A polar bear stands on a small iceberg

Russell Millner/Alamy

Defend Our Planet and Most Vulnerable Species

Your donation today will be triple-matched to power NRDC’s next great chapter in protecting our ecosystems and saving imperiled wildlife.

Air Pollution: Everything You Need to Know

How smog, soot, greenhouse gases, and other top air pollutants are affecting the planet—and your health.

Smoke blows out of two tall industrial stacks

  • Share this page block

What is air pollution?

What causes air pollution, effects of air pollution, air pollution in the united states, air pollution and environmental justice, controlling air pollution, how to help reduce air pollution, how to protect your health.

Air pollution  refers to the release of pollutants into the air—pollutants that are detrimental to human health and the planet as a whole. According to the  World Health Organization (WHO) , each year, indoor and outdoor air pollution is responsible for nearly seven million deaths around the globe. Ninety-nine percent of human beings currently breathe air that exceeds the WHO’s guideline limits for pollutants, with those living in low- and middle-income countries suffering the most. In the United States, the  Clean Air Act , established in 1970, authorizes the U.S. Environmental Protection Agency (EPA) to safeguard public health by regulating the emissions of these harmful air pollutants.

“Most air pollution comes from energy use and production,” says  John Walke , director of the Clean Air team at NRDC. Driving a car on gasoline, heating a home with oil, running a power plant on  fracked gas : In each case, a fossil fuel is burned and harmful chemicals and gases are released into the air.

“We’ve made progress over the last 50 years in improving air quality in the United States, thanks to the Clean Air Act. But climate change will make it harder in the future to meet pollution standards, which are designed to  protect health ,” says Walke.

Air pollution is now the world’s fourth-largest risk factor for early death. According to the 2020  State of Global Air  report —which summarizes the latest scientific understanding of air pollution around the world—4.5 million deaths were linked to outdoor air pollution exposures in 2019, and another 2.2 million deaths were caused by indoor air pollution. The world’s most populous countries, China and India, continue to bear the highest burdens of disease.

“Despite improvements in reducing global average mortality rates from air pollution, this report also serves as a sobering reminder that the climate crisis threatens to worsen air pollution problems significantly,” explains  Vijay Limaye , senior scientist in NRDC’s Science Office. Smog, for instance, is intensified by increased heat, forming when the weather is warmer and there’s more ultraviolet radiation. In addition, climate change increases the production of allergenic air pollutants, including mold (thanks to damp conditions caused by extreme weather and increased flooding) and pollen (due to a longer pollen season). “Climate change–fueled droughts and dry conditions are also setting the stage for dangerous wildfires,” adds Limaye. “ Wildfire smoke can linger for days and pollute the air with particulate matter hundreds of miles downwind.”

The effects of air pollution on the human body vary, depending on the type of pollutant, the length and level of exposure, and other factors, including a person’s individual health risks and the cumulative impacts of multiple pollutants or stressors.

Smog and soot

These are the two most prevalent types of air pollution. Smog (sometimes referred to as ground-level ozone) occurs when emissions from combusting fossil fuels react with sunlight. Soot—a type of  particulate matter —is made up of tiny particles of chemicals, soil, smoke, dust, or allergens that are carried in the air. The sources of smog and soot are similar. “Both come from cars and trucks, factories, power plants, incinerators, engines, generally anything that combusts fossil fuels such as coal, gasoline, or natural gas,” Walke says.

Smog can irritate the eyes and throat and also damage the lungs, especially those of children, senior citizens, and people who work or exercise outdoors. It’s even worse for people who have asthma or allergies; these extra pollutants can intensify their symptoms and trigger asthma attacks. The tiniest airborne particles in soot are especially dangerous because they can penetrate the lungs and bloodstream and worsen bronchitis, lead to heart attacks, and even hasten death. In  2020, a report from Harvard’s T.H. Chan School of Public Health showed that COVID-19 mortality rates were higher in areas with more particulate matter pollution than in areas with even slightly less, showing a correlation between the virus’s deadliness and long-term exposure to air pollution. 

These findings also illuminate an important  environmental justice issue . Because highways and polluting facilities have historically been sited in or next to low-income neighborhoods and communities of color, the negative effects of this pollution have been  disproportionately experienced by the people who live in these communities.

Hazardous air pollutants

A number of air pollutants pose severe health risks and can sometimes be fatal, even in small amounts. Almost 200 of them are regulated by law; some of the most common are mercury,  lead , dioxins, and benzene. “These are also most often emitted during gas or coal combustion, incineration, or—in the case of benzene—found in gasoline,” Walke says. Benzene, classified as a carcinogen by the EPA, can cause eye, skin, and lung irritation in the short term and blood disorders in the long term. Dioxins, more typically found in food but also present in small amounts in the air, is another carcinogen that can affect the liver in the short term and harm the immune, nervous, and endocrine systems, as well as reproductive functions.  Mercury  attacks the central nervous system. In large amounts, lead can damage children’s brains and kidneys, and even minimal exposure can affect children’s IQ and ability to learn.

Another category of toxic compounds, polycyclic aromatic hydrocarbons (PAHs), are by-products of traffic exhaust and wildfire smoke. In large amounts, they have been linked to eye and lung irritation, blood and liver issues, and even cancer.  In one study , the children of mothers exposed to PAHs during pregnancy showed slower brain-processing speeds and more pronounced symptoms of ADHD.

Greenhouse gases

While these climate pollutants don’t have the direct or immediate impacts on the human body associated with other air pollutants, like smog or hazardous chemicals, they are still harmful to our health. By trapping the earth’s heat in the atmosphere, greenhouse gases lead to warmer temperatures, which in turn lead to the hallmarks of climate change: rising sea levels, more extreme weather, heat-related deaths, and the increased transmission of infectious diseases. In 2021, carbon dioxide accounted for roughly 79 percent of the country’s total greenhouse gas emissions, and methane made up more than 11 percent. “Carbon dioxide comes from combusting fossil fuels, and methane comes from natural and industrial sources, including large amounts that are released during oil and gas drilling,” Walke says. “We emit far larger amounts of carbon dioxide, but methane is significantly more potent, so it’s also very destructive.” 

Another class of greenhouse gases,  hydrofluorocarbons (HFCs) , are thousands of times more powerful than carbon dioxide in their ability to trap heat. In October 2016, more than 140 countries signed the Kigali Agreement to reduce the use of these chemicals—which are found in air conditioners and refrigerators—and develop greener alternatives over time. (The United States officially signed onto the  Kigali Agreement in 2022.)

Pollen and mold

Mold and allergens from trees, weeds, and grass are also carried in the air, are exacerbated by climate change, and can be hazardous to health. Though they aren’t regulated, they can be considered a form of air pollution. “When homes, schools, or businesses get water damage, mold can grow and produce allergenic airborne pollutants,” says Kim Knowlton, professor of environmental health sciences at Columbia University and a former NRDC scientist. “ Mold exposure can precipitate asthma attacks  or an allergic response, and some molds can even produce toxins that would be dangerous for anyone to inhale.”

Pollen allergies are worsening  because of climate change . “Lab and field studies are showing that pollen-producing plants—especially ragweed—grow larger and produce more pollen when you increase the amount of carbon dioxide that they grow in,” Knowlton says. “Climate change also extends the pollen production season, and some studies are beginning to suggest that ragweed pollen itself might be becoming a more potent allergen.” If so, more people will suffer runny noses, fevers, itchy eyes, and other symptoms. “And for people with allergies and asthma, pollen peaks can precipitate asthma attacks, which are far more serious and can be life-threatening.”

thesis statement air pollution is caused by many factors

More than one in three U.S. residents—120 million people—live in counties with unhealthy levels of air pollution, according to the  2023  State of the Air  report by the American Lung Association (ALA). Since the annual report was first published, in 2000, its findings have shown how the Clean Air Act has been able to reduce harmful emissions from transportation, power plants, and manufacturing.

Recent findings, however, reflect how climate change–fueled wildfires and extreme heat are adding to the challenges of protecting public health. The latest report—which focuses on ozone, year-round particle pollution, and short-term particle pollution—also finds that people of color are 61 percent more likely than white people to live in a county with a failing grade in at least one of those categories, and three times more likely to live in a county that fails in all three.

In rankings for each of the three pollution categories covered by the ALA report, California cities occupy the top three slots (i.e., were highest in pollution), despite progress that the Golden State has made in reducing air pollution emissions in the past half century. At the other end of the spectrum, these cities consistently rank among the country’s best for air quality: Burlington, Vermont; Honolulu; and Wilmington, North Carolina. 

No one wants to live next door to an incinerator, oil refinery, port, toxic waste dump, or other polluting site. Yet millions of people around the world do, and this puts them at a much higher risk for respiratory disease, cardiovascular disease, neurological damage, cancer, and death. In the United States, people of color are 1.5 times more likely than whites to live in areas with poor air quality, according to the ALA.

Historically, racist zoning policies and discriminatory lending practices known as  redlining  have combined to keep polluting industries and car-choked highways away from white neighborhoods and have turned communities of color—especially low-income and working-class communities of color—into sacrifice zones, where residents are forced to breathe dirty air and suffer the many health problems associated with it. In addition to the increased health risks that come from living in such places, the polluted air can economically harm residents in the form of missed workdays and higher medical costs.

Environmental racism isn't limited to cities and industrial areas. Outdoor laborers, including the estimated three million migrant and seasonal farmworkers in the United States, are among the most vulnerable to air pollution—and they’re also among the least equipped, politically, to pressure employers and lawmakers to affirm their right to breathe clean air.

Recently,  cumulative impact mapping , which uses data on environmental conditions and demographics, has been able to show how some communities are overburdened with layers of issues, like high levels of poverty, unemployment, and pollution. Tools like the  Environmental Justice Screening Method  and the EPA’s  EJScreen  provide evidence of what many environmental justice communities have been explaining for decades: that we need land use and public health reforms to ensure that vulnerable areas are not overburdened and that the people who need resources the most are receiving them.

In the United States, the  Clean Air Act  has been a crucial tool for reducing air pollution since its passage in 1970, although fossil fuel interests aided by industry-friendly lawmakers have frequently attempted to  weaken its many protections. Ensuring that this bedrock environmental law remains intact and properly enforced will always be key to maintaining and improving our air quality.

But the best, most effective way to control air pollution is to speed up our transition to cleaner fuels and industrial processes. By switching over to renewable energy sources (such as wind and solar power), maximizing fuel efficiency in our vehicles, and replacing more and more of our gasoline-powered cars and trucks with electric versions, we'll be limiting air pollution at its source while also curbing the global warming that heightens so many of its worst health impacts.

And what about the economic costs of controlling air pollution? According to a report on the Clean Air Act commissioned by NRDC, the annual  benefits of cleaner air  are up to 32 times greater than the cost of clean air regulations. Those benefits include up to 370,000 avoided premature deaths, 189,000 fewer hospital admissions for cardiac and respiratory illnesses, and net economic benefits of up to $3.8 trillion for the U.S. economy every year.

“The less gasoline we burn, the better we’re doing to reduce air pollution and the harmful effects of climate change,” Walke explains. “Make good choices about transportation. When you can, ride a bike, walk, or take public transportation. For driving, choose a car that gets better miles per gallon of gas or  buy an electric car .” You can also investigate your power provider options—you may be able to request that your electricity be supplied by wind or solar. Buying your food locally cuts down on the fossil fuels burned in trucking or flying food in from across the world. And most important: “Support leaders who push for clean air and water and responsible steps on climate change,” Walke says.

  • “When you see in the news or hear on the weather report that pollution levels are high, it may be useful to limit the time when children go outside or you go for a jog,” Walke says. Generally, ozone levels tend to be lower in the morning.
  • If you exercise outside, stay as far as you can from heavily trafficked roads. Then shower and wash your clothes to remove fine particles.
  • The air may look clear, but that doesn’t mean it’s pollution free. Utilize tools like the EPA’s air pollution monitor,  AirNow , to get the latest conditions. If the air quality is bad, stay inside with the windows closed.
  • If you live or work in an area that’s prone to wildfires,  stay away from the harmful smoke  as much as you’re able. Consider keeping a small stock of masks to wear when conditions are poor. The most ideal masks for smoke particles will be labelled “NIOSH” (which stands for National Institute for Occupational Safety and Health) and have either “N95” or “P100” printed on it.
  • If you’re using an air conditioner while outdoor pollution conditions are bad, use the recirculating setting to limit the amount of polluted air that gets inside. 

