• Privacy Policy

Research Method

Home » 500+ Quantitative Research Titles and Topics

500+ Quantitative Research Titles and Topics

Table of Contents

Quantitative Research Topics

Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology , economics , and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas to explore, from analyzing data on a specific population to studying the effects of a particular intervention or treatment. In this post, we will provide some ideas for quantitative research topics that may inspire you and help you narrow down your interests.

Quantitative Research Titles

Quantitative Research Titles are as follows:

Business and Economics

  • “Statistical Analysis of Supply Chain Disruptions on Retail Sales”
  • “Quantitative Examination of Consumer Loyalty Programs in the Fast Food Industry”
  • “Predicting Stock Market Trends Using Machine Learning Algorithms”
  • “Influence of Workplace Environment on Employee Productivity: A Quantitative Study”
  • “Impact of Economic Policies on Small Businesses: A Regression Analysis”
  • “Customer Satisfaction and Profit Margins: A Quantitative Correlation Study”
  • “Analyzing the Role of Marketing in Brand Recognition: A Statistical Overview”
  • “Quantitative Effects of Corporate Social Responsibility on Consumer Trust”
  • “Price Elasticity of Demand for Luxury Goods: A Case Study”
  • “The Relationship Between Fiscal Policy and Inflation Rates: A Time-Series Analysis”
  • “Factors Influencing E-commerce Conversion Rates: A Quantitative Exploration”
  • “Examining the Correlation Between Interest Rates and Consumer Spending”
  • “Standardized Testing and Academic Performance: A Quantitative Evaluation”
  • “Teaching Strategies and Student Learning Outcomes in Secondary Schools: A Quantitative Study”
  • “The Relationship Between Extracurricular Activities and Academic Success”
  • “Influence of Parental Involvement on Children’s Educational Achievements”
  • “Digital Literacy in Primary Schools: A Quantitative Assessment”
  • “Learning Outcomes in Blended vs. Traditional Classrooms: A Comparative Analysis”
  • “Correlation Between Teacher Experience and Student Success Rates”
  • “Analyzing the Impact of Classroom Technology on Reading Comprehension”
  • “Gender Differences in STEM Fields: A Quantitative Analysis of Enrollment Data”
  • “The Relationship Between Homework Load and Academic Burnout”
  • “Assessment of Special Education Programs in Public Schools”
  • “Role of Peer Tutoring in Improving Academic Performance: A Quantitative Study”

Medicine and Health Sciences

  • “The Impact of Sleep Duration on Cardiovascular Health: A Cross-sectional Study”
  • “Analyzing the Efficacy of Various Antidepressants: A Meta-Analysis”
  • “Patient Satisfaction in Telehealth Services: A Quantitative Assessment”
  • “Dietary Habits and Incidence of Heart Disease: A Quantitative Review”
  • “Correlations Between Stress Levels and Immune System Functioning”
  • “Smoking and Lung Function: A Quantitative Analysis”
  • “Influence of Physical Activity on Mental Health in Older Adults”
  • “Antibiotic Resistance Patterns in Community Hospitals: A Quantitative Study”
  • “The Efficacy of Vaccination Programs in Controlling Disease Spread: A Time-Series Analysis”
  • “Role of Social Determinants in Health Outcomes: A Quantitative Exploration”
  • “Impact of Hospital Design on Patient Recovery Rates”
  • “Quantitative Analysis of Dietary Choices and Obesity Rates in Children”

Social Sciences

  • “Examining Social Inequality through Wage Distribution: A Quantitative Study”
  • “Impact of Parental Divorce on Child Development: A Longitudinal Study”
  • “Social Media and its Effect on Political Polarization: A Quantitative Analysis”
  • “The Relationship Between Religion and Social Attitudes: A Statistical Overview”
  • “Influence of Socioeconomic Status on Educational Achievement”
  • “Quantifying the Effects of Community Programs on Crime Reduction”
  • “Public Opinion and Immigration Policies: A Quantitative Exploration”
  • “Analyzing the Gender Representation in Political Offices: A Quantitative Study”
  • “Impact of Mass Media on Public Opinion: A Regression Analysis”
  • “Influence of Urban Design on Social Interactions in Communities”
  • “The Role of Social Support in Mental Health Outcomes: A Quantitative Analysis”
  • “Examining the Relationship Between Substance Abuse and Employment Status”

Engineering and Technology

  • “Performance Evaluation of Different Machine Learning Algorithms in Autonomous Vehicles”
  • “Material Science: A Quantitative Analysis of Stress-Strain Properties in Various Alloys”
  • “Impacts of Data Center Cooling Solutions on Energy Consumption”
  • “Analyzing the Reliability of Renewable Energy Sources in Grid Management”
  • “Optimization of 5G Network Performance: A Quantitative Assessment”
  • “Quantifying the Effects of Aerodynamics on Fuel Efficiency in Commercial Airplanes”
  • “The Relationship Between Software Complexity and Bug Frequency”
  • “Machine Learning in Predictive Maintenance: A Quantitative Analysis”
  • “Wearable Technologies and their Impact on Healthcare Monitoring”
  • “Quantitative Assessment of Cybersecurity Measures in Financial Institutions”
  • “Analysis of Noise Pollution from Urban Transportation Systems”
  • “The Influence of Architectural Design on Energy Efficiency in Buildings”

Quantitative Research Topics

Quantitative Research Topics are as follows:

