) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. In hypothesis testing, the goal is ...

  12. What Is the Next Step if an Experiment Fails to Confirm Your Hypothesis

    The scientific method goes through a progression of steps to create new knowledge. You make an observation, have a question about your observation, form a hypothesis about how it works, test your hypothesis and then form new questions and hypotheses based on the results. The results of your experiment represent a single iteration of the ...

  13. S.3 Hypothesis Testing

    hypothesis testing. S.3 Hypothesis Testing. In reviewing hypothesis tests, we start first with the general idea. Then, we keep returning to the basic procedures of hypothesis testing, each time adding a little more detail. The general idea of hypothesis testing involves: Making an initial assumption. Collecting evidence (data).

  14. 6a.1

    The first step in hypothesis testing is to set up two competing hypotheses. The hypotheses are the most important aspect. If the hypotheses are incorrect, your conclusion will also be incorrect. The two hypotheses are named the null hypothesis and the alternative hypothesis. The null hypothesis is typically denoted as H 0.

  15. Hypothesis Trouble: What to do when a science project fails

    The first thing to do when a science project doesn't show the type of results you expect is to determine whether something went wrong with the experiment (which is different than just not getting the expected results) or whether the hypothesis was really proven to be incorrect. A problem with the science project setup or procedure might be obvious.

  16. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  17. Hypotheses

    An hypothesis is a specific statement of prediction. It describes in concrete (rather than theoretical) terms what you expect will happen in your study. Not all studies have hypotheses. Sometimes a study is designed to be exploratory (see inductive research ). There is no formal hypothesis, and perhaps the purpose of the study is to explore ...

  18. Null and Alternative Hypotheses

    Concept Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with H 0.The null is not rejected unless the hypothesis test shows otherwise.

  19. 7.1: Basics of Hypothesis Testing

    Test Statistic: z = x¯¯¯ −μo σ/ n−−√ z = x ¯ − μ o σ / n since it is calculated as part of the testing of the hypothesis. Definition 7.1.4 7.1. 4. p - value: probability that the test statistic will take on more extreme values than the observed test statistic, given that the null hypothesis is true.

  20. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  21. What Is The Null Hypothesis & When To Reject It

    A null hypothesis is rejected if the measured data is significantly unlikely to have occurred and a null hypothesis is accepted if the observed outcome is consistent with the position held by the null hypothesis. Rejecting the null hypothesis sets the stage for further experimentation to see if a relationship between two variables exists.

  22. single word requests

    The researcher uses the data to support or reject a hypothesis using a statistical test of some kind or judgment. - Xanne. Nov 12, 2020 at 3:11. 2 "Undermined" is also possible in the case of your example. However there is a difference between a collection of data which fails to support a hypothesis and one which suggests strongly that it is ...

  23. Meta-analyses reveal support for the Social Intelligence Hypothesis

    The Social Intelligence Hypothesis (SIH) is one of the leading explanations for the evolution of cognition. Since its inception a vast body of literature investigating the predictions of the SIH has accumulated, using a variety of methodologies and species. However, the generalisability of the hypothesis remains unclear. To gain an understanding of the robustness of the SIH as an explanation ...

  24. As Seinfeld Receives Honorary Degree at Duke, Students Walk Out in

    Share full article. As the comedian Jerry Seinfeld received an honorary degree at Duke University's commencement, dozens of students walked out and chanted, "Free Palestine.". Some also ...

  25. New York EBT System Temporarily Unavailable May 19

    The New York State Office of Temporary and Disability Assistance supervises support programs for families and individuals. ... New York EBT System Temporarily Unavailable May 19. EBT cardholders will not be able to use their cards for several hours while New York State changes over to a new vendor. Learn More about EBT System Unavailability ...

  26. Norway's wealth fund asks Shell for more climate policy details

    Norway's $1.6 trillion sovereign wealth fund urged Shell on Friday to give investors more information about its revised climate targets, but said it would not back a call by a group of 27 ...

  27. Broad Public Support for Legal Abortion Persists 2 Years After Dobbs

    Nearly two years after the Supreme Court overturned the 1973 Roe v. Wade decision guaranteeing a national right to abortion, a majority of Americans continue to express support for abortion access. About six-in-ten (63%) say abortion should be legal in all or most cases. This share has grown 4 percentage points since 2021 - the year prior to ...

  28. About the security content of tvOS 17.5

    Description: A path handling issue was addressed with improved validation. CVE-2024-27810: LFY@secsys of Fudan University. RemoteViewServices. Available for: Apple TV HD and Apple TV 4K (all models) Impact: An attacker may be able to access user data. Description: A logic issue was addressed with improved checks.

  29. Samsung TV is not playing 5.1 audio through the optical output

    Even though HDMI is capable of carrying a 5.1 audio signal, HDCP (High Bandwidth Digital Content Protection) keeps the TV from passing decoded 5.1 audio content from the HDMI input to the optical output. Because of this, 5.1 audio output from optical is not available when using the HDMI input. * Only available with digital stations/signals that ...

  30. Analyzing the Eagles' 2024 schedule: They're going to lose every game

    I wish there were another reasonable projection to make or conclusion to draw. Alas, there is not. Usually, predicting the outcome of each game in an NFL team's season within hours after the schedule has been made public — before the end of the offseason, before training camp, before rosters have been set, before any significant players around the league have suffered any significant ...