This story was originally published on November 1, 2016, and has been updated with new information and links.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Related Stories

A city skyline is obscured by thick smog

The Particulars of PM 2.5

An aerial view of floodwaters overtaking a cluster of buildings

What Are the Effects of Climate Change?

Two people walk through a thick haze on a city street

Fossil Fuel Air Pollution Kills One in Five People

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

ENCYCLOPEDIC ENTRY

Air pollution.

Air pollution consists of chemicals or particles in the air that can harm the health of humans, animals, and plants. It also damages buildings.

Biology, Ecology, Earth Science, Geography

Loading ...

Morgan Stanley

Air pollution consists of chemicals or particles in the air that can harm the health of humans, animals, and plants. It also damages buildings. Pollutants in the air take many forms. They can be gases , solid particles, or liquid droplets. Sources of Air Pollution Pollution enters the Earth's atmosphere in many different ways. Most air pollution is created by people, taking the form of emissions from factories, cars, planes, or aerosol cans . Second-hand cigarette smoke is also considered air pollution. These man-made sources of pollution are called anthropogenic sources . Some types of air pollution, such as smoke from wildfires or ash from volcanoes , occur naturally. These are called natural sources . Air pollution is most common in large cities where emissions from many different sources are concentrated . Sometimes, mountains or tall buildings prevent air pollution from spreading out. This air pollution often appears as a cloud making the air murky. It is called smog . The word "smog" comes from combining the words "smoke" and " fog ." Large cities in poor and developing nations tend to have more air pollution than cities in developed nations. According to the World Health Organization (WHO) , some of the worlds most polluted cities are Karachi, Pakistan; New Delhi, India; Beijing, China; Lima, Peru; and Cairo, Egypt. However, many developed nations also have air pollution problems. Los Angeles, California, is nicknamed Smog City. Indoor Air Pollution Air pollution is usually thought of as smoke from large factories or exhaust from vehicles. But there are many types of indoor air pollution as well. Heating a house by burning substances such as kerosene , wood, and coal can contaminate the air inside the house. Ash and smoke make breathing difficult, and they can stick to walls, food, and clothing. Naturally-occurring radon gas, a cancer -causing material, can also build up in homes. Radon is released through the surface of the Earth. Inexpensive systems installed by professionals can reduce radon levels. Some construction materials, including insulation , are also dangerous to people's health. In addition, ventilation , or air movement, in homes and rooms can lead to the spread of toxic mold . A single colony of mold may exist in a damp, cool place in a house, such as between walls. The mold's spores enter the air and spread throughout the house. People can become sick from breathing in the spores. Effects On Humans People experience a wide range of health effects from being exposed to air pollution. Effects can be broken down into short-term effects and long-term effects . Short-term effects, which are temporary , include illnesses such as pneumonia or bronchitis . They also include discomfort such as irritation to the nose, throat, eyes, or skin. Air pollution can also cause headaches, dizziness, and nausea . Bad smells made by factories, garbage , or sewer systems are considered air pollution, too. These odors are less serious but still unpleasant . Long-term effects of air pollution can last for years or for an entire lifetime. They can even lead to a person's death. Long-term health effects from air pollution include heart disease , lung cancer, and respiratory diseases such as emphysema . Air pollution can also cause long-term damage to people's nerves , brain, kidneys , liver , and other organs. Some scientists suspect air pollutants cause birth defects . Nearly 2.5 million people die worldwide each year from the effects of outdoor or indoor air pollution. People react differently to different types of air pollution. Young children and older adults, whose immune systems tend to be weaker, are often more sensitive to pollution. Conditions such as asthma , heart disease, and lung disease can be made worse by exposure to air pollution. The length of exposure and amount and type of pollutants are also factors. Effects On The Environment Like people, animals, and plants, entire ecosystems can suffer effects from air pollution. Haze , like smog, is a visible type of air pollution that obscures shapes and colors. Hazy air pollution can even muffle sounds. Air pollution particles eventually fall back to Earth. Air pollution can directly contaminate the surface of bodies of water and soil . This can kill crops or reduce their yield . It can kill young trees and other plants. Sulfur dioxide and nitrogen oxide particles in the air, can create acid rain when they mix with water and oxygen in the atmosphere. These air pollutants come mostly from coal-fired power plants and motor vehicles . When acid rain falls to Earth, it damages plants by changing soil composition ; degrades water quality in rivers, lakes and streams; damages crops; and can cause buildings and monuments to decay . Like humans, animals can suffer health effects from exposure to air pollution. Birth defects, diseases, and lower reproductive rates have all been attributed to air pollution. Global Warming Global warming is an environmental phenomenon caused by natural and anthropogenic air pollution. It refers to rising air and ocean temperatures around the world. This temperature rise is at least partially caused by an increase in the amount of greenhouse gases in the atmosphere. Greenhouse gases trap heat energy in the Earths atmosphere. (Usually, more of Earths heat escapes into space.) Carbon dioxide is a greenhouse gas that has had the biggest effect on global warming. Carbon dioxide is emitted into the atmosphere by burning fossil fuels (coal, gasoline , and natural gas ). Humans have come to rely on fossil fuels to power cars and planes, heat homes, and run factories. Doing these things pollutes the air with carbon dioxide. Other greenhouse gases emitted by natural and artificial sources also include methane , nitrous oxide , and fluorinated gases. Methane is a major emission from coal plants and agricultural processes. Nitrous oxide is a common emission from industrial factories, agriculture, and the burning of fossil fuels in cars. Fluorinated gases, such as hydrofluorocarbons , are emitted by industry. Fluorinated gases are often used instead of gases such as chlorofluorocarbons (CFCs). CFCs have been outlawed in many places because they deplete the ozone layer . Worldwide, many countries have taken steps to reduce or limit greenhouse gas emissions to combat global warming. The Kyoto Protocol , first adopted in Kyoto, Japan, in 1997, is an agreement between 183 countries that they will work to reduce their carbon dioxide emissions. The United States has not signed that treaty . Regulation In addition to the international Kyoto Protocol, most developed nations have adopted laws to regulate emissions and reduce air pollution. In the United States, debate is under way about a system called cap and trade to limit emissions. This system would cap, or place a limit, on the amount of pollution a company is allowed. Companies that exceeded their cap would have to pay. Companies that polluted less than their cap could trade or sell their remaining pollution allowance to other companies. Cap and trade would essentially pay companies to limit pollution. In 2006 the World Health Organization issued new Air Quality Guidelines. The WHOs guidelines are tougher than most individual countries existing guidelines. The WHO guidelines aim to reduce air pollution-related deaths by 15 percent a year. Reduction Anybody can take steps to reduce air pollution. Millions of people every day make simple changes in their lives to do this. Taking public transportation instead of driving a car, or riding a bike instead of traveling in carbon dioxide-emitting vehicles are a couple of ways to reduce air pollution. Avoiding aerosol cans, recycling yard trimmings instead of burning them, and not smoking cigarettes are others.

Downwinders The United States conducted tests of nuclear weapons at the Nevada Test Site in southern Nevada in the 1950s. These tests sent invisible radioactive particles into the atmosphere. These air pollution particles traveled with wind currents, eventually falling to Earth, sometimes hundreds of miles away in states including Idaho, Utah, Arizona, and Washington. These areas were considered to be "downwind" from the Nevada Test Site. Decades later, people living in those downwind areascalled "downwinders"began developing cancer at above-normal rates. In 1990, the U.S. government passed the Radiation Exposure Compensation Act. This law entitles some downwinders to payments of $50,000.

Greenhouse Gases There are five major greenhouse gases in Earth's atmosphere.

  • water vapor
  • carbon dioxide
  • nitrous oxide

London Smog What has come to be known as the London Smog of 1952, or the Great Smog of 1952, was a four-day incident that sickened 100,000 people and caused as many as 12,000 deaths. Very cold weather in December 1952 led residents of London, England, to burn more coal to keep warm. Smoke and other pollutants became trapped by a thick fog that settled over the city. The polluted fog became so thick that people could only see a few meters in front of them.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

March 6, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

  • Open access
  • Published: 06 November 2008

Health effects of ambient air pollution – recent research development and contemporary methodological challenges

  • Cizao Ren 1 , 2 &
  • Shilu Tong 1  

Environmental Health volume  7 , Article number:  56 ( 2008 ) Cite this article

39k Accesses

57 Citations

1 Altmetric

Metrics details

Exposure to high levels of air pollution can cause a variety of adverse health outcomes. Air quality in developed countries has been generally improved over the last three decades. However, many recent epidemiological studies have consistently shown positive associations between low-level exposure to air pollution and health outcomes. Thus, adverse health effects of air pollution, even at relatively low levels, remain a public concern. This paper aims to provide an overview of recent research development and contemporary methodological challenges in this field and to identify future research directions for air pollution epidemiological studies.

Peer Review reports

Introduction

It is well known that exposure to high levels of air pollution can adversely affect human health. A number of air pollution catastrophes occurred in industrial countries between 1950s and 1970s, such as the London smog of 1952 [ 1 ]. Air quality in western countries has significantly improved since the 1970s. However, adverse health effects of exposure to relatively low level of air pollution remain a public concern, motivated largely by a number of recent epidemiological studies that have shown the positive associations between air pollution and health outcomes using sophisticated time-series and other designs [ 2 ].

This review highlights the key findings from major epidemiological study designs (including time-series, case-crossover, panel, cohort, and birth outcome studies) in estimating the associations of exposure to ambient air pollution with health outcomes over the last two decades, and identifies future research opportunities. We do not intend for this to be a formal systematic literature review or meta-analysis, but to discuss issues we feel are vitally important based on the recent literature and our own experience. This paper is divided into two parts: firstly to summarize recent findings from major epidemiological studies, and secondly to discuss key methodological challenges in this field and to identify research opportunities for future air pollution epidemiological studies.

Health effects of ambient air pollution

Time-series studies.

There are a large number of time-series studies on the short-term health effects of air pollution, with the emphasis on mortality and hospital admissions by means of fitting Poisson regression models at a community level or ecological level. This type of time-series design is a major approach to estimating short-term health effects of air pollution in epidemiological studies for the last two decades. Many studies have found associations between daily changes in ambient particulate air pollution and increased cardiorespiratory hospital admissions [ 3 – 6 ], along with cardiorespiratory mortality [ 7 – 9 ] and all cause mortality [ 10 ]. Because numerous air pollution time-series studies show that exposure to air pollution is associated with different kinds of human health outcomes, it is impossible to list results from all studies. Table 1 only selects major time-series studies on short-term health effects of particulate matter (PM) and ozone from different countries around the world published over the last two decades because these two air pollutants are important toxic agents and widely explored by the majority of air pollution epidemiological studies. Early findings have been systematically and thoroughly reviewed by other authors [ 11 , 12 ].

Single-site time-series studies have been criticized because of exposure measurement errors, substantial variation of the air pollution effects and the heterogeneity of the statistical approaches used in different studies [ 13 ]. Recently, several multi-site time-series studies have been conducted in Europe and the United States. Two large collaborative air pollution projects in Europe and U.S. are summarised below.

In Europe, the APHEA (Air Pollution and Health: a European Approach) studies have provided many new insights. Initial studies were based on older data (APHEA-1) [ 14 ] and a new series of studies (APHEA-2) used data of the PM 10 fraction since the late 1990s [ 15 ]. The APHEA-2 mortality studies covered over 43 million people and 29 European cities, which were all studied for more than 5 years in the 1990s. The combined effect estimate showed that all-cause daily mortality increased by 0.6% (95% CI: 0.4%, 0.8%) for each 10 μg/m 3 increase in PM 10 from data involving 21 cities. It was found that there was heterogeneity between cities with different levels of NO 2 . The estimated increase in daily mortality for an increase of 10 μg/m 3 in PM 10 were 0.2% (95% CI: 0.0%, 0.4%), and 0.8% (95% CI: 0.7%, 0.9%) in cities with low and high average NO 2 , respectively [ 16 ]. The APHEA-2 hospital admission study involved 38 million people living in eight European cities. Hospital admissions for asthma and chronic obstructive pulmonary disease (COPD) increased by 1.0% (95% CI: 0.4%, 1.5%) per 10 μg/m 3 PM 10 increment among people older than 65 years [ 15 ].