  • The effects of social media on self-esteem among teenagers.
  • A comparative study of academic achievement among students of single-sex and co-educational schools.
  • The impact of gender on leadership styles in the workplace.
  • The correlation between parental involvement and academic performance of students.
  • The effect of mindfulness meditation on stress levels in college students.
  • The relationship between employee motivation and job satisfaction.
  • The effectiveness of online learning compared to traditional classroom learning.
  • The correlation between sleep duration and academic performance among college students.
  • The impact of exercise on mental health among adults.
  • The relationship between social support and psychological well-being among cancer patients.
  • The effect of caffeine consumption on sleep quality.
  • A comparative study of the effectiveness of cognitive-behavioral therapy and pharmacotherapy in treating depression.
  • The relationship between physical attractiveness and job opportunities.
  • The correlation between smartphone addiction and academic performance among high school students.
  • The impact of music on memory recall among adults.
  • The effectiveness of parental control software in limiting children’s online activity.
  • The relationship between social media use and body image dissatisfaction among young adults.
  • The correlation between academic achievement and parental involvement among minority students.
  • The impact of early childhood education on academic performance in later years.
  • The effectiveness of employee training and development programs in improving organizational performance.
  • The relationship between socioeconomic status and access to healthcare services.
  • The correlation between social support and academic achievement among college students.
  • The impact of technology on communication skills among children.
  • The effectiveness of mindfulness-based stress reduction programs in reducing symptoms of anxiety and depression.
  • The relationship between employee turnover and organizational culture.
  • The correlation between job satisfaction and employee engagement.
  • The impact of video game violence on aggressive behavior among children.
  • The effectiveness of nutritional education in promoting healthy eating habits among adolescents.
  • The relationship between bullying and academic performance among middle school students.
  • The correlation between teacher expectations and student achievement.
  • The impact of gender stereotypes on career choices among high school students.
  • The effectiveness of anger management programs in reducing violent behavior.
  • The relationship between social support and recovery from substance abuse.
  • The correlation between parent-child communication and adolescent drug use.
  • The impact of technology on family relationships.
  • The effectiveness of smoking cessation programs in promoting long-term abstinence.
  • The relationship between personality traits and academic achievement.
  • The correlation between stress and job performance among healthcare professionals.
  • The impact of online privacy concerns on social media use.
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders.
  • The relationship between teacher feedback and student motivation.
  • The correlation between physical activity and academic performance among elementary school students.
  • The impact of parental divorce on academic achievement among children.
  • The effectiveness of diversity training in improving workplace relationships.
  • The relationship between childhood trauma and adult mental health.
  • The correlation between parental involvement and substance abuse among adolescents.
  • The impact of social media use on romantic relationships among young adults.
  • The effectiveness of assertiveness training in improving communication skills.
  • The relationship between parental expectations and academic achievement among high school students.
  • The correlation between sleep quality and mood among adults.
  • The impact of video game addiction on academic performance among college students.
  • The effectiveness of group therapy in treating eating disorders.
  • The relationship between job stress and job performance among teachers.
  • The correlation between mindfulness and emotional regulation.
  • The impact of social media use on self-esteem among college students.
  • The effectiveness of parent-teacher communication in promoting academic achievement among elementary school students.
  • The impact of renewable energy policies on carbon emissions
  • The relationship between employee motivation and job performance
  • The effectiveness of psychotherapy in treating eating disorders
  • The correlation between physical activity and cognitive function in older adults
  • The effect of childhood poverty on adult health outcomes
  • The impact of urbanization on biodiversity conservation
  • The relationship between work-life balance and employee job satisfaction
  • The effectiveness of eye movement desensitization and reprocessing (EMDR) in treating trauma
  • The correlation between parenting styles and child behavior
  • The effect of social media on political polarization
  • The impact of foreign aid on economic development
  • The relationship between workplace diversity and organizational performance
  • The effectiveness of dialectical behavior therapy in treating borderline personality disorder
  • The correlation between childhood abuse and adult mental health outcomes
  • The effect of sleep deprivation on cognitive function
  • The impact of trade policies on international trade and economic growth
  • The relationship between employee engagement and organizational commitment
  • The effectiveness of cognitive therapy in treating postpartum depression
  • The correlation between family meals and child obesity rates
  • The effect of parental involvement in sports on child athletic performance
  • The impact of social entrepreneurship on sustainable development
  • The relationship between emotional labor and job burnout
  • The effectiveness of art therapy in treating dementia
  • The correlation between social media use and academic procrastination
  • The effect of poverty on childhood educational attainment
  • The impact of urban green spaces on mental health
  • The relationship between job insecurity and employee well-being
  • The effectiveness of virtual reality exposure therapy in treating anxiety disorders
  • The correlation between childhood trauma and substance abuse
  • The effect of screen time on children’s social skills
  • The impact of trade unions on employee job satisfaction
  • The relationship between cultural intelligence and cross-cultural communication
  • The effectiveness of acceptance and commitment therapy in treating chronic pain
  • The correlation between childhood obesity and adult health outcomes
  • The effect of gender diversity on corporate performance
  • The impact of environmental regulations on industry competitiveness.
  • The impact of renewable energy policies on greenhouse gas emissions
  • The relationship between workplace diversity and team performance
  • The effectiveness of group therapy in treating substance abuse
  • The correlation between parental involvement and social skills in early childhood
  • The effect of technology use on sleep patterns
  • The impact of government regulations on small business growth
  • The relationship between job satisfaction and employee turnover
  • The effectiveness of virtual reality therapy in treating anxiety disorders
  • The correlation between parental involvement and academic motivation in adolescents
  • The effect of social media on political engagement
  • The impact of urbanization on mental health
  • The relationship between corporate social responsibility and consumer trust
  • The correlation between early childhood education and social-emotional development
  • The effect of screen time on cognitive development in young children
  • The impact of trade policies on global economic growth
  • The relationship between workplace diversity and innovation
  • The effectiveness of family therapy in treating eating disorders
  • The correlation between parental involvement and college persistence
  • The effect of social media on body image and self-esteem
  • The impact of environmental regulations on business competitiveness
  • The relationship between job autonomy and job satisfaction
  • The effectiveness of virtual reality therapy in treating phobias
  • The correlation between parental involvement and academic achievement in college
  • The effect of social media on sleep quality
  • The impact of immigration policies on social integration
  • The relationship between workplace diversity and employee well-being
  • The effectiveness of psychodynamic therapy in treating personality disorders
  • The correlation between early childhood education and executive function skills
  • The effect of parental involvement on STEM education outcomes
  • The impact of trade policies on domestic employment rates
  • The relationship between job insecurity and mental health
  • The effectiveness of exposure therapy in treating PTSD
  • The correlation between parental involvement and social mobility
  • The effect of social media on intergroup relations
  • The impact of urbanization on air pollution and respiratory health.
  • The relationship between emotional intelligence and leadership effectiveness
  • The effectiveness of cognitive-behavioral therapy in treating depression
  • The correlation between early childhood education and language development
  • The effect of parental involvement on academic achievement in STEM fields
  • The impact of trade policies on income inequality
  • The relationship between workplace diversity and customer satisfaction
  • The effectiveness of mindfulness-based therapy in treating anxiety disorders
  • The correlation between parental involvement and civic engagement in adolescents
  • The effect of social media on mental health among teenagers
  • The impact of public transportation policies on traffic congestion
  • The relationship between job stress and job performance
  • The effectiveness of group therapy in treating depression
  • The correlation between early childhood education and cognitive development
  • The effect of parental involvement on academic motivation in college
  • The impact of environmental regulations on energy consumption
  • The relationship between workplace diversity and employee engagement
  • The effectiveness of art therapy in treating PTSD
  • The correlation between parental involvement and academic success in vocational education
  • The effect of social media on academic achievement in college
  • The impact of tax policies on economic growth
  • The relationship between job flexibility and work-life balance
  • The effectiveness of acceptance and commitment therapy in treating anxiety disorders
  • The correlation between early childhood education and social competence
  • The effect of parental involvement on career readiness in high school
  • The impact of immigration policies on crime rates
  • The relationship between workplace diversity and employee retention
  • The effectiveness of play therapy in treating trauma
  • The correlation between parental involvement and academic success in online learning
  • The effect of social media on body dissatisfaction among women
  • The impact of urbanization on public health infrastructure
  • The relationship between job satisfaction and job performance
  • The effectiveness of eye movement desensitization and reprocessing therapy in treating PTSD
  • The correlation between early childhood education and social skills in adolescence
  • The effect of parental involvement on academic achievement in the arts
  • The impact of trade policies on foreign investment
  • The relationship between workplace diversity and decision-making
  • The effectiveness of exposure and response prevention therapy in treating OCD
  • The correlation between parental involvement and academic success in special education
  • The impact of zoning laws on affordable housing
  • The relationship between job design and employee motivation
  • The effectiveness of cognitive rehabilitation therapy in treating traumatic brain injury
  • The correlation between early childhood education and social-emotional learning
  • The effect of parental involvement on academic achievement in foreign language learning
  • The impact of trade policies on the environment
  • The relationship between workplace diversity and creativity
  • The effectiveness of emotion-focused therapy in treating relationship problems
  • The correlation between parental involvement and academic success in music education
  • The effect of social media on interpersonal communication skills
  • The impact of public health campaigns on health behaviors
  • The relationship between job resources and job stress
  • The effectiveness of equine therapy in treating substance abuse
  • The correlation between early childhood education and self-regulation
  • The effect of parental involvement on academic achievement in physical education
  • The impact of immigration policies on cultural assimilation
  • The relationship between workplace diversity and conflict resolution
  • The effectiveness of schema therapy in treating personality disorders
  • The correlation between parental involvement and academic success in career and technical education
  • The effect of social media on trust in government institutions
  • The impact of urbanization on public transportation systems
  • The relationship between job demands and job stress
  • The correlation between early childhood education and executive functioning
  • The effect of parental involvement on academic achievement in computer science
  • The effectiveness of cognitive processing therapy in treating PTSD
  • The correlation between parental involvement and academic success in homeschooling
  • The effect of social media on cyberbullying behavior
  • The impact of urbanization on air quality
  • The effectiveness of dance therapy in treating anxiety disorders
  • The correlation between early childhood education and math achievement
  • The effect of parental involvement on academic achievement in health education
  • The impact of global warming on agriculture
  • The effectiveness of narrative therapy in treating depression
  • The correlation between parental involvement and academic success in character education
  • The effect of social media on political participation
  • The impact of technology on job displacement
  • The relationship between job resources and job satisfaction
  • The effectiveness of art therapy in treating addiction
  • The correlation between early childhood education and reading comprehension
  • The effect of parental involvement on academic achievement in environmental education
  • The impact of income inequality on social mobility
  • The relationship between workplace diversity and organizational culture
  • The effectiveness of solution-focused brief therapy in treating anxiety disorders
  • The correlation between parental involvement and academic success in physical therapy education
  • The effect of social media on misinformation
  • The impact of green energy policies on economic growth
  • The relationship between job demands and employee well-being
  • The correlation between early childhood education and science achievement
  • The effect of parental involvement on academic achievement in religious education
  • The impact of gender diversity on corporate governance
  • The relationship between workplace diversity and ethical decision-making
  • The correlation between parental involvement and academic success in dental hygiene education
  • The effect of social media on self-esteem among adolescents
  • The impact of renewable energy policies on energy security
  • The effect of parental involvement on academic achievement in social studies
  • The impact of trade policies on job growth
  • The relationship between workplace diversity and leadership styles
  • The correlation between parental involvement and academic success in online vocational training
  • The effect of social media on self-esteem among men
  • The impact of urbanization on air pollution levels
  • The effectiveness of music therapy in treating depression
  • The correlation between early childhood education and math skills
  • The effect of parental involvement on academic achievement in language arts
  • The impact of immigration policies on labor market outcomes
  • The effectiveness of hypnotherapy in treating phobias
  • The effect of social media on political engagement among young adults
  • The impact of urbanization on access to green spaces
  • The relationship between job crafting and job satisfaction
  • The effectiveness of exposure therapy in treating specific phobias
  • The correlation between early childhood education and spatial reasoning
  • The effect of parental involvement on academic achievement in business education
  • The impact of trade policies on economic inequality
  • The effectiveness of narrative therapy in treating PTSD
  • The correlation between parental involvement and academic success in nursing education
  • The effect of social media on sleep quality among adolescents
  • The impact of urbanization on crime rates
  • The relationship between job insecurity and turnover intentions
  • The effectiveness of pet therapy in treating anxiety disorders
  • The correlation between early childhood education and STEM skills
  • The effect of parental involvement on academic achievement in culinary education
  • The impact of immigration policies on housing affordability
  • The relationship between workplace diversity and employee satisfaction
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The correlation between parental involvement and academic success in art education
  • The effect of social media on academic procrastination among college students
  • The impact of urbanization on public safety services.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

77 interesting medical research topics for 2024

Last updated

25 November 2023

Reviewed by

Brittany Ferri, PhD, OTR/L

Medical research is the gateway to improved patient care and expanding our available treatment options. However, finding a relevant and compelling research topic can be challenging.

Use this article as a jumping-off point to select an interesting medical research topic for your next paper or clinical study.

  • How to choose a medical research topic

When choosing a research topic , it’s essential to consider a couple of things. What topics interest you? What unanswered questions do you want to address? 

During the decision-making and brainstorming process, here are a few helpful tips to help you pick the right medical research topic:

Focus on a particular field of study

The best medical research is specific to a particular area. Generalized studies are often too broad to produce meaningful results, so we advise picking a specific niche early in the process. 