In the United States, the National Morbidity, Mortality and Air Pollution Studies (NMMAPS) focused on the 20 largest metropolitan areas in the USA, involving 50 million inhabitants, during 1987–94 [ 2 ]. All-cause mortality was increased by 0.5% (95% CI: 0.1%, 0.9%) for each increase of 10 μg/m 3 in PM 10 . The estimated increase in the relative rate of death from cardiovascular and respiratory disease was 0.7% (95% CI: 0.2%, 1.2%). Effects on hospital admissions were studied in ten cities with a combined population of 1 843 000 individuals older than 65 years [ 17 ]. The model used considered simultaneously the effects of PM 10 up to the lag of 5 days and effects of PM 10 on chronic obstructive pulmonary disease admissions to be 2.5% (95% CI: 1.8%, 3.3%) and on cardiovascular disease admissions to be 1.3% (95% CI: 1.0%, 1.5%) for an increase of 10 μg/m 3 in PM 10 . Bell et al. [ 18 ] analysed 95 NMMAPS community data to examine the association between ozone concentration and mortality, showing that a 10-ppb increase in the previous week's ozone was associated with a 0.5% (95% posterior interval (PI), 0.3%, 0.8%) increase in daily mortality and a 0.64% (95% PI, 0.31%, 0.98%) increase in cardiovascular and respiratory mortality. The effect estimates of the exposure over the previous week were larger than those considering only a single day's exposure. Recently, Dominici et al. [ 13 ] examined the short-term association between fine particulate air pollution and hospital admissions and found that exposure to PM 2.5 was associated with different health outcomes. The largest association was observed for heart failure, and a 10 μg/m 3 increase in PM 2.5 was found to be associated with a 1.3% (95% PI: 0.8%, 1.8%) increase in hospital admissions from heart failure on the same day.

Although time-series studies have shown that day-to-day variations in air pollutant concentrations are associated with daily deaths and hospital admissions, it is still unclear how many days, weeks or months of air pollution have brought such events forward. Harvesting or mortality/morbidity displacement means that some cases are occurring only in those to whom it would have happened in a few days anyway [ 19 ]. If so, the increase in cases immediately after exposure would be offset by a deficit in daily deaths a few days later [ 19 , 20 ]. If air pollution has harvesting effects, normal time-series models are unable to estimate the effects due to the issues of collinearity and statistical power. The polynomial distributed lag (PDL) model [ 21 ] and the time-scale model [ 19 ] have been adopted to explore whether air pollution has harvesting or displacement effects on daily deaths or hospital admissions. A few studies suggested potential harvesting effects of ambient air pollution while other studies have shown that there is no evidence for harvesting effects [ 19 , 22 , 23 ]. Although one study shows that potential bias might occur in PDL model [ 24 ], the estimated effects of ambient air pollutants seem to increase when longer lags of air pollution are included [ 19 , 20 ].

Case-crossover studies

Case-crossover study design is an alternative approach to estimating short-term health effects of air pollution in epidemiological studies. In the last two decades, the case-crossover design has been applied in a large number of studies of air pollution and health [ 25 – 28 ]. For example, Neas et al. [ 27 ] used a case-crossover study design to estimate the association between air pollution and mortality in Philadelphia and found a 100 μg/m 3 increment in the 48 hours mean level of TSP was associated with increased all-cause mortality (odds ratio (OR) = 1.06; 95% CI: 1.03, 1.09). A similar association was observed for deaths in individuals over 65 years of age (OR: 1.07; 95% CI: 1.04, 1.11). Levy et al. [ 28 ] estimated the effect of short-term changes in exposure to particulate matter on the rate of sudden cardiac arrest. The cases were obtained from a previously conducted population-based case-control study and were combined with ambient air monitoring data. The results did not show any evidence of a short-term effect of particulate air pollution on the risk of sudden cardiac arrest in people without previously recognised heart disease. Schwartz [ 26 ] conducted a case-crossover study to examine the sensitivity of the association between ozone and mortality when adjusted for temperature and found that 10-ppb increase of maximum hourly ozone was associated with 0.23% (95% CI: 0.01% ~0.44%) increase in daily deaths after adjusting for temperature in 14 US cities. Barnett et al. [ 25 ] examined the association between air pollution and cardio-respiratory hospital admissions in Australia and New Zealand cities. The results show that air pollution arising from common emission sources was significantly associated with cardiovascular health outcomes in the elderly. For example, for a 0.9-ppm increase in CO, there were significant increases in elderly hospital admissions for 2.2% (95% CI: 0.9%, 3.4%) increase of total cardiovascular disease and 2.8% (95% CI: 1.3%, 4.4%) increase of all cardiac disease.

Panel studies

Many air pollution panel studies have been conducted, including several large longitudinal studies of air pollution and health effects such as the Southern California Children's Health Study [ 29 , 30 ], in which children from grades 4, 7, and 10 residing in twelve communities near Los Angeles were followed annually. The results indicated that exposure to ambient particles, NO 2 , and inorganic acid vapour was associated with reduced lung function in children. Another large panel study, the Pollution Effects on Asthmatic Children in Europe (PEACE), was designed to examine the relationship between short-term changes in air pollution and lung function, respiratory symptoms and medication use [ 31 ]. This project was conducted in 14 centres using a common protocol in the winter of 1993–1994. Each PEACE centre involved an urban and a rural panel of symptomatic children and followed at least seventy-five 6–12 year old children [ 31 ]. The pooled estimates of two literature reviews which were separately conducted about the PEACE study and showed that no clear relation could be established for changes in PM 10 , black smoke, SO 2 and NO 2 and changes in respiratory health. The non-significant effects were thought to be possibly due to the short observation period. Ward and Ayres [ 32 ] reviewed 22 panel studies published in the 1990s to estimate the overall effects of ambient particles on children. Results show that the majority of identified panel studies indicated an adverse effect of particulate air pollution. Several recent panel studies also show that particulate air pollution is associated with human health [ 33 – 37 ].

Cohort studies

Compared to time-series and case-crossover studies, there are only a few large cohort studies. About a dozen cohort studies have been conducted in the United States [ 38 – 44 ], Europe [ 45 – 48 ] and Australia [ 49 ]. A cohort study conducted by Dockery et al. [ 39 ] in six U.S. cities shows that there was a statistically significant and robust association between air pollution and mortality. The adjusted mortality rate ratio for the most polluted city was 1.26 (95% CI: 1.08–1.47) compared with the least polluted city. Air pollution was also associated with deaths from lung cancer and cardiopulmonary diseases. Abbey et al. [ 38 ] conducted a cohort study during 1973–1992 to estimate effect of exposure to long-term ambient concentrations of PM 10 and other air pollutants, and show that PM 10 was strongly associated with mortality from respiratory disease for both sexes adjusting for a wide range of potentially confounding factors. The relative risk (RR) for an interquartile range (IQR) difference of PM 10 was 1.18 (95% CI: 1.42, 3.97). Ozone was strongly associated with lung cancer mortality for males for the IQR difference (RR: 4.19; 95% CI: 1.81, 9.69). Sulphur dioxide was also strongly associated with lung cancer mortality for both sexes. Pope et al. [ 44 ] conducted one cohort study in the US to examine the long-term effect of exposure to fine particulate air pollution. They found that fine particulate and sulphur oxide-related pollution were associated with all-cause, lung cancer and cardiopulmonary mortality. A 10 μg/m 3 increase in fine particulate air pollution was associated with an increase of 4%, 6%, and 8% for all-cause, cardiopulmonary, and lung cancer mortality, respectively. Hoek et al. [ 48 ] investigated a random sample of 5000 people and 489 of 4492 (11%) died during 1986–1994 in the Netherlands fining that cardiopulmonary mortality was associated with living near a major road with relative risk of 1.95 (95% CI: 1.09–3.52). A cohort study conducted by Filleul et al. [ 46 ] in France found that urban air pollution to be associated with increased mortality over 25 years in France. Frostad et al. [ 47 ], in a 30-year follow-up cohort study in Norway, found that respiratory symptoms were a significant predictor of mortality from all causes. In Australia, Jalaludin et al.[ 49 ] enrolled a cohort of primary school children with a history of wheeze (n = 148) in an 11-month longitudinal study to examine the association between ambient air pollution and respiratory morbidity. They found that PM 10 and NO 2 , but not ozone, were significantly associated with doctor visits for asthma.

Birth outcome studies

Even though effects of exposure to ambient air pollution on mortality and hospital admissions have been increasingly demonstrated over the past 30 years, exploring its adverse impact on pregnant outcomes has only begun since the last decade [ 50 ]. Because pregnancy is a period of human development particularly susceptible to the influence of many environmental factors due to high cell proliferation, organ develop and the changes of capabilities of fetal metabolism, the relative short-term period provides a unique opportunity to study the adverse effects of ambient toxins on human health [ 51 ]. The majority of birth outcome studies are based on large datasets routinely collected from air pollution monitoring systems and birth registration processes, and therefore, in general, the statistical power is strong [ 52 – 59 ]. Logistic regression models or linear regression models at the individual level are usually adopted to assess the effects of ambient air pollution on adverse birth outcomes adjusting for potential confounders including maternal age, maternal race, parity, fetal gender, season, gestational period, etc. Birth outcomes usually include low birth weight, preterm delivery and other biomarkers such as birth defect and ultrasound measures of head circumference. Personal exposures are often estimated at different terms, including the full gestation, trimesters, month after the pregnancy or before the time of delivery, etc.

Many studies have shown that there are significant associations between exposure to ambient air pollutants and adverse birth outcomes [ 52 – 60 ]. For example, Liu et al. [ 53 ] found that 5-ppb increase of sulfur dioxide was associated with an 11% (95% CI: 1%, 22%) increase of low birth weight (< 2500 grams) during the first month gestation and with a 9% increase of preterm delivery in Vancouver, Canada. A 1.0 ppm increase of carbon monoxide during the last month of pregnancy was associated with an 8% increase of preterm delivery. Parker et al. [ 60 ] selected population within 5 miles of over 40 air pollution monitoring sites across 28 California counties to estimate the adverse effects of air pollution and found that per 10 μg/m 3 PM increase was associated with 13 g (95% CI: 7.6 g, 18.3 g) decrease of birth weight. Similarly, Ritz et al. [ 59 ] conducted a population-nested case-control study to examine associations between air pollution and birth outcomes in Los Angeles and found that air pollution exposure was associated with preterm birth. Hansen et al. [ 58 ] examined the associations of exposure to ambient air pollution during early pregnancy with fetal ultrasonic measurements during mid-pregnancy in Australia. They found that a reduction in fetal abdominal circumference was associated with exposure to O 3 during the days 31–60 of pregnancy (-1.42 mm, 95% CI: -2.74, -0.09), SO2 during the days 61–90 (-1.67 mm, 95% CI: -2.94, -0.40), and PM 10 during the days 90–120 (-0.78 mm, 95% CI: -1.49, -0.08).

Implications of weak health effects

Even though the association of air pollution with health outcomes is weak, it still has strong public health implications. One reason is that air pollution is ubiquitous and affects the whole population in most metropolitan cities. Another reason is that residents are continuously and permanently exposed to air pollution, which may have both short- and long-term effects on health outcomes. Some intervention studies have shown that the reduction in air pollution has resulted in an improvement in population health [ 55 , 61 ]. For example, Hedley et al. [ 61 ] reported that cardiovascular, respiratory and all cause mortality reduced by 2.0% (p < 0.05), 3.9% (p < 0.05) and 2.1% (p < 0.05) respectively in the first 12 months after an introduction of the restrictions on sulphur content of fuel in Hong Kong.

Contemporary methodological challenges

Air pollution epidemiologic research is challenged by the complexity of human exposure to environmental agents and by the difficulty of accurately measuring exposure. Residents are usually ubiquitously exposed to air pollution. In order to detect small effects of air pollution, both high statistical power and sophisticated study design are required. In addition, the characteristics of air pollutants vary and their concentrations change both spatially and temporally. Although everyone is susceptible to high concentration of pollution, its concentrations are not evenly distributed across populations. Due to such complexities, there are still many research questions to be addressed by future air pollution epidemiological studies. The following section discusses these issues.

Shape of exposure response curve

The shape of the exposure and response curve is very important. A key research question to be addressed is whether a threshold exists below which a certain air pollutant has no effect on population health. If such a threshold could be identified, public health benefits would be expected from bringing the pollutant below this level. Both theoretical and empirical works have been done to shed light on this issue [ 62 , 63 ]. In the analysis of NMMAPS data, no threshold evidence was found for the relationship between PM 10 and daily all-cause and cardiorespiratory mortality [ 63 ]. By contrast, a threshold of about 50 μg/m 3 was indicated for non-cardiorespiratory causes of death – viz, below this point, PM 10 had little influence on non-cardiorespiratory mortality. These issues remain to be clarified.

Model uncertainty and bias

The process of model selection includes how to select covariates (eg, meteorological variables and co-pollutants), lag structure for air pollutants and the number of degrees of freedom for smoothing functions to adjust for long-term trend, short fluctuation, seasonality, other covariates and the determination of referent in case-crossover design. Studies have shown that the model choice will impact on estimates of relative risk [ 64 ]. As a result, many authors attempted to estimate the effects using the best single lag or combination of lags for meteorological factors and/or air pollutants and to identify the best degree of freedom for smoothing to adjust for different potential confounders. Some types of data can use several different models. Some authors do not clearly state why they select models and how they conduct data analyses. For example, when we estimate associations between exposure to air pollution and recurrent asthma episodes, based on different assumptions, at least five survival Cox models could be applied to estimate the associations between exposure to air pollution and asthma episodes [ 65 ]. Different assumptions or models may result in different estimates, and sometimes the difference is considerable. The choice of software options may cause this kind of uncertainty as well [ 65 ].

Results presented by the "best" final models are likely to cause publication bias because stronger and positive estimates tend to be published but negative results are usually difficult to be published. Multi-site time series design in which all data are analysed using the same model is one way to solve this problem. However, model uncertainty still exists in a multi-site study to some extent due to the model choice. Some studies have used Bayesian Model Averaging (BMA) to take into account uncertainties in model choice when making an inference [ 64 ]. BMA uses hierarchical models. The predictions and inferences are based on multiple models rather than a single model. Predictions are obtained by forming weighted averages of predictions over the different models where weights depend on the degree to which the data support each model.

Measurement errors of exposure to air pollution and potential confounders usually exist in air pollution epidemiological studies and it is impossible to be solved in most air pollution studies [ 66 ]. Due to spatial and temporal variations, data obtained in air pollution central monitors are not well representative of individual exposures. Some models are used to assess individual exposure to air pollution [ 66 , 67 ], but they could not efficiently adjust for measurement errors. Therefore, potential misclassification bias of exposure is one of the main concerns in air pollution studies.

There are both spatial and temporal variations for exposure and outcomes in air pollution studies [ 68 ]. Both times-series and case-crossover designs at a community level can efficiently adjust for some measured and unmeasured time-invariant characteristics of the subjects (such as gender, age, smoking status and spatial characteristics) via matching, and therefore, the potential confounding from these measured and unmeasured characteristics is minimised [ 69 , 70 ]. The key concern for these designs is how to control for temporal confounding and meteorological variables, such as seasonality, short-term variations and weather conditions (eg, temperature and humidity). In a prospective cohort study design, a major issue is how to identify a cohort with a sufficient variation in cumulative exposures, particularly when data recorded in central monitoring stations are used to measure ambient air pollution levels [ 44 ]. However, in maximizing the geographical variability of exposure the relative risk estimates from cohort studies are likely to be confounded by area-specific characteristics [ 68 ]. Due to collection of relatively detailed individual characters and sufficient adjustment for potential individual social and economic status, such confounding might be efficiently adjusted for.

Birth outcome studies are mainly based on routinely collected data, including exposure, outcome and potential confounders [ 52 – 60 ]. Most studies use pollution data obtained from the different monitors and the closest residential monitoring data are used as exposure proxies [ 58 , 60 , 71 , 72 ]. In general, information related to birth outcomes is well recorded in birth registration systems. However, the data may not include complete and accurate information on other potential confounders, such as maternal social and economic status and life styles. Birth outcome data analyses are usually conducted at an individual level. Therefore, this design is inherently vulnerable to some potential biases, including both temporal and spatial misclassification bias. Ritz and Wilhelm [ 73 ] has discussed the methodological issues of birth outcome designs in detail, and this review would not repeat these issues but rather than focus on potential bias in relation to spatial variation, which was ignored in their review, in the following section.

In birth outcome studies, both exposure and outcome data include temporal and spatial variations to some extent. The majority of birth outcome studies have adjusted for temporal and other confounders which are related to delivery information, including season, maternal age and race, fetal gender, parity, and maternal education attainment [ 52 – 60 , 71 , 72 ]. However, so far, few studies have paid much attention to the potential spatial confounding. Unlike time-series or case-crossover studies, most birth outcome studies lack the ability for automatic adjustment for measured and unmeasured time-invariant spatial variations. Unlike cohort studies, birth outcome study designs also lack the ability to efficiently adjust for personal life styles and social and economic status due to the lack of the detailed information available in routinely collected data. Because both exposure to air pollution and birth outcomes are influenced by some geographic characteristics, such as land use, forest, public infrastructure, and residential social and economic status, etc, the previous birth outcome studies might introduce bias to some extent due to the failure to consider spatial variation. In general, these spatial-related factors are favourable to links between air pollution exposure and birth outcomes. Therefore, we presume that the stronger associations reported in the previous birth outcome studies might partially attribute to this kind of bias. The simple way to adjust for the spatial variation is to add a categorical variable for individual residential areas to fit a fixed effect model or to include the residential areas to fit a mixed model or a random effect model.

Interaction of temperature and air pollution

In many locations, patterns of air pollution are driven by weather. Therefore, concentrations of air pollutants may be associated with temperature. Therefore, it may be possible that temperature and air pollution interact to affect health outcomes. Although effect modification has important public health implications [ 74 ], this issue has so far received limited attention, probably because of methodological complexity and the difficulty in data interpretation. Several studies examined whether or not ambient air pollution and temperature interact to affect human health outcomes, but they produced conflicting results [ 75 – 78 ]). For example, Samet et al. [ 78 ] investigated the sensitivity of the particulate air pollution mortality effect estimate to alternative methods of controlling weather and did not find any evidence that weather conditions modified the associations of particulate air pollution and sulphur dioxide with mortality, regardless of approaches of synoptic weather conditions. Katsouyanni et al. [ 75 ] used a multiple linear regression to investigate the interaction between air pollution and high temperature during a heat wave in Athens in July 1987. They found that while the main effects of air pollution index were not statistically significant, there was statistically significant synergistic effect between high levels of sulphur dioxide and high temperature (P < 0.05). Roberts [ 77 ] found evidence that the effect of particulate air pollution on mortality might depend on temperature but the synergistic effect was sensitive to the number of degrees of freedom used in confounder adjustments. Recently, we found that temperature and particulate matter symmetrically enhanced the effect [ 76 ]. Since then, several multiple-site studies have found evidence that temperature and air pollutants interacted to impact human health but the nature and magnitude of such an interaction varied with geographic area [ 79 – 82 ]. Thus, further research is needed to examine the interactive effects between air pollutants and temperature on mortality and morbidity, especially in different spatial settings.

Many time-series, case-crossover and panel studies have shown that there are consistent short-term effects of air pollution on health outcomes (hospital admissions or deaths). Some cohort studies have also shown long-term health effects of air pollution. In spite of the weak associations of air pollution with human morbidity or mortality, its public health implications are strong because exposure to air pollution is ubiquitous and widespread. However, there are several key methodological challenges in the estimation of the health effects of low-level exposure to air pollution, such as the shape of the exposure response curve, threshold of air pollution, interactive effects of air pollution and weather conditions, and model uncertainty and potential bias. Future research efforts should focus on these important issues.

Ministry of Health: Mortality and morbidity during the London fog of December 1952. Reports on Public Health and Medical Subjects. 1954, London: HMSO, 95

Google Scholar  

Samet J, Dominici J, Curriero F, Coursac I, Zeger SL: Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N Engl J Med. 2000, 343: 1742-1749. 10.1056/NEJM200012143432401.

Article   CAS   Google Scholar  

Anderson H, Ponce de Leon A, Bland J, Bower JS, Strachan DP: Air pollution and daily mortality in London: 1987–92. BMJ. 1996, 312: 665-669.

Burnett B, Brook J, Yung W, Dales RE, Krewski D: Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environ Res. 1997, 72: 24-31. 10.1006/enrs.1996.3685.

Linn W, Szlachcic Y, Gong H, Kinney PL, Berhane KT: Air pollution and daily hospital admissions in metropolitan Los Angeles. Environ Health Perspect. 2000, 108: 427-434. 10.2307/3454383.

Moolgavkar SH, Luebeck EG, Anderson EL: Air pollution and hospital admissions for respiratory causes in Minneapolis-St. Paul and Birmingham. Epidemiology. 1997, 8: 364-370. 10.1097/00001648-199707000-00003.

Hoek G, Brunekreef B, Fischer P, Wijnen JV: The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology. 2001, 12: 355-357. 10.1097/00001648-200105000-00017.

Mar T, Norris G, Koenig J, Larson TV: Associations between air pollution and mortality in Phoenix, 1995–1997. Environ Health Perspect. 2000, 108: 347-353. 10.2307/3454354.

Rossi G, Vigotti MA, Zanobetti A: Air pollution and cause specific mortality in Milan, Italy, 1980–1989. Arch Environ Health. 1999, 54: 158-164.

Roemer W, van Wijnen J: Daily mortality and air pollution along busy streets in Amsterdam, 1987–1998. Epidemiology. 2001, 12: 649-653. 10.1097/00001648-200111000-00012.

Brunekreef B, Holgate ST: Air pollution and health. Lancet. 2002, 360: 1233-1242. 10.1016/S0140-6736(02)11274-8.

Nyberg F, Pershagen G: Epidemiological studies on the health effects of ambient particulate air pollution. Scan J Work Environ Health. 2000, 26 (suppl 1): 49-89.

CAS   Google Scholar  

Dominici F, Peng R, Bell M, Pham L, McDermott A, Zeger SL, Samet JM: Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA. 2006, 295: 1127-1134. 10.1001/jama.295.10.1127.

Katsouyanni K, Touloumi G, Spix C, Schwartz J, Balducci F, Medina S, Rossi G, Wojtyniak B, Sunyer J, Bacharova L, Schouten JP, Ponka A, Anderson HR: Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. BMJ. 1997, 314: 1658-1663.

Atkinson R, Anderson H, Sunyer J, Ayres J, Baccini M, Vonk J, Boumghar A, Forastiere F, Forsbert B, Touloumi G, Schwartz J, Katsouyanni K: Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Am J Respir Crit Care Med. 2001, 164: 1860-1866.

Katsouyanni K, Touloumi G, Samol E, Gryparis A, Tertre AL, Monopolis Y, Rossi G, Zmirou D, Ballester F, Boumghar A, Anderson HR, Wojtyniak B, Paldy A, Braunstein R, Pekkanen J, Schindler C, Schwartzet J: Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA-2 project. Epidemiology. 2001, 12: 521-531. 10.1097/00001648-200109000-00011.

Zanobetti A, Schwartz J, Dockery D: Airborne particles are a risk factor for hospital admissions for heart and lung disease. Environ Health Perspect. 2000, 108: 1071-1077. 10.2307/3434961.

Bell M, McDermott A, Zeger S, Samet JM, Dominici F: Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA. 2004, 292: 2372-2378. 10.1001/jama.292.19.2372.

Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Atkinson R, Tertre AL, Bobros J, Celko M, Goren A, Forsberg B, Michelozzi P, Rabczenko D, Ruiz EA, Katsouyanni K: The temporal pattern of mortality responses to air pollution: a multicity assessment of mortality displacement. Epidemiology. 2002, 13: 87-89. 10.1097/00001648-200201000-00014.

Article   Google Scholar  

Schwartz J: Is there harvesting in the association of airborne particles with daily deaths and hospital admission?. Epidemiology. 2001, 12: 55-61. 10.1097/00001648-200101000-00010.

Schwartz J: The distributed lag between air pollution and daily deaths. Epidemiology. 2000, 11: 320-326. 10.1097/00001648-200005000-00016.

Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Peacock J, Anderson RH, Lertre AL, Bobros J, Celko M, Goren A, Forsberg B, Michelozzi P, Rabczenko D, Hoyos SP, Wichmann HE, Katsouyanni K: The temporal pattern of respiratory and heart disease mortality in response to air pollution. Environ Health Perspect. 2003, 111 (9): 1188-1193.

Goodman PG, Dockery DW, Clancy L: Cause-specific mortality and the extended effects of particulate pollution and temperature exposure. Environ Health Perspect. 2004, 112: 179-185.

Roberts S, Switzer P: Mortality Displacement and Distributed Lag Models. Inhal Toxicol. 2004, 16: 879-888. 10.1080/08958370490519598.