Maybe a certain topic interests you, or your industry knowledge reveals areas of need.

Look into commonly researched topics

Once you’ve chosen your research field, do some preliminary research. What have other academics done in their papers and projects? 

From this list, you can focus on specific topics that interest you without accidentally creating a copycat project. This groundwork will also help you uncover any literature gaps—those may be beneficial areas for research.

Get curious and ask questions

Now you can get curious. Ask questions that start with why, how, or what. These questions are the starting point of your project design and will act as your guiding light throughout the process. 

For example: 

What impact does pollution have on children’s lung function in inner-city neighborhoods? 

Why is pollution-based asthma on the rise? 

How can we address pollution-induced asthma in young children? 

  • 77 medical research topics worth exploring in 2023

Need some research inspiration for your upcoming paper or clinical study? We’ve compiled a list of 77 topical and in-demand medical research ideas. Let’s take a look. 

  • Exciting new medical research topics

If you want to study cutting-edge topics, here are some exciting options:

COVID-19 and long COVID symptoms

Since 2020, COVID-19 has been a hot-button topic in medicine, along with the long-term symptoms in those with a history of COVID-19. 

Examples of COVID-19-related research topics worth exploring include:

The long-term impact of COVID-19 on cardiac and respiratory health

COVID-19 vaccination rates

The evolution of COVID-19 symptoms over time

New variants and strains of the COVID-19 virus

Changes in social behavior and public health regulations amid COVID-19

Vaccinations

Finding ways to cure or reduce the disease burden of chronic infectious diseases is a crucial research area. Vaccination is a powerful option and a great topic to research. 

Examples of vaccination-related research topics include:

mRNA vaccines for viral infections

Biomaterial vaccination capabilities

Vaccination rates based on location, ethnicity, or age

Public opinion about vaccination safety 

Artificial tissues fabrication

With the need for donor organs increasing, finding ways to fabricate artificial bioactive tissues (and possibly organs) is a popular research area. 

Examples of artificial tissue-related research topics you can study include:

The viability of artificially printed tissues

Tissue substrate and building block material studies

The ethics and efficacy of artificial tissue creation

  • Medical research topics for medical students

For many medical students, research is a big driver for entering healthcare. If you’re a medical student looking for a research topic, here are some great ideas to work from:

Sleep disorders

Poor sleep quality is a growing problem, and it can significantly impact a person’s overall health. 

Examples of sleep disorder-related research topics include:

How stress affects sleep quality

The prevalence and impact of insomnia on patients with mental health conditions

Possible triggers for sleep disorder development

The impact of poor sleep quality on psychological and physical health

How melatonin supplements impact sleep quality

Alzheimer’s and dementia 

Cognitive conditions like dementia and Alzheimer’s disease are on the rise worldwide. They currently have no cure. As a result, research about these topics is in high demand. 

Examples of dementia-related research topics you could explore include:

The prevalence of Alzheimer’s disease in a chosen population

Early onset symptoms of dementia

Possible triggers or causes of cognitive decline with age

Treatment options for dementia-like conditions

The mental and physical burden of caregiving for patients with dementia

  • Lifestyle habits and public health

Modern lifestyles have profoundly impacted the average person’s daily habits, and plenty of interesting topics explore its effects. 

Examples of lifestyle and public health-related research topics include:

The nutritional intake of college students

The impact of chronic work stress on overall health

The rise of upper back and neck pain from laptop use

Prevalence and cause of repetitive strain injuries (RSI)

  • Controversial medical research paper topics

Medical research is a hotbed of controversial topics, content, and areas of study. 

If you want to explore a more niche (and attention-grabbing) concept, here are some controversial medical research topics worth looking into:

The benefits and risks of medical cannabis

Depending on where you live, the legalization and use of cannabis for medical conditions is controversial for the general public and healthcare providers.

Examples of medical cannabis-related research topics that might grab your attention include:

The legalization process of medical cannabis

The impact of cannabis use on developmental milestones in youth users

Cannabis and mental health diagnoses

CBD’s impact on chronic pain

Prevalence of cannabis use in young people

The impact of maternal cannabis use on fetal development 

Understanding how THC impacts cognitive function

Human genetics

The Human Genome Project identified, mapped, and sequenced all human DNA genes. Its completion in 2003 opened up a world of exciting and controversial studies in human genetics.

Examples of human genetics-related research topics worth delving into include:

Medical genetics and the incidence of genetic-based health disorders

Behavioral genetics differences between identical twins

Genetic risk factors for neurodegenerative disorders

Machine learning technologies for genetic research

Sexual health studies

Human sexuality and sexual health are important (yet often stigmatized) medical topics that need new research and analysis.

As a diverse field ranging from sexual orientation studies to sexual pathophysiology, examples of sexual health-related research topics include:

The incidence of sexually transmitted infections within a chosen population

Mental health conditions within the LGBTQIA+ community

The impact of untreated sexually transmitted infections

Access to safe sex resources (condoms, dental dams, etc.) in rural areas

  • Health and wellness research topics

Human wellness and health are trendy topics in modern medicine as more people are interested in finding natural ways to live healthier lifestyles. 

If this field of study interests you, here are some big topics in the wellness space:

Gluten sensitivity

Gluten allergies and intolerances have risen over the past few decades. If you’re interested in exploring this topic, your options range in severity from mild gastrointestinal symptoms to full-blown anaphylaxis. 

Some examples of gluten sensitivity-related research topics include:

The pathophysiology and incidence of Celiac disease

Early onset symptoms of gluten intolerance

The prevalence of gluten allergies within a set population

Gluten allergies and the incidence of other gastrointestinal health conditions

Pollution and lung health

Living in large urban cities means regular exposure to high levels of pollutants. 

As more people become interested in protecting their lung health, examples of impactful lung health and pollution-related research topics include:

The extent of pollution in densely packed urban areas

The prevalence of pollution-based asthma in a set population

Lung capacity and function in young people

The benefits and risks of steroid therapy for asthma

Pollution risks based on geographical location

Plant-based diets

Plant-based diets like vegan and paleo diets are emerging trends in healthcare due to their limited supporting research. 

If you’re interested in learning more about the potential benefits or risks of holistic, diet-based medicine, examples of plant-based diet research topics to explore include:

Vegan and plant-based diets as part of disease management

Potential risks and benefits of specific plant-based diets

Plant-based diets and their impact on body mass index

The effect of diet and lifestyle on chronic disease management

Health supplements

Supplements are a multi-billion dollar industry. Many health-conscious people take supplements, including vitamins, minerals, herbal medicine, and more. 

Examples of health supplement-related research topics worth investigating include:

Omega-3 fish oil safety and efficacy for cardiac patients

The benefits and risks of regular vitamin D supplementation

Health supplementation regulation and product quality

The impact of social influencer marketing on consumer supplement practices

Analyzing added ingredients in protein powders

  • Healthcare research topics

Working within the healthcare industry means you have insider knowledge and opportunity. Maybe you’d like to research the overall system, administration, and inherent biases that disrupt access to quality care. 

While these topics are essential to explore, it is important to note that these studies usually require approval and oversight from an Institutional Review Board (IRB). This ensures the study is ethical and does not harm any subjects. 

For this reason, the IRB sets protocols that require additional planning, so consider this when mapping out your study’s timeline. 

Here are some examples of trending healthcare research areas worth pursuing:

The pros and cons of electronic health records

The rise of electronic healthcare charting and records has forever changed how medical professionals and patients interact with their health data. 

Examples of electronic health record-related research topics include:

The number of medication errors reported during a software switch

Nurse sentiment analysis of electronic charting practices

Ethical and legal studies into encrypting and storing personal health data

Inequities within healthcare access

Many barriers inhibit people from accessing the quality medical care they need. These issues result in health disparities and injustices. 

Examples of research topics about health inequities include:

The impact of social determinants of health in a set population

Early and late-stage cancer stage diagnosis in urban vs. rural populations

Affordability of life-saving medications

Health insurance limitations and their impact on overall health

Diagnostic and treatment rates across ethnicities

People who belong to an ethnic minority are more likely to experience barriers and restrictions when trying to receive quality medical care. This is due to systemic healthcare racism and bias. 

As a result, diagnostic and treatment rates in minority populations are a hot-button field of research. Examples of ethnicity-based research topics include:

Cancer biopsy rates in BIPOC women

The prevalence of diabetes in Indigenous communities

Access inequalities in women’s health preventative screenings

The prevalence of undiagnosed hypertension in Black populations

  • Pharmaceutical research topics

Large pharmaceutical companies are incredibly interested in investing in research to learn more about potential cures and treatments for diseases. 

If you’re interested in building a career in pharmaceutical research, here are a few examples of in-demand research topics:

Cancer treatment options

Clinical research is in high demand as pharmaceutical companies explore novel cancer treatment options outside of chemotherapy and radiation. 

Examples of cancer treatment-related research topics include:

Stem cell therapy for cancer

Oncogenic gene dysregulation and its impact on disease

Cancer-causing viral agents and their risks

Treatment efficacy based on early vs. late-stage cancer diagnosis

Cancer vaccines and targeted therapies

Immunotherapy for cancer

Pain medication alternatives

Historically, opioid medications were the primary treatment for short- and long-term pain. But, with the opioid epidemic getting worse, the need for alternative pain medications has never been more urgent. 