Barnett A, Williams G, Schwartz J, Best TL, Neller AH, Petroeschevsky AL, Simpson RW: The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australia and New Zealand cities. Environ Health Perspect. 2006, 114: 1018-1023.

Schwartz J: How sensitive is the association between ozone and daily deaths to control for temperature?. Am J Respir Crit Care Med. 2005, 171: 627-631. 10.1164/rccm.200407-933OC.

Neas L, Schwartz J, Dockery D: A case-crossover analysis of air pollution and mortality in Philadelphia. Environ Health Perspect. 1999, 107: 629-631. 10.2307/3434453.

Levy D, Sheppard L, Checkoway H, Kaufman J, Lumley T, Koenig J, Siscovick D: A case-crossover analysis of particulate amtter air pollution and out-of-hospital primary cardiac arrest. Epidemiology. 2001, 12: 193-199. 10.1097/00001648-200103000-00011.

Guaderman W, McConnell R, Gilliland F, London S, Thomas D, Avol E, Vora H, Berhane K, Rappaport EB, Lurmann F, Margolis HG, Peters J: Association between air pollution and lung function growth in southern California children. Am J Respir Crit Care Med. 2000, 162: 1383-1390.

Peters J, Avol E, Gaundman W, Linn WS, Navidi W, London SJ, Margolis H, Rappaport E, Vora H, Gong H, Thomas DC: A study of twelve southern California communities with differing levels and types of air pollution: II. Effects on pulmonary function. Am J Respir Crit Care Med. 1999, 159: 768-775.

Roemer W, Hoek G, Brunekreef B: Pollution effects on asthmatic children in Europe, the PEACE study. Clinical and Experimental Allergy. 2000, 30: 1067-1075. 10.1046/j.1365-2222.2000.00851.x.

Ward D, Ayres J: Particulate air pollution and panel studies in children: a systematically review. Occup Environ Med. 2004, 61: e13-10.1136/oem.2003.007088.

Lagorio S, Forastiere F, Pistelli R, Iavarone I, Michelozzi P, Fano V, Marconi A, Ziemacki G, Ostro BD: Air pollution and lung function among susceptible adult subjects: a panel study. Environ Health. 2006, 5: 11-10.1186/1476-069X-5-11.

Mar T, Koenig J, Jansen K, Sullivan J, Kaufman J, Trenga CA, Siahpush SH, Liu LS, Neas L: Fine particulate air pollution and cardiorespiratory effects in the elderly. Epidemiology. 2005, 16: 681-687. 10.1097/01.ede.0000173037.83211.d6.

Pope CA, Hansen ML, Long RW, Nielsen KR, Eatough NL, Wilson WE, Eatough DJ: Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ Health Perspect. 2004, 112: 339-345.

Trenga CA, Sullivan JH, Schilderout JS, Shepherd KP, Shapiro GG, Liu LJS, Kaufman JD, Koenig JQ: Effect of particulate air pollution on lung function in a Seattle panel study. Chest. 2006, 129: 1614-1622. 10.1378/chest.129.6.1614.

Zanobetti A, Canner M, Stone P, Schwartz J, Sher D, Eagan-Bengston E, Gates KA, Hartley LH, Suh H, Gold DR: Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation. 2004, 110: 2184-2189. 10.1161/01.CIR.0000143831.33243.D8.

Abbey D, Nishino N, McDonnell WF, Burchetter PJ, Knutsen SF, Beeson WL, Yang JX: Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. Am J Respir Crit Care Med. 1999, 159: 373-382.

Dockery DW, Pope C, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE: An association between air pollution and mortality in six U.S. cities. N Engl J Med. 1993, 329: 1753-1759. 10.1056/NEJM199312093292401.

Enstrom J: Fine particulate air pollution and total mortality among elderly Californians, 1973–2002. Inhal Toxicol. 2005, 17: 803-816. 10.1080/08958370500240413.

Lipfert F, Perry H, Miler J, Baty JD, Wyzga RE, Carmody SE: Air pollution, blood pressure, and their long-term associations with mortality. Inhal Toxicol. 2003, 15: 493-512. 10.1080/08958370304463.

McConnell R, Berhane K, Gilliland F, London SJ, Islam T, Gauderman WJ, Avol E, Margolis HG, Peters JM: Asthma in exercising children exposed to ozone: a cohort study. Lancet. 2002, 359: 386-391. 10.1016/S0140-6736(02)07597-9.

Pope C, Thun M, Namboodiri M, Dockery DW, Evans JS, Speizer FE, Heath CW: Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med. 1995, 151 (3 Pt 1): 669-674.

Pope C, Burnett R, Thun M, Calle EE, Krewski D, Ito K, Thurston GD: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002, 287: 1132-1141. 10.1001/jama.287.9.1132.

Clancy L, Goodman P, Sinclair H, Dockery DW: Effect of air pollution control on death in Dublin, Ireland: an intervention study. Lancet. 2002, 360: 1210-1214. 10.1016/S0140-6736(02)11281-5.

Filleul L, Rondeau V, Vandentorren S, Moual NL, Cantagrel A, Annesi-Maesano I, Charpin D, Declercq C, Neukirch F, Paris C, Vervloet D, Brochard P, Tessier JF, Kauffmann F, Baldiet I: Twenty five year mortality and air pollution: results from French PAARC survey. Occup Environ Med. 2005, 62: 453-460. 10.1136/oem.2004.014746.

Frostad A, Søyseth V, Andersen A, Gulsvik A: Respiratory symptoms as predictors of all-cause mortality in an urban community: a 30-year follow-up. J Int Med. 2006, 259: 520-529. 10.1111/j.1365-2796.2006.01631.x.

Hoek G, Brunekreef B, Goldbohm S, Fischer P, Brandt PA: Association between mortality and indicators of traffic-related air pollution in the Netherlands. Lancet. 2002, 360: 1203-1209. 10.1016/S0140-6736(02)11280-3.

Jalaludin B, O'Toole B, Leeder S: Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australia children. Environ Res. 2004, 95: 32-42. 10.1016/S0013-9351(03)00038-0.

Šrám RJ, Binková B, Dejmek J, Bobak M: Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect. 2005, 113 (4): 375-382.

Selevan SG, Kimmel CA, Mendola P: Identifying Critical Windows of Exposure for Children's Health. Environ Health Perspect. 2000, 108 (suppl): 451-455. 10.2307/3454536.

Maisonet M, Bush TJ, Correa A, Jaakkol JJ: Relation between ambient air pollution and low birth weight in the northeastern United States. Environ Health Perspect. 2001, 109 (suppl 3): 351-356. 10.2307/3434782.

Liu S, Krewski D, Shi Y, Chen Y, Burnett RT: Association between gaseous ambient air pollutants and adverse pregnancy outcomes in Vancouver, Canada. Environ Health Perspect. 2003, 111: 1773-1778.

Woodruff TJ, Parker JD, Schoendorf KC: Fine particulate matter (PM 2.5 ) air pollution and selected causes of postneonatal infant mortality in California. Environ Health Perspect. 2006, 114: 786-790.

Hansen C, Neller A, Williams G, Simpson R: Maternal exposure to low levels of ambient air pollution and preterm birth in Brisbane, Australia. BJOG. 2006, 113: 935-941. 10.1111/j.1471-0528.2006.01010.x.

Slama R, Morgenstern V, Cyrys J, Zutavern A, Herbarth O, Wichmann HE, Heinrich J, the LISA Study Group: Traffic-related atmospheric pollutants levels during pregnancy and offspring's term birth weight: a study relying on a land-use regression exposure model. Environ Health Perspect. 2007, 115: 1283-1292.

Bell ML, Ebisu K, Belanger K: Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect. 2007, 115: 1118-1125.

Hansen CA, Barnett AG, Pritchard G: The effect of ambient air pollution during early pregnancy on fetal ultrasonic measurements during mid-pregnancy. Environ Health Perspect. 2008, 116: 362-369.

Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JKC: Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angles. Am J Epidemiol. 2007, 166: 1045-1052. 10.1093/aje/kwm181.

Parker JD, Woodruff TJ, Basu R, Schoendorf KC: Air pollution and birth weight among term infants in California. Pediatrics. 2005, 115: 121-128.

Hedley A, Wong C, Thach T, Ma S, Lam TH, Anderson HR: Cardiovascular and all-cause mortality after restrictions on sulphur content of fuel in Hong Kong: an intervention study. Lancet. 2002, 360: 1646-1652. 10.1016/S0140-6736(02)11612-6.

Cakmak S, Burnett R, Krewski D: Methods for detecting and estimating population threshold concentrations for air pollution-related mortality with exposure measurement error. Risk Anal. 1999, 19: 487-496.

Daniels M, Dominci F, Samet J, Zeger SL: Estimating particulate matter-mortality dose-response curves and threshold levels: an analysis of daily time-series for the 20 largest US cities. Am J Epidemiol. 2000, 152: 397-406. 10.1093/aje/152.5.397.

Clyde M: Model uncertainty and health effect studies for particulate matter. Environmetrics. 2000, 11: 745-763. 10.1002/1099-095X(200011/12)11:6<745::AID-ENV431>3.0.CO;2-N.

SAS Institute Inc: SAS/STATE 9.1 User's Guide. 2004, Cary, NC: SAS Institute Inc, 3213-3332.

Sarnat JA, Wilson WE, Strand M, Brook J, Wyzga R, Lumley T: Panel discussion review: session one – exposure assessment and related errors in air pollution epidemiologic studies. J Expo Sci Environ Epidemiol. 2007, 17: s75-s82. 10.1038/sj.jes.7500621.

Jerret M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, Morrison J, Giovis C: A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol. 2005, 15: 185-204. 10.1038/sj.jea.7500388.

Dominici F, Sheppard L, Clyde M: Health effects of air pollution: a statistical review. International Statistic Review. 2003, 71: 243-276.

Maclure M: The case-crossover design: a method for study transient effects on the risk of acute events. Am J Epidemiol. 1991, 133: 144-153.

Hastie TJ, Tibshirani RJ: Generalized Additive Models. 1990, New York: Chapman & Hall

Ritz B, Yu F: The Effect of Ambient Carbon Monoxide on Low Birth Weight among Children Born in Southern California between 1989 and 1993. Environ Health Perspect. 1999, 107: 17-25. 10.2307/3434285.

Wilhelm M, Ritz B: Local variations in CO and particulate air pollution and adverse birth outcomes in Los Angeles County, California, USA. Environ Health Perspect. 2005, 113: 1212-1221.

Ritz B, Wilhelm M: Ambient air pollution and adverse birth outcomes: methodological issues in an emerging field. Basic Clin Pharmacol Toxicol. 2008, 102: 182-190.

Rotheman KJ, Greenland S: Modern Epidemiology. 1998, New York: Lippincott Williams & Wilkins, 2

Katsouyanni K, Pantazopoulou A, Touloumi G: Evidence for interaction between air pollution and high temperature in the causation of excess mortality. Arch Environ Health. 1993, 48: 235-242.

Ren C, Tong S: Temperature modified he health effects of particulate matter in Brisbane, Australia. Int j Biometeorol. 2006, 51: 87-96. 10.1007/s00484-006-0054-7.

Roberts S: Interactions between particulate air pollution and temperature in air pollution mortality time series studies. Environ Res. 2004, 96: 328-337. 10.1016/j.envres.2004.01.015.

Samet J, Zeger S, Kelshall J, Xu J, Kalkstein L: Does weather confound or modify the association of particulate air pollution with mortality? An analysis of the Philadelphia data, 1973–1980. Environ Res. 1998, 77: 9-19. 10.1006/enrs.1997.3821.

Ren C, Williams GM, Mengersen K, Morawska L, Tong S: Does temperature modify short-term effects of ozone on total mortality in 60 large eastern US communities? – an assessment using NMMAPS data. Environ Int. 2008, 34: 451-458. 10.1016/j.envint.2007.10.001.

Stafoggia M, Schwartz J, Forastiere F, Perucci CA, the SISTI group: Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. Am J Epidemiol. 2008, 167: 1476-1485. 10.1093/aje/kwn074.

Ren C, Williams G, Tong S: Does Particulate Matter Modify the Association between Temperature and Cardiorespiratory Diseases?. Environ Health Perspect. 2006, 114: 1690-1696.

Ren C, Williams GM, Morawska L, Mengersen K, Tong S: Ozone modifies associations between temperature and cardiovascular mortality: analysis of the NMMAPS data. Occup Environ Med. 2008, 65: 255-260. 10.1136/oem.2007.033878.

Peters A, Skorkovsky J, Kotesovec F, Brynda J, Spix C, Wichmann HE, Joachim Heinrich J: Associations between mortality and air pollution in central Europe. Environ Health Perspect. 2000, 108: 283-287. 10.2307/3454344.

Schwartz J: Assessing confounding, effect modification, and threshold in the association between ambient particles and daily deaths. Environ Health Perspect. 2000, 108: 563-568. 10.2307/3454620.

Hales S, Salmond C, Town GI, Kjellstrom T, Woodward A: Daily mortality in relation to weather and air pollution in Christchurch, New Zealand. Aust ZN Public Health. 2000, 24: 89-91. 10.1111/j.1467-842X.2000.tb00731.x.

Wong TW, Tam WS, Yu TS, Wong AHS: Associations between daily mortalities from respiratory and cardiovascular diseases and air pollution in Hong Kong, China. Occup Environ Med. 2002, 59: 30-35. 10.1136/oem.59.1.30.

Kim H, Kim Y, Hong YC: The lag-effect pattern in the relationship of particulate air pollution to daily mortality in Seoul, Korea. Int J Biometeorol. 2003, 48: 25-30. 10.1007/s00484-003-0176-0.

Kan H, Chen B: Air pollution and daily mortality in Shanghai: a time-series study. Arch Environ Health. 2003, 58: 360-367.

Petroeschevsky A, Simpson RW, Thalib L, Rutherford S: Associations between outdoor air pollution and hospital admissions in Brisbane, Australia. Arch Environ Health. 2001, 56: 37-52.

Braga AL, Saldiva PH, Pereira LA, Menezes JC, Conceicai JM, Lin CA, Zanobetti A, Schwartz J, Dockery DW: Health effects of air pollution exposure on children and adolescents in Sao Paulo, Brazil. Pediatr Pulmonol. 2001, 31: 106-113. 10.1002/1099-0496(200102)31:2<106::AID-PPUL1017>3.0.CO;2-M.

Download references

Acknowledgements

We thank Prof. Gail Williams, School of Population Health, University of Queensland for the comments on the earlier version of the manuscript. We also thank two reviewers for their insightful and constructive comments.

Author information

Authors and affiliations.

School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia

Cizao Ren & Shilu Tong

Harvard School of Public Health, Exposure, Epidemiology and Risk Program, Landmark Center West, Suite 415, 401 Park Dr, Boston, MA 02215, USA

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Cizao Ren .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

CR conceived of the study, participated in its design, and is responsible for the draft of the manuscript. ST participated in the study design and revised the draft of the manuscript.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Ren, C., Tong, S. Health effects of ambient air pollution – recent research development and contemporary methodological challenges. Environ Health 7 , 56 (2008). https://doi.org/10.1186/1476-069X-7-56

Download citation

Received : 29 January 2008

Accepted : 06 November 2008

Published : 06 November 2008

DOI : https://doi.org/10.1186/1476-069X-7-56

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Birth Outcome
  • Bayesian Model Average
  • Lung Cancer Mortality
  • Chronic Obstructive Pulmonary Disease Admission
  • Birth Outcome Study

Environmental Health

ISSN: 1476-069X

thesis statement air pollution is caused by many factors

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JavaScript appears to be disabled on this computer. Please click here to see any active alerts .

Research on Health Effects from Air Pollution

Visualization of human heart and lungs in the body

Decades of research have shown that air pollutants such as ozone and particulate matter (PM) increase the amount and seriousness of lung and heart disease and other health problems. More investigation is needed to further understand the role poor air quality plays in causing detrimental effects to health and increased disease, especially in vulnerable populations. Children, the elderly, and  people living in areas with high levels of air pollution are especially susceptible.

Results from these investigations are used to support the nation's air quality standards under the Clean Air Act and contribute to improvements in public health.

On this page:

Health Effects of Air Pollutants on Vulnerable Populations

Long-term and short-term effects from exposure to air pollutants.

  • Multipollutant Exposures and Changes in Environmental Conditions
  • Leveraging Big Data for Innovations in Health Science 

Health Effects of Wildfire Smoke

Public health intervention and communications strategies, integrated science assessments for air pollutants.

An adult helping a child use an inhaler

Research has shown that some people are more susceptible than others to air pollutants. These groups include children, pregnant women, older adults, and individuals with pre-existing heart and lung disease. People in low socioeconomic neighborhoods and communities may be more vulnerable to air pollution because of many factors. Proximity to industrial sources of air pollution, underlying health problems, poor nutrition, stress, and other factors can contribute to increased health impacts in these communities.

There is a need for greater understanding of the factors that may influence whether a population or age group is at increased risk of health effects from air pollution. In addition, advances to analytical approaches used to study the health effects from air pollution will improve exposure estimates for healthy and at-risk groups.

The research by EPA scientists and others inform the required reviews of the primary National Ambient Air Quality Standards (NAAQS), which is done with the development of Integrated Science Assessments (ISAs). These ISAs are mandated by Congress every five years to assess the current state of the science on criteria air pollutants and determine if the standards provide adequate protection to public health. 

Research is focused on addressing four areas:

  • Identifying and characterizing whether there are key reproductive factors and critical stages of development that are impacted by air pollution exposures;
  • Determining the role of acute and chronic sociodemographic factors in air pollution health disparities;
  • Understanding how diet modifies responses to air pollution;
  • Evaluating long-term lifestyle and chronic disease effects on air pollution-induced respiratory and cardiovascular responses

A multi-disciplinary team of investigators is coordinating epidemiological, human observational, and basic toxicological research to assess the effects of air pollution in at-risk populations and develop strategies to protect these populations, particularly those with pre-existing disease. The results from these products will improve risk assessments by clarifying the role of modifying factors such as psychosocial stress (e.g. noise) and diet, and determining the impact of individual susceptibility on the relationship between air pollutant exposures and health.

Related Links

  • Healthy Heart Research
  • Integrated Science Assessments
  • Criteria Air Pollutants

A plume of emissions rises from a factory smokestack near an empty playground

People can experience exposure to varying concentrations of air pollution. Poor air quality can impact individuals for a short period of time during the day, or more frequently during a given day. Exposure to pollutants can also occur over multiple days, weeks or months due to seasonal air pollution, such as increased ozone during the summer or particulate matter from woodstoves during the winter.

The health impact of air pollution exposure depends on the duration and concentrations, and the health status of the affected populations. Studies are needed to increase knowledge of the exposure duration and the possible cumulative increase in risk.

The research is focused on three main areas: 

  • Short-term peak exposures, such as wildfires, traffic-related sources, or other episodic events;
  • Intermittent and cumulative exposures;
  •  Mechanisms underlying the exposure risks

Researchers are evaluating the health responses of intermittent multiple days versus one-day air pollution exposure in controlled human exposure, animal, and in vitro models and associated cellular and molecular mechanisms. They are employing population-based models and electronic health records to assess the health effects of short-term and long-term exposures and identifying populations at greatest risk of health effects. The work is improving our understanding of the possible cumulative effects of multiple short-term peak exposures and the relationship of these exposures to longer-term exposures and risks.

Multipollutant Exposures and Changes in Environmental Conditions  

A sunrise over the Cincinnati skyline and river

EPA research is providing information to understand how individuals may respond to two or more pollutants or mixtures and how environmental conditions may impact air quality.  While risk estimates for exposure to individual criteria air pollutants such as PM and ozone are well established, the acute and cumulative effects of combinations of pollutants is not well understood. In addition, research is needed to determine how changes in the environment affect both pollutant formation and subsequent responsiveness to exposures in healthy and susceptible individuals.

The research is focused on three specific questions: 

  • What is the role of temperature and photochemical aging on the health impact of wildfire smoke and air pollution mixtures?
  • What is the effect of changing environmental conditions (i.e., temperature and humidity) on responsiveness to air pollution?
  • Does prior pollutant exposure modify responsiveness to subsequent exposures?

The integrated, multi-disciplinary research includes:

  • Epidemiologic analyses of environmental influences on morbidity and mortality in populations,
  • Simulations of changing environmental conditions in multi-pollutant formation in atmospheric chamber studies coupled with clinical and toxicological assessments in healthy and at-risk populations,
  • Evaluation of pre-exposure as a modifying effect on subsequent exposures

The results are revealing how changes in environmental conditions affect pollutant formation and subsequent health impact in at-risk populations. The research findings are informing EPA’s Integrated Science  Assessments for criteria air pollutants and assisting with future regulatory decisions on the National Ambient Air Quality Standards (NAAQS).

Leveraging Big Data for Innovations in Health Science  

Lines of binary code against a blue background

EPA is at the cutting edge of health science, using electronic health records, novel data systems, tissue-like advanced cellular models, molecular approaches, and animal models to evaluate the health impacts of air pollution.  Researchers are using these powerful new techniques to identify factors that may increase sensitivity and vulnerability to air pollution effects. 

The research is building capacity for future risk assessment and regulatory analyses that go beyond traditional lines of evidence to more clearly define populations and lifestages at increased risk of health effects from air pollution.

To continue to protect public health from poor air quality, researchers must consider new epidemiological, toxicological and clinical approaches to understand the health risks of poor air quality and the biological mechanisms responsible for these risks. At the center of these new research approaches is an explosion of data availability and methodological approaches for handling large clinical and molecular datasets, also known as "big data."

While data of increasing size, depth, and complexity have accelerated research for many industries and scientific fields, big data is sometimes less recognized for the impacts it is having on environmental health studies. Increasingly, researchers are able to examine vulnerable populations with unprecedented precision and detail while also evaluating hundreds of thousands of molecular biomarkers in order to understand biological mechanisms associated with exposure.

Smoke from a wildfire rising behind homes in a neighborhood

Larger and more intense wildfires are creating the potential for greater smoke production and chronic exposures in the United States, particularly in the West. Wildfires increase air pollution in surrounding areas and can affect regional air quality.

The health effects of wildfire smoke can range from eye and respiratory tract irritation to more serious disorders, including reduced lung function, exacerbation of asthma and heart failure, and premature death. Children, pregnant women, and the elderly are especially vulnerable to smoke exposure. Emissions from wildfires are known to cause increased visits to hospitals and clinics by those exposed to smoke.

It is important to more fully understand the human health effects associated with short- and long-term exposures to smoke from wildfires as well as prescribed fires, together referred to as wildland fires. EPA is conducting research to advance understanding of the health effects from different types of fires as well as combustion phases. Researchers want to know:

  • What is the full extent of health effects from smoke exposure?
  • Who is most at risk?
  • Are there differences in health effects from different wildfire fuel types or combustion phases (burning versus flaming)?
  • What strategies and approaches are most effective in protecting public health?
  • What are the environmental, social and economic impacts of wildfire emissions?
  • Wildland Fire Research
  • Smoke-Ready Toolbox for Wildfires
  • Smoke Sense Project and App

A female doctor speaks with an elderly patient while holding a tablet

Many communities throughout the United States face challenges in providing advice to residents about how best to protect their health when they are exposed to elevated concentrations of air pollutants from motor vehicle and industrial emissions and other sources of combustion, including wildland fire smoke.

Researchers are studying intervention strategies to reduce the health impacts from exposure to air pollution as well as ways to effectively communicate these health risks. To translate the science for use in public health communication and community empowerment, EPA is collaborating with other federal agencies, such as the Centers for Disease Control and Prevention (CDC) and the National Heart, Lung, and Blood Institute (NHLBI), and state and local agencies and tribes. The objectives are to identify ways to lower air pollution exposure or mitigate the biological responses at individual, community or ecosystem levels, and ultimately evaluate whether such interventions have benefits as measured by indicators of health, well-being or economics.

Studies are evaluating the interactions between behavior and social and economic factors to more thoroughly understand how these factors may influence health and well-being outcomes, which can inform effective and consistent health risk messaging. 

  • Healthy Heart Initiative and Research

A city skyline enveloped by smog

EPA sets National Ambient Air Quality Standards (NAAQS) for six principal criteria air pollutants —nitrogen oxides, sulfur oxides, particulate matter, carbon monoxide, ozone and lead—all of which have been shown to be harmful to public health and the environment.

The Agency’s Integrated Science Assessments (ISAs) form the scientific foundation for the review of the NAAQS standards by providing the primary (human health-based) assessments and secondary (welfare-based, e.g. ecology, visibility, materials) assessments. The ISAs are assessments of the state of the science on the criteria pollutants. They are conducted as mandated under the Clean Air Act.