Examples of pain medication-related research topics include:

Opioid withdrawal symptoms and risks

Early signs of pain medication misuse

Anti-inflammatory medications for pain control

  • Identify trends in your medical research with Dovetail

Are you interested in contributing life-changing research? Today’s medical research is part of the future of clinical patient care. 

As your go-to resource for speedy and accurate data analysis , we are proud to partner with healthcare researchers to innovate and improve the future of healthcare.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 11 January 2024

Last updated: 15 January 2024

Last updated: 17 January 2024

Last updated: 25 November 2023

Last updated: 12 May 2023

Last updated: 30 April 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next.

medicine research topics quantitative

Users report unexpectedly high data usage, especially during streaming sessions.

medicine research topics quantitative

Users find it hard to navigate from the home page to relevant playlists in the app.

medicine research topics quantitative

It would be great to have a sleep timer feature, especially for bedtime listening.

medicine research topics quantitative

I need better filters to find the songs or artists I’m looking for.

Log in or sign up

Get started for free

Explore the Best Medical and Health Research Topics Ideas

image

Table of contents

  • 1 How to Choose Medical Research Paper Topics
  • 2 New Medical Research Paper Topics
  • 3 Medical Research Topics for College Students
  • 4 Controversial Medical Topics for Research Paper
  • 5 Health Research Topics
  • 6 Medicine Research Topics
  • 7 Healthcare Research Topics
  • 8 Public Health Research Topics
  • 9 Mental Health Research Paper Topics
  • 10 Anatomy Research Topics
  • 11 Biomedical Research Topics
  • 12 Bioethics Research Topics
  • 13 Cancer Research Topics
  • 14 Clinical Research Topics
  • 15 Critical Care Research Topics
  • 16 Pediatric Research Topics
  • 17 Dental Research Topics Ideas
  • 18 Dermatology Research Topics
  • 19 Primary Care Research Topics
  • 20 Pharmaceutical Research Topics
  • 21 Medical Anthropology Research Topics
  • 22 Paramedic Research Paper Topics
  • 23 Surgery Research Topics
  • 24 Radiology Research Paper Topics
  • 25 Anatomy and Physiology Research Paper Topics
  • 26 Healthcare Management Research Paper Topics
  • 27 Medical Ethics Research Paper Topics
  • 28 Conclusion

In such a complex and broad field as medicine, writing an original and compelling research paper is a daunting task. From investigating public care concerns to cancer treatment studies, each student decides where his interests lie. Our goal is to help students find new angles to study and focus on relevant topics. With our resources, you can write an engaging and rigorous paper.

How to Choose Medical Research Paper Topics

Choosing good research paper topics is often more challenging than the writing process itself. You need to select a captivating subject matter that will grab the reader’s attention, showcase your knowledge of a specific field, help you progress in your studies, and perhaps even inspire future research.

To accomplish that, you need to start with brainstorming, followed by thorough research. Here are some great tips to follow:

  • Pick an interesting topic – The key is to pick something that you find interesting, and yet make sure it’s not too general or too narrow. It should allow you to delve deep into the subject matter and show that you’re a professional who is ready to take on a challenge when it comes to your chosen field of medicine.
  • Narrow down your focus – Once you have a list of potential topics, sift through recent medical research papers to get up-to-date with the latest trends, developments, and issues in medicine and healthcare. Check out textbooks, news articles, and other relevant sources for more information related to your potential topics. If a particular condition or disease interests you (perhaps something that drew you to a career in medicine), there’s your cue for narrowing down your topic.
  • Pinpoint the “why,” “how,” and “what” – Whether you are looking into nutrition research paper topics , controversial medical topics, nursing research topics, or anything in-between, ask yourself why each of them is important. How could they contribute to the available medical studies, if any? What new information could they bring to improve the future of medicine? Asking these questions will help you pick the right medical research paper topic that suits you and helps you move forward and reach your aspirations.

To help you on that quest, we’ve compiled a list of topics that you could use or that might inspire you to come up with something unique. Let’s dive in.

New Medical Research Paper Topics

Are you interested in the newest and most interesting developments in medicine? We put hours of effort into identifying the current trends in health research so we could provide you with these examples of topics. Whether you hire a research paper writing service for students or write a paper by yourself, you need an appealing topic to focus on.

  • Epidemics versus pandemics
  • Child health care
  • Medical humanitarian missions in the developing world
  • Homoeopathic medicines – the placebo effect
  • Virus infections – causes and treatment
  • Is medical research on animals ethical
  • Vaccination – dangers versus benefits
  • Artificial tissues and organs
  • Rare genetic diseases
  • Brain injuries

Medical Research Topics for College Students

You don’t know where to start with your medical research paper? There are so many things you could write about that the greatest challenge is to narrow them down. This is why we decided to help.

  • Antibiotics treatments
  • Chronic diseases
  • Palliative treatment
  • Battling Alzheimer’s disease
  • How modern lifestyle affects public health
  • Professional diseases
  • Sleep disorders
  • Changes in physical and mental health due to aging
  • Eating disorders
  • Terminal diseases

Controversial Medical Topics for Research Paper

In healthcare, new discoveries can change people’s lives in the blink of an eye. This is also the reason why there are so many controversial topics in medicine, which involve anything from religion to ethics or social responsibility. Read on to discover our top controversial research topics.

  • Implementing food standards
  • Gluten allergy
  • Assisted suicide for terminal patients
  • Testing vaccines on animals – ethical concerns
  • Moral responsibilities regarding cloning
  • Marijuana legalization for medical purposes
  • Abortion – medical approaches
  • Vegan diets – benefits and dangers
  • Increased life expectancy: a burden on the healthcare system?
  • Circumcision effects

Health Research Topics

Students conducting health research struggle with finding good ideas related to their medical interests. If you want to write interesting college papers, you can select a good topic for our list.

  • How environmental changes affect human health
  • Deafness: communication disorders
  • Household air pollution
  • Diabetes – a public danger
  • Coronaviruses
  • Oral health assessment
  • Tobacco and alcohol control
  • Diseases caused by lack of physical exercise
  • How urban pollution affects respiratory diseases
  • Healthy diets

Medicine Research Topics

Regardless of the requirements in your research assignment, you can write about something that is both engaging and useful in your future career. Choose a topic from below.

  • Causes for the increasing cancer cases
  • Insulin resistance
  • How terrorism affects mental health
  • AIDS/HIV – latest developments
  • Treating pregnant women versus non-pregnant women
  • Latest innovations in medical instruments
  • Genetic engineering
  • Successful treatment of mental diseases
  • Is autism a disease
  • Natural coma versus artificial coma

Healthcare Research Topics

Healthcare research includes political and social aspects, besides medical. For college students who want to explore how medicine is affected by society’s values or principles, we provide examples of topics for papers. Select yours from the list below.

  • Government investment in healthcare services in the EU versus the USA
  • Inequalities in healthcare assistance and services
  • Electronic health records systems – pros and cons
  • Can asylums treat mental issues
  • Health care for prison inmates
  • Equipment for improving treatment of AIDS
  • Correlation between economic development and health care services across countries
  • Impact of smoking on organs
  • Heart attacks – causes and effects
  • Breast cancer – recent developments

Public Health Research Topics

For current examples of public health topics, browse our list. We provide only original, researchable examples for which you can easily find supporting data and evidence.

  • Public versus private hospitals
  • Health care professionals – management principles
  • Surgery failures – who is responsible
  • What legal responsibilities has the hospital administration
  • Patient service quality in public versus private hospitals
  • What benefits national health care systems have
  • Estimated costs of cancer treatments
  • Public health in developing countries
  • Banning tobacco ads – importance for public health
  • Government solutions to the anti-vaccine’s movement

Mental Health Research Paper Topics

Mental health is one of the most complex areas of medicine, where things are never as clear as with other medical issues. This increases the research potential of the field with plenty of topics left for debate.

  • Causes of anxiety disorders
  • Bulimia versus anorexia
  • Childhood trauma
  • Mental health public policies
  • Postpartum Depression
  • Posttraumatic Stress Disorder
  • Seasonal Affective Disorder
  • Schizophrenia

Anatomy Research Topics

Anatomy covers everything about the human body and how it works. If you find that intriguing and want to pay for medical research paper, start by selecting a topic.

  • Chemotherapy: how it affects the body
  • Thyroid glands – functions in the body
  • Human endocrine system
  • Heart diseases
  • How does the human muscular system develop
  • Lymphatic system – importance
  • Investigating genetic diseases
  • Digestive system

Biomedical Research Topics

Biology and medicine often work together. For the newest changes in the biomedical field, check our topics.

  • Alzheimer’s disease – paths for treatment
  • Vaccines and drug development in the treatment of Ebola
  • Antibiotic resistance
  • Biological effects caused by aging
  • Air pollution effects on health
  • Infectious disease past versus present
  • Regenerative medicine
  • Biomedical diagnostics
  • Biomedical technology

Bioethics Research Topics

A controversial area of medicine, bioethics is where you get the chance to add personal input to a research topic and come up with new insights. You could consider these subjects.

  • Organ donation
  • Alternative or complementary medicine
  • Assisted suicide or the right to die
  • Artificial insemination or surrogacy
  • Chemical and biological warfare
  • Contraception
  • Environmental bioethics
  • In Vitro fertilization

Cancer Research Topics

Are you writing a paper related to cancer causes, diagnosis, treatment or effects? Look below for a hot topic that it’s easy to research and important for medical advance.

  • Ability of immune system cells to fight cancer
  • Computational oncology
  • Metastasis affected by drug resistance
  • Stem cells – applications for cancer treatment
  • Tumor microenvironment
  • Obesity and age in cancer occurrence
  • Early cancer detection – benefits
  • Artificial intelligence predicting cancer
  • Hematologic malignancies
  • Pathogen-related cancers

Clinical Research Topics

Learn more about clinical medicine by conducting more in-depth research. We prepared for you a list of relevant issues to touch upon.

  • Ethical concerns regarding research on human subjects
  • Subject recruitment
  • Budget preparation
  • Human subject protection
  • Clinical trials – financial support
  • Clinical practices for health professionals
  • Using vulnerable populations in clinical research
  • Quality assurance in clinical research
  • Academic clinical trials versus clinical trials units
  • Data collection and management

Critical Care Research Topics

Critical care is a key area in medical studies. Explore these topics in your research paper to gain more valuable knowledge in this field. You can also get in contact with nursing research paper writers .

  • Obesity and asthma – clinical manifestations
  • Chronic obstructive pulmonary disease
  • Rhythm analysis for cardiac arrest
  • Traumatic brain injury – fluid resuscitation
  • Hydrocortisone for multiple trauma patients
  • Care and nutrition for critically ill adults
  • Diagnosis of hypersensitivity pneumonitis
  • Coma and sedation scales
  • Artificial airways suctioning
  • Arterial puncture and arterial line

Pediatric Research Topics

Any topic that refers to health care for children, pregnant women, mothers, and adolescents goes under pediatric care.

  • Attention deficit hyperactivity disorder (ADHD)
  • Congenital heart disease in newborns
  • Adolescent medicine
  • Neonatal medicine
  • Rare diseases in children and teenagers
  • Obesity and weight fluctuations
  • Behavioral sleep problems in children
  • Children with anemia

Dental Research Topics Ideas

Choose a topic on oral health or dental care from this list of the most interesting topics in the field.

  • How smoking affects oral health
  • Children’s risk for dental caries
  • Dental anxiety
  • Types of dental materials – new advances
  • Bad breath bacteria
  • How diabetes affects oral health
  • Oral cancer
  • Dental pain – types, causes
  • Dental implants
  • Oral health-related quality of life

Dermatology Research Topics

Find the best research topic for your dermatology paper among our examples.

  • Atopic dermatitis
  • Contact dermatitis
  • Epidemiology behind uncommon skin disorders
  • Cutaneous aging
  • Risk factors of melanoma skin cancer
  • Acne versus rosacea
  • Genetic testing for skin conditions
  • Effects of cosmetic agents on skin health
  • Improving skin barrier with pharmaceutical agents
  • Skin manifestations of autoimmune disorders

Primary Care Research Topics

Write a primary care paper that can demonstrate your research skills and interest in powerful scientific findings.

  • Primary care for vulnerable/uninsured populations
  • Interpersonal continuity in care treatment
  • How primary care contributes to health systems
  • Primary care delivery models
  • Developments in family medicine
  • Occupational/environmental health
  • Pharmacotherapy approaches
  • Formal allergy testing
  • Oral contraception side effects
  • Dietary or behavioral interventions for obesity management

Pharmaceutical Research Topics

Pharma students who need paper topics can use one from our list. We include all things related to pharmacy life.

  • Drugs that can treat cancer
  • Drug excretion
  • Elimination rate constant
  • Inflammatory stress drug treatment
  • Aspirin poising
  • Ibuprofen – dangers versus benefits
  • Toxicodynamics
  • Opioid use disorder
  • Pharmacotherapy for schizophrenia
  • Ketamine in depression treatment

Medical Anthropology Research Topics

Medical anthropology unites different areas of human knowledge. Find powerful ideas for a paper below.

  • Cultural contexts regarding reproductive health
  • Women sexuality
  • Anthropological aspects of health care
  • Contributions of social sciences to public health
  • Euthanasia and medical ethics across cultures
  • Health-related behavior in adults across cultures
  • Transcultural nursing
  • Forensic psychiatry
  • Symptoms of Celiac Disease – a disease with no symptoms
  • Nursing ethics

Paramedic Research Paper Topics

Topics for paramedic research must be based on evidence, data, statistics, or practical experience. Just like ours.

  • Trends and statistics in EMS
  • Disaster medicine
  • Mass casualties
  • Pandemics and epidemics
  • Infection control
  • Basic versus advanced life support
  • Scene safety in EMS
  • Shock management
  • Motor vehicle accidents

Surgery Research Topics

Discover all the intricacies of surgeries that save lives by writing about our topics.

  • Medical malpractice and legal issues
  • Methicillin-resistant Staphylococcus aureus
  • Pain management
  • Perioperative nursing
  • Wound management
  • Colorectal cancer surgery
  • Breast cancer surgery
  • Minimally invasive surgeries
  • Vascular disease

Radiology Research Paper Topics

Find a radiology topic related to your academic interests to write a successful paper.

  • Using MRI to diagnose hepatic focal lesions
  • Multidetector computer tomography
  • Ultrasound elastography in breast cancer
  • Assessing traumatic spinal cord injuries with MRI diffusion tensor imaging
  • Sonographic imaging to detect male infertility
  • Role of tomography in diagnosing cancer
  • Brain tumor surgery with magnetic resonance imaging
  • Bacterial meningitis imaging

Anatomy and Physiology Research Paper Topics

Any ideas for a medical research paper? We have included the most important topics for an anatomy and physiology paper.

  • What role has the endocrine system
  • Staphylococcus aureus
  • Environmental factors that affect development of human muscular system
  • What role has the lymphatic system
  • An investigation of genetic diseases
  • Explaining the aging process
  • The digestive tract
  • Effects of stress on cells and muscles
  • Evolution of the human nervous system
  • What role has the cardiovascular system

Healthcare Management Research Paper Topics

There are numerous topics you could write about when it comes to healthcare management. There’s a wide range of options to pick, from infrastructure, staff, and financial management to HR and patient management. Here are some of the top healthcare management research paper options.

  • Medical talent acquisition and retention
  • Best methods for enhancing preventative care measures
  • The role of telemedicine in reinventing healthcare management
  • Patient care and the ability to pay for healthcare
  • Mid-level healthcare providers in the emergency department
  • The opioid crisis: policies and programs
  • Urgent care and walk-in clinics
  • Hospital emergency management plan during an epidemic
  • Hospital records management and patient privacy
  • Financial crises: challenges and opportunities

Medical Ethics Research Paper Topics

Medical ethics is a field that opens the door to numerous compelling topics for research papers. Here are some of the most appealing ones you could tackle.

  • Clinical research on humans
  • Vaccines and immunization
  • Religious beliefs in healthcare
  • Euthanasia and physician-assisted suicide
  • Ethical issues across cultures
  • Amniocentesis or prenatal birth defect testing
  • Medical malpractice and going back to work
  • Racial and ethnic preferences and perceptions in organ donations
  • Racial and ethnic disparities in healthcare
  • Ethical concerns of AI in healthcare

If you need further assistance with your medical research paper, PapersOwl is here for you. Our expert writers can provide you with top-notch research and help you write an impressive paper. Contact us anytime, pick your writer, tell them more about your topic, and get a unique, plagiarism-free research paper with impeccable grammar and formatting.

Readers also enjoyed

Principles of Drug Addiction Treatment: A Research-Based Guide

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

medicine research topics quantitative

Grad Coach

Research Topics & Ideas: Healthcare

100+ Healthcare Research Topic Ideas To Fast-Track Your Project

Healthcare-related research topics and ideas

Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. If you’ve landed on this post, chances are you’re looking for a healthcare-related research topic , but aren’t sure where to start. Here, we’ll explore a variety of healthcare-related research ideas and topic thought-starters across a range of healthcare fields, including allopathic and alternative medicine, dentistry, physical therapy, optometry, pharmacology and public health.

NB – This is just the start…

The topic ideation and evaluation process has multiple steps . In this post, we’ll kickstart the process by sharing some research topic ideas within the healthcare domain. This is the starting point, but to develop a well-defined research topic, you’ll need to identify a clear and convincing research gap , along with a well-justified plan of action to fill that gap.

If you’re new to the oftentimes perplexing world of research, or if this is your first time undertaking a formal academic research project, be sure to check out our free dissertation mini-course. In it, we cover the process of writing a dissertation or thesis from start to end. Be sure to also sign up for our free webinar that explores how to find a high-quality research topic.