  • Air Research Home
  • Air Monitoring & Emissions
  • Air Quality Modeling
  • Wildland Fires
  • Health Effects from Air Pollution
  • Air & Energy
  • Outreach, Tools & Resources

The impact of air pollutant transport on air quality and human health in global and regional model applications

Add to collection, downloadable content.

thesis statement air pollution is caused by many factors

  • March 19, 2019
  • Affiliation: Gillings School of Global Public Health, Department of Environmental Sciences and Engineering
  • As air pollution can travel long distance, change in emissions from one region influence air quality and associated premature mortality over others. This research uses ensemble-modeled concentrations of anthropogenic ozone (O3) and fine particulate matter (PM2.5) to quantify avoided premature mortality from 20% emission reductions of 6 regions (i.e. North America (NAM), Europe (EUR), South Asia (SAS), East Asia (EAS), Russia/Belarus/Ukraine (RBU) and the Middle East (MDE)) and 3 sectors (i.e. Power and Industry (PIN), Ground Transportation (TRN) and Residential (RES)) and evaluate the impact of interregional transport of precursor emissions from local (i.e. Kao-Ping air basin (KPAB)) and upwind air basin regions (i.e. North and Chu-Miao Air Basin (NCMAB), Central Air Basin (CTAB), Yun-Chia-Nan Air Basin (YCNAB), and Yi-Lan and Hua-Dong Air Basin (YLHDAB)) on O3 and PM2.5 air quality over KPAB. For health impact assessment, we estimate 290,000 (95% CI: 30,000, 600,000) premature O3-related deaths and 2.8 million (0.5 million, 4.6 million) PM2.5-related premature deaths globally for the baseline year 2010. Reducing emissions from MDE and RBU can avoid more O3-related deaths outside of these regions than within while reducing MDE emissions also avoids more PM2.5-related deaths outside of MDE than within. TRN emissions account for the greatest fraction (26-53% of global emission reduction) of O3-related premature deaths in most regions, except for EAS (58%) and RBU (38%) where PIN emissions dominate. For air quality impact assessment, anthropogenic emissions from upwind and local emissions can contribute 17% and 7% of daily maximum 8-hour O3 concentrations, respectively on the highest O3 day while 36.8% and 26.6% of 24-hour average PM2.5 concentrations, respectively during the high PM2.5 days over KPAB, indicating that the upwind emissions play a significant role in KPAB O3 and PM2.5 concentration. The most effective emission control strategy can be approached by reducing upwind anthropogenic NOX emission along with local VOC emission for O3 while upwind anthropogenic NOX emission along with local primary PM2.5 emission for PM2.5. The result highlights the importance of long-range air pollution transport and suggests that emission reductions can improve air quality and have associated health benefits downwind. Therefore, regional cooperation to reduce air pollution transported over long distances may be desirable.
  • December 2018
  • Community multiscale air quality model (CMAQ)
  • fine particulate matter (PM2.5)
  • Decoupled Direct Method (DDM)
  • Ensemble model
  • Environmental science
  • Environmental management
  • Environmental health
  • Long range transport (LRT)
  • https://doi.org/10.17615/xzek-2c74
  • Dissertation
  • In Copyright
  • Napelenok, Sergey
  • Turpin, Barbara
  • Vizuete, William
  • West, Jason
  • Doctor of Philosophy
  • University of North Carolina at Chapel Hill Graduate School

This work has no parents.

Select type of work

Master's papers.

Deposit your masters paper, project or other capstone work. Theses will be sent to the CDR automatically via ProQuest and do not need to be deposited.

Scholarly Articles and Book Chapters

Deposit a peer-reviewed article or book chapter. If you would like to deposit a poster, presentation, conference paper or white paper, use the “Scholarly Works” deposit form.

Undergraduate Honors Theses

Deposit your senior honors thesis.

Scholarly Journal, Newsletter or Book

Deposit a complete issue of a scholarly journal, newsletter or book. If you would like to deposit an article or book chapter, use the “Scholarly Articles and Book Chapters” deposit option.

Deposit your dataset. Datasets may be associated with an article or deposited separately.

Deposit your 3D objects, audio, images or video.

Poster, Presentation, Protocol or Paper

Deposit scholarly works such as posters, presentations, research protocols, conference papers or white papers. If you would like to deposit a peer-reviewed article or book chapter, use the “Scholarly Articles and Book Chapters” deposit option.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 04 October 2021

A conversation on the impacts and mitigation of air pollution

Nature Communications volume  12 , Article number:  5822 ( 2021 ) Cite this article

3483 Accesses

3 Citations

3 Altmetric

Metrics details

Air pollution is an environmental and health concern affecting millions globally every day. Dr Audrey de Nazelle, an expert in air pollution risk assessment and exposure science at Imperial College London, shares with Nature Communications their thoughts on the impacts of air pollution and the policies needed to tackle emissions.

thesis statement air pollution is caused by many factors

What aspect of air pollution concerns you the most?

Air pollution is detrimental to our health at every stage of our lives, affecting almost every organ of our bodies, and most people can do little to limit their exposures. There are no known safe levels of ambient air pollutants we encounter in our daily lives, such as particulate matter and nitrogen dioxide. As a society, we would benefit from everyone reducing their exposures, with population health benefits ranging from reproduction and neonatal outcomes, lung and cognitive development, respiratory and cardiovascular health, diabetes and obesity prevention, and protection against infectious diseases. It would particularly benefit deprived populations—low income and minority ethnic groups tend to have both greater exposures and greater susceptibility to adverse health outcomes related to air pollution than more advantaged populations. Individuals alone, however, have only limited power to protect themselves from the ill effects of air pollution; achieving reductions in population exposures to air pollution requires bold policies and collective action.

If well-devised, such bold air pollution policies additionally provide the opportunity to bring further health benefits beyond those accrued from air pollution reductions alone. In cities, for example, where typically the largest fraction of ambient pollutants stem from transport, ambitious policies that create environments conducive to walking, cycling or taking public transport instead of driving will also bring about healthy levels of physical activity, lower traffic injuries, or more room for green and open space.

Most individuals are helpless in the face of harmful and inequitable exposures, and it is the lack of widespread recognition of both the opportunity and responsibility to improve the health and equity of our society through collective action that concerns me the most about air pollution. In my research, I focus on the opportunity provided by urban transformations to promote healthy, sustainable, and equitable environments.

What are your thoughts on current policy enforcement, and how well or not this is being achieved?

More than enforcement of policies, what is needed is bolder policies. Air pollution standards are lax in most areas of the world—air pollution impacts occur far below the European 25 µg/m 3 limit value for example, and even below the WHO’s current guideline of 10 µg/m 3 . The formulation of standards is also inadequate to achieve widespread population health: areas that are currently in compliance with regulatory standards have no incentive to further reduce air pollution, even though we know we could achieve further health benefits by shifting the entire distribution of population exposures towards lower concentrations. Policies that are put in place to achieve standards are often near-sighted and narrow-minded. The lack of joined up thinking across policy sectors inhibits the kind of holistic vision needed for efficient policy making that truly delivers on the promise of air pollution policies, i.e., to promote health and wellbeing. Policy frameworks that require systemic thinking are needed so that feedback effects and multiple outcomes of decisions are accounted for.

How effective is voluntary action vs government mandated policy in reducing air pollution?

Voluntary action and government mandated policies go hand in hand. Government action is needed to enable and empower individuals to make sustainable and healthy choices. Taking the example of urban environments again, getting people out of their cars ultimately requires bold action on the part of governments to make public transport, walking, and cycling be the easy and most appealing choices for all. This means transforming the urban landscape so that people live close to their everyday destinations, and so that streets are safe and comfortable to enjoy cycling and walking in—even for families with children. It also means investing in cities so they are places worth living in rather than escaping from at every opportunity one could afford. Government actions to ensure affordable living conditions are ensured for all to reap the benefits of the healthy urban transformations is also key.

In reverse, buy-in and support from city dwellers and local stakeholders are required to embolden policymakers towards such transformative actions. Making multiple and far-reaching trade-offs and benefits salient in the decision making will help engage citizens and create the partnerships that enable effective action towards desired visions of city landscapes.

Socioeconomic factors such as income, education and wealth have been shown to play a key role in public health air pollution impacts. What needs to be done to ensure that policies developed are equitable and just?

Deprived populations suffer the most from air pollution, and typically contribute the least to air pollution in cities. Individuals of lower socio-economic status have lower car ownership rates and drive less than more advantaged populations. Yet, car reduction strategies are often opposed on the grounds of being most unfair to the poor. Controversial low traffic neighbourhoods in London are a case in point, though research has shown they have so far been deployed in majority in streets housing populations in lower deciles of deprivation. It is of course possible that such traffic reduction schemes displace traffic onto surrounding major roads where lower income people may live. The same way, however, that road building eventually leads to more car travel, reducing space given to cars eventually reduces the amount of traffic, although there may be a period of adaptation needed for the new equilibrium to be reached. The key is of course to ensure alternatives to car use are attractive and affordable to all.

Gentrification is a real concern for regeneration projects that make communities more conducive to walking and cycling. By attracting wealthier newcomers, creating more human scale neighbourhoods can indeed end up displacing or marginalising existing populations. At the local level, it is essential to foster citizen participation in the planning development process to ensure adequate options for affordable living conditions (housing, shopping, public transport options) are maintained. More importantly in the long run, widespread adoption of people-friendly environments across the city landscape will make each individual pocket less prized by the wealthier populations and hence limit gentrification processes.

More generally, engraining equity goals across policy areas will ensure joined up thinking and create alliances across groups and sectors for the promotion of healthy, sustainable, and equitable societies.

Technological advances to mitigate air pollution such as retrofitting coal-fired plants are touted as potential cost-effective solutions. What are the most promising recent advances to mitigate against pollutants?

Technological solutions are part of the solution. In the city context, for example electric or hydrogen vehicles have their place in the portfolio of actions needed to tackle air pollution. They are needed to bring down emissions from buses, ambulances, delivery trucks, or other service vehicles that are required for the good functioning of society. Communication and sensing technology also hold some potential in the fight against air pollution. Travel apps have made scheduling of public transport use far more tractable, and facilitated way finding for pedestrians and cyclists. Air pollution-related apps and sensors have the potential to engage citizens towards protective behaviours to minimize exposures, towards mitigating behaviours to reduce contributions to air pollution, and towards policy support for ambitious policies. The evidence base on the effectiveness of such approaches however is limited, in part because apps assessed so far have not been designed to fully integrate learnings from air pollution communication research (e.g. integrating a full range of actionable information or fostering collective action).

Do you hold out more hope for technological solutions, or political action, as a means to reduce air pollution?

Technological solutions to address air pollution are often low-hanging fruits to gain relatively quick and painless wins. They typically offer no co-benefits, are rarely transformative and can be loaded with trade-offs or unintended consequences that can eventually back-fire. They have their place in the multitude of efforts required to bring down noxious levels of air pollution—for example electrically-powered ambulances or bin collection vehicles. Single-minded focus or over-reliance on technology, however, is at best a wasted opportunity for further co-benefits, and at worst creates a lock-in into a system that prevents further gains in the long run. Electrification of the vehicle fleet, for example, requires large investments from local authorities to create an adequate charging network, and individual private investments to buy new cars. Such investments present an opportunity cost for funding that could otherwise be used for more radical healthy urban transformations, and can create inertias that prevent these more fundamental changes from taking place. In addition, its benefits on air pollution are only limited as electric vehicles continue to emit particles from tyre and brake wear (currently the large majority of particulates emitted from cars). It partly just displaces emissions as electricity still needs to be produced to power the vehicles. It generates health hazards in poor populations of low-income countries where rare metals are mined to make batteries. It perpetuates ailments of car-oriented societies including large health burden from traffic hazards and sedentary lifestyles. Bold political actions to push cities to be less car-reliant, on the other hand, can help create resilient, healthy, and sustainable cities people want to live, work, and play in.

Finally, how would you like collaboration between physical, health and policy scientists working on air pollution to improve?