Overview: Healthcare Research Topics

  • Allopathic medicine
  • Alternative /complementary medicine
  • Veterinary medicine
  • Physical therapy/ rehab
  • Optometry and ophthalmology
  • Pharmacy and pharmacology
  • Public health
  • Examples of healthcare-related dissertations

Allopathic (Conventional) Medicine

  • The effectiveness of telemedicine in remote elderly patient care
  • The impact of stress on the immune system of cancer patients
  • The effects of a plant-based diet on chronic diseases such as diabetes
  • The use of AI in early cancer diagnosis and treatment
  • The role of the gut microbiome in mental health conditions such as depression and anxiety
  • The efficacy of mindfulness meditation in reducing chronic pain: A systematic review
  • The benefits and drawbacks of electronic health records in a developing country
  • The effects of environmental pollution on breast milk quality
  • The use of personalized medicine in treating genetic disorders
  • The impact of social determinants of health on chronic diseases in Asia
  • The role of high-intensity interval training in improving cardiovascular health
  • The efficacy of using probiotics for gut health in pregnant women
  • The impact of poor sleep on the treatment of chronic illnesses
  • The role of inflammation in the development of chronic diseases such as lupus
  • The effectiveness of physiotherapy in pain control post-surgery

Research topic idea mega list

Topics & Ideas: Alternative Medicine

  • The benefits of herbal medicine in treating young asthma patients
  • The use of acupuncture in treating infertility in women over 40 years of age
  • The effectiveness of homoeopathy in treating mental health disorders: A systematic review
  • The role of aromatherapy in reducing stress and anxiety post-surgery
  • The impact of mindfulness meditation on reducing high blood pressure
  • The use of chiropractic therapy in treating back pain of pregnant women
  • The efficacy of traditional Chinese medicine such as Shun-Qi-Tong-Xie (SQTX) in treating digestive disorders in China
  • The impact of yoga on physical and mental health in adolescents
  • The benefits of hydrotherapy in treating musculoskeletal disorders such as tendinitis
  • The role of Reiki in promoting healing and relaxation post birth
  • The effectiveness of naturopathy in treating skin conditions such as eczema
  • The use of deep tissue massage therapy in reducing chronic pain in amputees
  • The impact of tai chi on the treatment of anxiety and depression
  • The benefits of reflexology in treating stress, anxiety and chronic fatigue
  • The role of acupuncture in the prophylactic management of headaches and migraines

Research topic evaluator

Topics & Ideas: Dentistry

  • The impact of sugar consumption on the oral health of infants
  • The use of digital dentistry in improving patient care: A systematic review
  • The efficacy of orthodontic treatments in correcting bite problems in adults
  • The role of dental hygiene in preventing gum disease in patients with dental bridges
  • The impact of smoking on oral health and tobacco cessation support from UK dentists
  • The benefits of dental implants in restoring missing teeth in adolescents
  • The use of lasers in dental procedures such as root canals
  • The efficacy of root canal treatment using high-frequency electric pulses in saving infected teeth
  • The role of fluoride in promoting remineralization and slowing down demineralization
  • The impact of stress-induced reflux on oral health
  • The benefits of dental crowns in restoring damaged teeth in elderly patients
  • The use of sedation dentistry in managing dental anxiety in children
  • The efficacy of teeth whitening treatments in improving dental aesthetics in patients with braces
  • The role of orthodontic appliances in improving well-being
  • The impact of periodontal disease on overall health and chronic illnesses

Free Webinar: How To Find A Dissertation Research Topic

Tops & Ideas: Veterinary Medicine

  • The impact of nutrition on broiler chicken production
  • The role of vaccines in disease prevention in horses
  • The importance of parasite control in animal health in piggeries
  • The impact of animal behaviour on welfare in the dairy industry
  • The effects of environmental pollution on the health of cattle
  • The role of veterinary technology such as MRI in animal care
  • The importance of pain management in post-surgery health outcomes
  • The impact of genetics on animal health and disease in layer chickens
  • The effectiveness of alternative therapies in veterinary medicine: A systematic review
  • The role of veterinary medicine in public health: A case study of the COVID-19 pandemic
  • The impact of climate change on animal health and infectious diseases in animals
  • The importance of animal welfare in veterinary medicine and sustainable agriculture
  • The effects of the human-animal bond on canine health
  • The role of veterinary medicine in conservation efforts: A case study of Rhinoceros poaching in Africa
  • The impact of veterinary research of new vaccines on animal health

Topics & Ideas: Physical Therapy/Rehab

  • The efficacy of aquatic therapy in improving joint mobility and strength in polio patients
  • The impact of telerehabilitation on patient outcomes in Germany
  • The effect of kinesiotaping on reducing knee pain and improving function in individuals with chronic pain
  • A comparison of manual therapy and yoga exercise therapy in the management of low back pain
  • The use of wearable technology in physical rehabilitation and the impact on patient adherence to a rehabilitation plan
  • The impact of mindfulness-based interventions in physical therapy in adolescents
  • The effects of resistance training on individuals with Parkinson’s disease
  • The role of hydrotherapy in the management of fibromyalgia
  • The impact of cognitive-behavioural therapy in physical rehabilitation for individuals with chronic pain
  • The use of virtual reality in physical rehabilitation of sports injuries
  • The effects of electrical stimulation on muscle function and strength in athletes
  • The role of physical therapy in the management of stroke recovery: A systematic review
  • The impact of pilates on mental health in individuals with depression
  • The use of thermal modalities in physical therapy and its effectiveness in reducing pain and inflammation
  • The effect of strength training on balance and gait in elderly patients

Topics & Ideas: Optometry & Opthalmology

  • The impact of screen time on the vision and ocular health of children under the age of 5
  • The effects of blue light exposure from digital devices on ocular health
  • The role of dietary interventions, such as the intake of whole grains, in the management of age-related macular degeneration
  • The use of telemedicine in optometry and ophthalmology in the UK
  • The impact of myopia control interventions on African American children’s vision
  • The use of contact lenses in the management of dry eye syndrome: different treatment options
  • The effects of visual rehabilitation in individuals with traumatic brain injury
  • The role of low vision rehabilitation in individuals with age-related vision loss: challenges and solutions
  • The impact of environmental air pollution on ocular health
  • The effectiveness of orthokeratology in myopia control compared to contact lenses
  • The role of dietary supplements, such as omega-3 fatty acids, in ocular health
  • The effects of ultraviolet radiation exposure from tanning beds on ocular health
  • The impact of computer vision syndrome on long-term visual function
  • The use of novel diagnostic tools in optometry and ophthalmology in developing countries
  • The effects of virtual reality on visual perception and ocular health: an examination of dry eye syndrome and neurologic symptoms

Topics & Ideas: Pharmacy & Pharmacology

  • The impact of medication adherence on patient outcomes in cystic fibrosis
  • The use of personalized medicine in the management of chronic diseases such as Alzheimer’s disease
  • The effects of pharmacogenomics on drug response and toxicity in cancer patients
  • The role of pharmacists in the management of chronic pain in primary care
  • The impact of drug-drug interactions on patient mental health outcomes
  • The use of telepharmacy in healthcare: Present status and future potential
  • The effects of herbal and dietary supplements on drug efficacy and toxicity
  • The role of pharmacists in the management of type 1 diabetes
  • The impact of medication errors on patient outcomes and satisfaction
  • The use of technology in medication management in the USA
  • The effects of smoking on drug metabolism and pharmacokinetics: A case study of clozapine
  • Leveraging the role of pharmacists in preventing and managing opioid use disorder
  • The impact of the opioid epidemic on public health in a developing country
  • The use of biosimilars in the management of the skin condition psoriasis
  • The effects of the Affordable Care Act on medication utilization and patient outcomes in African Americans

Topics & Ideas: Public Health

  • The impact of the built environment and urbanisation on physical activity and obesity
  • The effects of food insecurity on health outcomes in Zimbabwe
  • The role of community-based participatory research in addressing health disparities
  • The impact of social determinants of health, such as racism, on population health
  • The effects of heat waves on public health
  • The role of telehealth in addressing healthcare access and equity in South America
  • The impact of gun violence on public health in South Africa
  • The effects of chlorofluorocarbons air pollution on respiratory health
  • The role of public health interventions in reducing health disparities in the USA
  • The impact of the United States Affordable Care Act on access to healthcare and health outcomes
  • The effects of water insecurity on health outcomes in the Middle East
  • The role of community health workers in addressing healthcare access and equity in low-income countries
  • The impact of mass incarceration on public health and behavioural health of a community
  • The effects of floods on public health and healthcare systems
  • The role of social media in public health communication and behaviour change in adolescents

Examples: Healthcare Dissertation & Theses

While the ideas we’ve presented above are a decent starting point for finding a healthcare-related research topic, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses to see how this all comes together.

Below, we’ve included a selection of research projects from various healthcare-related degree programs to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • Improving Follow-Up Care for Homeless Populations in North County San Diego (Sanchez, 2021)
  • On the Incentives of Medicare’s Hospital Reimbursement and an Examination of Exchangeability (Elzinga, 2016)
  • Managing the healthcare crisis: the career narratives of nurses (Krueger, 2021)
  • Methods for preventing central line-associated bloodstream infection in pediatric haematology-oncology patients: A systematic literature review (Balkan, 2020)
  • Farms in Healthcare: Enhancing Knowledge, Sharing, and Collaboration (Garramone, 2019)
  • When machine learning meets healthcare: towards knowledge incorporation in multimodal healthcare analytics (Yuan, 2020)
  • Integrated behavioural healthcare: The future of rural mental health (Fox, 2019)
  • Healthcare service use patterns among autistic adults: A systematic review with narrative synthesis (Gilmore, 2021)
  • Mindfulness-Based Interventions: Combatting Burnout and Compassionate Fatigue among Mental Health Caregivers (Lundquist, 2022)
  • Transgender and gender-diverse people’s perceptions of gender-inclusive healthcare access and associated hope for the future (Wille, 2021)
  • Efficient Neural Network Synthesis and Its Application in Smart Healthcare (Hassantabar, 2022)
  • The Experience of Female Veterans and Health-Seeking Behaviors (Switzer, 2022)
  • Machine learning applications towards risk prediction and cost forecasting in healthcare (Singh, 2022)
  • Does Variation in the Nursing Home Inspection Process Explain Disparity in Regulatory Outcomes? (Fox, 2020)

Looking at these titles, you can probably pick up that the research topics here are quite specific and narrowly-focused , compared to the generic ones presented earlier. This is an important thing to keep in mind as you develop your own research topic. That is to say, to create a top-notch research topic, you must be precise and target a specific context with specific variables of interest . In other words, you need to identify a clear, well-justified research gap.

Need more help?

If you’re still feeling a bit unsure about how to find a research topic for your healthcare dissertation or thesis, check out Topic Kickstarter service below.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Topic Kickstarter: Research topics in education

15 Comments

Mabel Allison

I need topics that will match the Msc program am running in healthcare research please

Theophilus Ugochuku

Hello Mabel,

I can help you with a good topic, kindly provide your email let’s have a good discussion on this.

sneha ramu

Can you provide some research topics and ideas on Immunology?

Julia

Thank you to create new knowledge on research problem verse research topic

Help on problem statement on teen pregnancy

Derek Jansen

This post might be useful: https://gradcoach.com/research-problem-statement/

vera akinyi akinyi vera

can you provide me with a research topic on healthcare related topics to a qqi level 5 student

Didjatou tao

Please can someone help me with research topics in public health ?

Gurtej singh Dhillon

Hello I have requirement of Health related latest research issue/topics for my social media speeches. If possible pls share health issues , diagnosis, treatment.

Chikalamba Muzyamba

I would like a topic thought around first-line support for Gender-Based Violence for survivors or one related to prevention of Gender-Based Violence

Evans Amihere

Please can I be helped with a master’s research topic in either chemical pathology or hematology or immunology? thanks

Patrick

Can u please provide me with a research topic on occupational health and safety at the health sector

Biyama Chama Reuben

Good day kindly help provide me with Ph.D. Public health topics on Reproductive and Maternal Health, interventional studies on Health Education

dominic muema

may you assist me with a good easy healthcare administration study topic

Precious

May you assist me in finding a research topic on nutrition,physical activity and obesity. On the impact on children

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Recent quantitative research on determinants of health in high income countries: A scoping review

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliation Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium

ORCID logo

Roles Conceptualization, Data curation, Funding acquisition, Project administration, Resources, Supervision, Validation, Visualization, Writing – review & editing

  • Vladimira Varbanova, 
  • Philippe Beutels

PLOS

  • Published: September 17, 2020
  • https://doi.org/10.1371/journal.pone.0239031
  • Peer Review
  • Reader Comments

Fig 1

Identifying determinants of health and understanding their role in health production constitutes an important research theme. We aimed to document the state of recent multi-country research on this theme in the literature.

We followed the PRISMA-ScR guidelines to systematically identify, triage and review literature (January 2013—July 2019). We searched for studies that performed cross-national statistical analyses aiming to evaluate the impact of one or more aggregate level determinants on one or more general population health outcomes in high-income countries. To assess in which combinations and to what extent individual (or thematically linked) determinants had been studied together, we performed multidimensional scaling and cluster analysis.

Sixty studies were selected, out of an original yield of 3686. Life-expectancy and overall mortality were the most widely used population health indicators, while determinants came from the areas of healthcare, culture, politics, socio-economics, environment, labor, fertility, demographics, life-style, and psychology. The family of regression models was the predominant statistical approach. Results from our multidimensional scaling showed that a relatively tight core of determinants have received much attention, as main covariates of interest or controls, whereas the majority of other determinants were studied in very limited contexts. We consider findings from these studies regarding the importance of any given health determinant inconclusive at present. Across a multitude of model specifications, different country samples, and varying time periods, effects fluctuated between statistically significant and not significant, and between beneficial and detrimental to health.

Conclusions

We conclude that efforts to understand the underlying mechanisms of population health are far from settled, and the present state of research on the topic leaves much to be desired. It is essential that future research considers multiple factors simultaneously and takes advantage of more sophisticated methodology with regards to quantifying health as well as analyzing determinants’ influence.

Citation: Varbanova V, Beutels P (2020) Recent quantitative research on determinants of health in high income countries: A scoping review. PLoS ONE 15(9): e0239031. https://doi.org/10.1371/journal.pone.0239031

Editor: Amir Radfar, University of Central Florida, UNITED STATES

Received: November 14, 2019; Accepted: August 28, 2020; Published: September 17, 2020

Copyright: © 2020 Varbanova, Beutels. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the manuscript and its Supporting Information files.

Funding: This study (and VV) is funded by the Research Foundation Flanders ( https://www.fwo.be/en/ ), FWO project number G0D5917N, award obtained by PB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Identifying the key drivers of population health is a core subject in public health and health economics research. Between-country comparative research on the topic is challenging. In order to be relevant for policy, it requires disentangling different interrelated drivers of “good health”, each having different degrees of importance in different contexts.

“Good health”–physical and psychological, subjective and objective–can be defined and measured using a variety of approaches, depending on which aspect of health is the focus. A major distinction can be made between health measurements at the individual level or some aggregate level, such as a neighborhood, a region or a country. In view of this, a great diversity of specific research topics exists on the drivers of what constitutes individual or aggregate “good health”, including those focusing on health inequalities, the gender gap in longevity, and regional mortality and longevity differences.

The current scoping review focuses on determinants of population health. Stated as such, this topic is quite broad. Indeed, we are interested in the very general question of what methods have been used to make the most of increasingly available region or country-specific databases to understand the drivers of population health through inter-country comparisons. Existing reviews indicate that researchers thus far tend to adopt a narrower focus. Usually, attention is given to only one health outcome at a time, with further geographical and/or population [ 1 , 2 ] restrictions. In some cases, the impact of one or more interventions is at the core of the review [ 3 – 7 ], while in others it is the relationship between health and just one particular predictor, e.g., income inequality, access to healthcare, government mechanisms [ 8 – 13 ]. Some relatively recent reviews on the subject of social determinants of health [ 4 – 6 , 14 – 17 ] have considered a number of indicators potentially influencing health as opposed to a single one. One review defines “social determinants” as “the social, economic, and political conditions that influence the health of individuals and populations” [ 17 ] while another refers even more broadly to “the factors apart from medical care” [ 15 ].

In the present work, we aimed to be more inclusive, setting no limitations on the nature of possible health correlates, as well as making use of a multitude of commonly accepted measures of general population health. The goal of this scoping review was to document the state of the art in the recent published literature on determinants of population health, with a particular focus on the types of determinants selected and the methodology used. In doing so, we also report the main characteristics of the results these studies found. The materials collected in this review are intended to inform our (and potentially other researchers’) future analyses on this topic. Since the production of health is subject to the law of diminishing marginal returns, we focused our review on those studies that included countries where a high standard of wealth has been achieved for some time, i.e., high-income countries belonging to the Organisation for Economic Co-operation and Development (OECD) or Europe. Adding similar reviews for other country income groups is of limited interest to the research we plan to do in this area.

In view of its focus on data and methods, rather than results, a formal protocol was not registered prior to undertaking this review, but the procedure followed the guidelines of the PRISMA statement for scoping reviews [ 18 ].

We focused on multi-country studies investigating the potential associations between any aggregate level (region/city/country) determinant and general measures of population health (e.g., life expectancy, mortality rate).

Within the query itself, we listed well-established population health indicators as well as the six world regions, as defined by the World Health Organization (WHO). We searched only in the publications’ titles in order to keep the number of hits manageable, and the ratio of broadly relevant abstracts over all abstracts in the order of magnitude of 10% (based on a series of time-focused trial runs). The search strategy was developed iteratively between the two authors and is presented in S1 Appendix . The search was performed by VV in PubMed and Web of Science on the 16 th of July, 2019, without any language restrictions, and with a start date set to the 1 st of January, 2013, as we were interested in the latest developments in this area of research.

Eligibility criteria

Records obtained via the search methods described above were screened independently by the two authors. Consistency between inclusion/exclusion decisions was approximately 90% and the 43 instances where uncertainty existed were judged through discussion. Articles were included subject to meeting the following requirements: (a) the paper was a full published report of an original empirical study investigating the impact of at least one aggregate level (city/region/country) factor on at least one health indicator (or self-reported health) of the general population (the only admissible “sub-populations” were those based on gender and/or age); (b) the study employed statistical techniques (calculating correlations, at the very least) and was not purely descriptive or theoretical in nature; (c) the analysis involved at least two countries or at least two regions or cities (or another aggregate level) in at least two different countries; (d) the health outcome was not differentiated according to some socio-economic factor and thus studied in terms of inequality (with the exception of gender and age differentiations); (e) mortality, in case it was one of the health indicators under investigation, was strictly “total” or “all-cause” (no cause-specific or determinant-attributable mortality).

Data extraction

The following pieces of information were extracted in an Excel table from the full text of each eligible study (primarily by VV, consulting with PB in case of doubt): health outcome(s), determinants, statistical methodology, level of analysis, results, type of data, data sources, time period, countries. The evidence is synthesized according to these extracted data (often directly reflected in the section headings), using a narrative form accompanied by a “summary-of-findings” table and a graph.