Transformative solutions to air pollution, especially in the context of urban change towards people-friendly, human-scale, sustainable, equitable and healthy environments, will require concerted efforts across sectors, including academic disciplines. One of the greatest hindrances towards such radical changes is the lack of political will or leadership. From an academic standpoint, what is needed is to evaluate decision-making processes to identify leverage points and to develop a convincing evidence-base for optimal solutions. This requires collaborations across disciplines from social to physical sciences to understand the inter-linkages between urban form, behaviour change, political processes, environmental phenomena and health and social impacts. Research outputs, however, are often considered irrelevant to decision makers who may view their own contexts as overly complex and unique. To ensure such research developments are grounded in real policy contexts and produce knowledge that is both useful and used, academics can strive to develop their research programmes in partnership with a range of relevant stakeholders, including policymakers. Co-created research helps academics along every step of the way to have maximal impact- from posing the right questions, to choosing research outputs that rings true in the policy decision making context, and finally translating and disseminating the research so it is understood and heard in relevant policy settings. Applying systems thinking in research development will also help capture the complexity of real-world phenomena, and identify interlinkages, feedback effects, trade-offs, and co-benefits in the decision make process. Collaborations across disciplines in the context of air pollution policy making could thus be greatly improved by encouraging academics to co-create knowledge and solutions and applying systems thinking in research development.

This interview was conducted by Melissa Plail.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

A conversation on the impacts and mitigation of air pollution. Nat Commun 12 , 5822 (2021). https://doi.org/10.1038/s41467-021-25518-2

Download citation

Published : 04 October 2021

DOI : https://doi.org/10.1038/s41467-021-25518-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Empowering community health professionals for effective air pollution information communication.

  • Cornelia Junghans
  • Diana Varaden

BMC Public Health (2023)

Processing Nomex Nanofibers by Ionic Solution Blow-Spinning for Efficient High-Temperature Exhausts Treatment

  • Zekun Cheng
  • Haiyang Wang

Advanced Fiber Materials (2023)

Socio-demographic factors shaping the future global health burden from air pollution

  • Xinyuan Huang

Nature Sustainability (2022)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

thesis statement air pollution is caused by many factors

SlidePlayer

  • My presentations

Auth with social network:

Download presentation

We think you have liked this presentation. If you wish to download it, please recommend it to your friends in any social system. Share buttons are a little bit lower. Thank you!

Presentation is loading. Please wait.

Cause and Effect Essay.

Published by Naomi Elliott Modified over 5 years ago

Similar presentations

Presentation on theme: "Cause and Effect Essay."— Presentation transcript:

Cause and Effect Essay

José Jiménez Sirlene Sánchez Elluany Segura Diego Zamora Cause and effect essay.

thesis statement air pollution is caused by many factors

Remember the 3 steps! Just like in writing a paragraph, you need to follow the same three steps in essay-writing: Plan your essay (outline) Use transitions.

thesis statement air pollution is caused by many factors

The Cause-Effect Essay St. Robert Catholic High School Information taken from:

thesis statement air pollution is caused by many factors

How to write an Essay. What is an essay? An essay is a group of paragraphs that support a single point: Introduction (with thesis) a number of body paragraphs.

thesis statement air pollution is caused by many factors

WRITING 1 2 ND WEEK UNTIRTA. Outline Getting familiar with the acedemic writing Paragraph structure.

thesis statement air pollution is caused by many factors

The Cause and Effect Essay. 1. To understand the relationship of events that brought about an outcome, (Cause) 2. To understand the results that come.

thesis statement air pollution is caused by many factors

Do Now: Place the parts of an essay in the appropriate spaces. Hook Thesis Preview Topic Sentence Elaboration Concluding Remark Restatement Recap Clincher.

thesis statement air pollution is caused by many factors

The Sun’s energy passes through the car’s windshield. This energy (heat) is trapped inside the car and cannot pass back through the windshield, causing.

thesis statement air pollution is caused by many factors

ENVIRONMENTAL CONSEQUENCES OF USING FOSSIL FUELS Fossil fuels are used in large quantities in industries, railways and power plants. Thermal power plants.

thesis statement air pollution is caused by many factors

Power Writing Technique Write for 5 minutes about one reason that leads to students not passing their exams. Write a topic sentence. Support your topic.

thesis statement air pollution is caused by many factors

Cause and Effect Paragraphs

thesis statement air pollution is caused by many factors

Essay Types overview with focus on Comparative. Logical Writing, Sem. I, 2013.

thesis statement air pollution is caused by many factors

 Review Unit 2 (Setting Goals)  Explore Unit 3 (Using Resources)  Test testing skills  Preview Unit 4  Discuss problems & solutions.

thesis statement air pollution is caused by many factors

Writing A Paragraph and The Academic Writing Process ENL 207, Fall 2015.

thesis statement air pollution is caused by many factors

How do you end your essay in a way that leaves your reader thinking?

thesis statement air pollution is caused by many factors

Creating an Outline A quick how-to guide to an important paper writing skill.

thesis statement air pollution is caused by many factors

Environmental Problems

thesis statement air pollution is caused by many factors

The Effective Reader by D. J. Henry

thesis statement air pollution is caused by many factors

Arguing About What Causes a Topic or What Results from a Topic

About project

© 2024 SlidePlayer.com Inc. All rights reserved.

IMAGES

  1. Air Pollution: Causes and Negative Effect Free Essay Example

    thesis statement air pollution is caused by many factors

  2. SOLUTION: write Essay on pollution

    thesis statement air pollution is caused by many factors

  3. Essay On Air Pollution Causes And Effects

    thesis statement air pollution is caused by many factors

  4. Air Pollution Essay

    thesis statement air pollution is caused by many factors

  5. (PDF) Some current challenges in research on air pollution and health

    thesis statement air pollution is caused by many factors

  6. 📗 Air Pollution Essay Samples

    thesis statement air pollution is caused by many factors

VIDEO

  1. Study finds link between air pollution and depression

  2. Improving Air Pollution Monitoring

  3. Air Pollution seen from the Highway

  4. Air pollution| Causes & effects of air pollution

  5. 3 Minute Thesis competition #iitdelhi #Tryst2023 #airpollution #solarpanel #renewableenergy #unsdg

COMMENTS

  1. Environmental and Health Impacts of Air Pollution: A Review

    Moreover, air pollution seems to have various malign health effects in early human life, such as respiratory, cardiovascular, mental, and perinatal disorders ( 3 ), leading to infant mortality or chronic disease in adult age ( 6 ). National reports have mentioned the increased risk of morbidity and mortality ( 1 ).

  2. PDF The Effect of Climate Change and Air Pollution on Public Health

    The effects of temperature and air pollution on public health are comprehensive and ubiquitous. Therefore, this dissertation deals with the comprehensive topic of climate change and ... from any natural cause except for accidental causes (ICD-code 10th revision: V01-Y98, ICD-code 9th revision: 1-799), of persons who resided within the city ...

  3. Environmental and Health Impacts of Air Pollution: A Review

    Short-term and long-term adverse effects on human health are observed. VOCs are responsible for indoor air smells. Short-term exposure is found to cause irritation of eyes, nose, throat, and mucosal membranes, while those of long duration exposure include toxic reactions ( 92 ).

  4. Air Pollution Facts, Causes and the Effects of Pollutants in the Air

    A number of air pollutants pose severe health risks and can sometimes be fatal, even in small amounts. Almost 200 of them are regulated by law; some of the most common are mercury, lead, dioxins ...

  5. Theoretical Model and Actual Characteristics of Air Pollution ...

    Background: The impact of environmental pollution (such as air pollution) on health costs has received a great deal of global attention in the last 20 years. Methods: This review aims to summarize the theoretical analysis model of air pollution affecting health costs, and further explore the actual characteristics of the impact of air pollution on health costs. The following main databases ...

  6. How air pollution is destroying our health

    Air pollution has a disastrous effect on children. Worldwide, up to 14% of children aged 5 - 18 years have asthma relating to factors including air pollution. Every year, 543 000 children* younger than 5 years die of respiratory disease linked to air pollution. Air pollution is also linked to childhood cancers.

  7. Air Pollution

    Air pollution consists of chemicals or particles in the air that can harm the health of humans, animals, and plants. It also damages buildings. Pollutants in the air take many forms. They can be gases, solid particles, or liquid droplets. Sources of Air Pollution Pollution enters the Earth's atmosphere in many different ways. Most air pollution is created by people, taking the form of ...

  8. Health effects of ambient air pollution

    Exposure to high levels of air pollution can cause a variety of adverse health outcomes. Air quality in developed countries has been generally improved over the last three decades. However, many recent epidemiological studies have consistently shown positive associations between low-level exposure to air pollution and health outcomes. Thus, adverse health effects of air pollution, even at ...

  9. Research on Health Effects from Air Pollution

    Research on Health Effects from Air Pollution. Decades of research have shown that air pollutants such as ozone and particulate matter (PM) increase the amount and seriousness of lung and heart disease and other health problems. More investigation is needed to further understand the role poor air quality plays in causing detrimental effects to ...

  10. Air pollution: Facts, causes, and impacts

    Air pollution, a complex mixture of many particles and gases, is a broad term that modifies natural characteristics of the atmosphere and has damaging effects on living things and the environment. ... These potential factors may cause major environmental (i.e., sequential degradation of ambient air quality) as well as health concerns in recent ...

  11. Dissertation or Thesis

    The result highlights the importance of long-range air pollution transport and suggests that emission reductions can improve air quality and have associated health benefits downwind. Therefore, regional cooperation to reduce air pollution transported over long distances may be desirable. Date of publication. December 2018; Keyword

  12. A conversation on the impacts and mitigation of air pollution

    More than enforcement of policies, what is needed is bolder policies. Air pollution standards are lax in most areas of the world—air pollution impacts occur far below the European 25 µg/m 3 ...

  13. Environmental Pollution and its Effects on Human Health

    Global excess mortality from all ambient air pollution is estimated at 8.8 (7.11-10.41) million/year, with an LLE of 2.9 (2.3-3.5) years, being a factor of two higher than earlier estimates, and ...

  14. Air Pollution: Thesis Statement

    08.05.2024. Cite this essay. Download. 1. Problem Statement: Air pollution is one of the most serious problems in the world. It refers to the contamination of the atmosphere by harmful chemicals or biological materials. It may cause diseases, allergies, and severe health problems in humans and other living organisms and may damage the natural ...

  15. Causes, Consequences and Control of Air Pollution

    Abstract. Air pollution occurs when gases, dust particles, fumes (or smoke) or odour are introduced into the atmosphere in a way that makes it harmful to humans, animals and plant. Air pollution ...

  16. Socioeconomic Disparities and Air Pollution Exposure: A Global Review

    Several reviews focus on the relationship between environmental inequality and health [ 2 - 4, 14 ]. The triple jeopardy hypothesis states that low SES communities face (1) higher exposure to air pollutants and other environmental hazards and (2) increased susceptibility to poor health (primarily as a result of more psychosocial stressors ...

  17. Understanding the problem

    Air quality is linked to human activities, earth's climate and ecosystems globally. Many of the drivers of air pollution (i.e. combustion of fossil fuels) are also sources of CO2 emissions and other short-lived climate pollutants, such as as ozone and black carbon that greatly contribute to climate change, and affect human health.

  18. (PDF) Air Pollution and Environmental Health

    This book brings together the latest technologies used in air quality. assessment and monitoring of pollutants. Highlights mathematical model for air quality assessment. Elucidates the impact of ...

  19. Air pollution data portal

    From smog hanging over cities to smoke inside the home, air pollution poses a major threat to health across the globe. Almost all of the global population (99%) are exposed to air pollution levels that put them at increased risk for diseases including heart disease, stroke, chronic obstructive pulmonary disease, cancer and pneumonia.  WHO monitors the exposure  levels and health ...

  20. Air pollution and health risks due to vehicle traffic

    Factors influencing mobile source particulate matter emissions-to-exposure relationships in the Boston urban area. Environ Sci Technol. 2007; 41:7675-82. [Google Scholar] Health effects institute. [Accessed on March 10, 2009]; Traffic-related air pollution: a critical review of the literature on emissions, exposure, and health effects.

  21. Thesis Statement On Air Pollution

    Thesis statement (2 marks): There are many causes that leads to the haze problem such as open burning on the large scales, the increasing number of vehicles and uncontrolled industrial activity. II. Body A. Topic sentence (2marks): Wide scales in uncontrolled outdoor fires activities, has caused the haze problem become worst. 1.

  22. Thesis statement air pollution is cause by many factors.. cause

    Thesis statement air pollution is cause by many factors.. - 15556339. answered Thesis statement air pollution is cause by many factors.. cause factory gas emissions no regular checks location of factories lack of goverment control See answer Advertisement

  23. Cause and Effect Essay.

    Presentation transcript: 1 Cause and Effect Essay. 2 OverviewThe aim is to explain the causes (reasons) or the effects (results) of an event or situation.e.g. Causes of air pollution (multiple factors leading to air pollution)e.g. Effects of watching too much TV (many effects of a situation) Sometimes an event causes something to happen, and ...