Search and selection

The initial yield contained 4583 records, reduced to 3686 after removal of duplicates ( Fig 1 ). Based on title and abstract screening, 3271 records were excluded because they focused on specific medical condition(s) or specific populations (based on morbidity or some other factor), dealt with intervention effectiveness, with theoretical or non-health related issues, or with animals or plants. Of the remaining 415 papers, roughly half were disqualified upon full-text consideration, mostly due to using an outcome not of interest to us (e.g., health inequality), measuring and analyzing determinants and outcomes exclusively at the individual level, performing analyses one country at a time, employing indices that are a mixture of both health indicators and health determinants, or not utilizing potential health determinants at all. After this second stage of the screening process, 202 papers were deemed eligible for inclusion. This group was further dichotomized according to level of economic development of the countries or regions under study, using membership of the OECD or Europe as a reference “cut-off” point. Sixty papers were judged to include high-income countries, and the remaining 142 included either low- or middle-income countries or a mix of both these levels of development. The rest of this report outlines findings in relation to high-income countries only, reflecting our own primary research interests. Nonetheless, we chose to report our search yield for the other income groups for two reasons. First, to gauge the relative interest in applied published research for these different income levels; and second, to enable other researchers with a focus on determinants of health in other countries to use the extraction we made here.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0239031.g001

Health outcomes

The most frequent population health indicator, life expectancy (LE), was present in 24 of the 60 studies. Apart from “life expectancy at birth” (representing the average life-span a newborn is expected to have if current mortality rates remain constant), also called “period LE” by some [ 19 , 20 ], we encountered as well LE at 40 years of age [ 21 ], at 60 [ 22 ], and at 65 [ 21 , 23 , 24 ]. In two papers, the age-specificity of life expectancy (be it at birth or another age) was not stated [ 25 , 26 ].

Some studies considered male and female LE separately [ 21 , 24 , 25 , 27 – 33 ]. This consideration was also often observed with the second most commonly used health index [ 28 – 30 , 34 – 38 ]–termed “total”, or “overall”, or “all-cause”, mortality rate (MR)–included in 22 of the 60 studies. In addition to gender, this index was also sometimes broken down according to age group [ 30 , 39 , 40 ], as well as gender-age group [ 38 ].

While the majority of studies under review here focused on a single health indicator, 23 out of the 60 studies made use of multiple outcomes, although these outcomes were always considered one at a time, and sometimes not all of them fell within the scope of our review. An easily discernable group of indices that typically went together [ 25 , 37 , 41 ] was that of neonatal (deaths occurring within 28 days postpartum), perinatal (fetal or early neonatal / first-7-days deaths), and post-neonatal (deaths between the 29 th day and completion of one year of life) mortality. More often than not, these indices were also accompanied by “stand-alone” indicators, such as infant mortality (deaths within the first year of life; our third most common index found in 16 of the 60 studies), maternal mortality (deaths during pregnancy or within 42 days of termination of pregnancy), and child mortality rates. Child mortality has conventionally been defined as mortality within the first 5 years of life, thus often also called “under-5 mortality”. Nonetheless, Pritchard & Wallace used the term “child mortality” to denote deaths of children younger than 14 years [ 42 ].

As previously stated, inclusion criteria did allow for self-reported health status to be used as a general measure of population health. Within our final selection of studies, seven utilized some form of subjective health as an outcome variable [ 25 , 43 – 48 ]. Additionally, the Health Human Development Index [ 49 ], healthy life expectancy [ 50 ], old-age survival [ 51 ], potential years of life lost [ 52 ], and disability-adjusted life expectancy [ 25 ] were also used.

We note that while in most cases the indicators mentioned above (and/or the covariates considered, see below) were taken in their absolute or logarithmic form, as a—typically annual—number, sometimes they were used in the form of differences, change rates, averages over a given time period, or even z-scores of rankings [ 19 , 22 , 40 , 42 , 44 , 53 – 57 ].

Regions, countries, and populations

Despite our decision to confine this review to high-income countries, some variation in the countries and regions studied was still present. Selection seemed to be most often conditioned on the European Union, or the European continent more generally, and the Organisation of Economic Co-operation and Development (OECD), though, typically, not all member nations–based on the instances where these were also explicitly listed—were included in a given study. Some of the stated reasons for omitting certain nations included data unavailability [ 30 , 45 , 54 ] or inconsistency [ 20 , 58 ], Gross Domestic Product (GDP) too low [ 40 ], differences in economic development and political stability with the rest of the sampled countries [ 59 ], and national population too small [ 24 , 40 ]. On the other hand, the rationales for selecting a group of countries included having similar above-average infant mortality [ 60 ], similar healthcare systems [ 23 ], and being randomly drawn from a social spending category [ 61 ]. Some researchers were interested explicitly in a specific geographical region, such as Eastern Europe [ 50 ], Central and Eastern Europe [ 48 , 60 ], the Visegrad (V4) group [ 62 ], or the Asia/Pacific area [ 32 ]. In certain instances, national regions or cities, rather than countries, constituted the units of investigation instead [ 31 , 51 , 56 , 62 – 66 ]. In two particular cases, a mix of countries and cities was used [ 35 , 57 ]. In another two [ 28 , 29 ], due to the long time periods under study, some of the included countries no longer exist. Finally, besides “European” and “OECD”, the terms “developed”, “Western”, and “industrialized” were also used to describe the group of selected nations [ 30 , 42 , 52 , 53 , 67 ].

As stated above, it was the health status of the general population that we were interested in, and during screening we made a concerted effort to exclude research using data based on a more narrowly defined group of individuals. All studies included in this review adhere to this general rule, albeit with two caveats. First, as cities (even neighborhoods) were the unit of analysis in three of the studies that made the selection [ 56 , 64 , 65 ], the populations under investigation there can be more accurately described as general urban , instead of just general. Second, oftentimes health indicators were stratified based on gender and/or age, therefore we also admitted one study that, due to its specific research question, focused on men and women of early retirement age [ 35 ] and another that considered adult males only [ 68 ].

Data types and sources

A great diversity of sources was utilized for data collection purposes. The accessible reference databases of the OECD ( https://www.oecd.org/ ), WHO ( https://www.who.int/ ), World Bank ( https://www.worldbank.org/ ), United Nations ( https://www.un.org/en/ ), and Eurostat ( https://ec.europa.eu/eurostat ) were among the top choices. The other international databases included Human Mortality [ 30 , 39 , 50 ], Transparency International [ 40 , 48 , 50 ], Quality of Government [ 28 , 69 ], World Income Inequality [ 30 ], International Labor Organization [ 41 ], International Monetary Fund [ 70 ]. A number of national databases were referred to as well, for example the US Bureau of Statistics [ 42 , 53 ], Korean Statistical Information Services [ 67 ], Statistics Canada [ 67 ], Australian Bureau of Statistics [ 67 ], and Health New Zealand Tobacco control and Health New Zealand Food and Nutrition [ 19 ]. Well-known surveys, such as the World Values Survey [ 25 , 55 ], the European Social Survey [ 25 , 39 , 44 ], the Eurobarometer [ 46 , 56 ], the European Value Survey [ 25 ], and the European Statistics of Income and Living Condition Survey [ 43 , 47 , 70 ] were used as data sources, too. Finally, in some cases [ 25 , 28 , 29 , 35 , 36 , 41 , 69 ], built-for-purpose datasets from previous studies were re-used.

In most of the studies, the level of the data (and analysis) was national. The exceptions were six papers that dealt with Nomenclature of Territorial Units of Statistics (NUTS2) regions [ 31 , 62 , 63 , 66 ], otherwise defined areas [ 51 ] or cities [ 56 ], and seven others that were multilevel designs and utilized both country- and region-level data [ 57 ], individual- and city- or country-level [ 35 ], individual- and country-level [ 44 , 45 , 48 ], individual- and neighborhood-level [ 64 ], and city-region- (NUTS3) and country-level data [ 65 ]. Parallel to that, the data type was predominantly longitudinal, with only a few studies using purely cross-sectional data [ 25 , 33 , 43 , 45 – 48 , 50 , 62 , 67 , 68 , 71 , 72 ], albeit in four of those [ 43 , 48 , 68 , 72 ] two separate points in time were taken (thus resulting in a kind of “double cross-section”), while in another the averages across survey waves were used [ 56 ].

In studies using longitudinal data, the length of the covered time periods varied greatly. Although this was almost always less than 40 years, in one study it covered the entire 20 th century [ 29 ]. Longitudinal data, typically in the form of annual records, was sometimes transformed before usage. For example, some researchers considered data points at 5- [ 34 , 36 , 49 ] or 10-year [ 27 , 29 , 35 ] intervals instead of the traditional 1, or took averages over 3-year periods [ 42 , 53 , 73 ]. In one study concerned with the effect of the Great Recession all data were in a “recession minus expansion change in trends”-form [ 57 ]. Furthermore, there were a few instances where two different time periods were compared to each other [ 42 , 53 ] or when data was divided into 2 to 4 (possibly overlapping) periods which were then analyzed separately [ 24 , 26 , 28 , 29 , 31 , 65 ]. Lastly, owing to data availability issues, discrepancies between the time points or periods of data on the different variables were occasionally observed [ 22 , 35 , 42 , 53 – 55 , 63 ].

Health determinants

Together with other essential details, Table 1 lists the health correlates considered in the selected studies. Several general categories for these correlates can be discerned, including health care, political stability, socio-economics, demographics, psychology, environment, fertility, life-style, culture, labor. All of these, directly or implicitly, have been recognized as holding importance for population health by existing theoretical models of (social) determinants of health [ 74 – 77 ].

thumbnail

https://doi.org/10.1371/journal.pone.0239031.t001

It is worth noting that in a few studies there was just a single aggregate-level covariate investigated in relation to a health outcome of interest to us. In one instance, this was life satisfaction [ 44 ], in another–welfare system typology [ 45 ], but also gender inequality [ 33 ], austerity level [ 70 , 78 ], and deprivation [ 51 ]. Most often though, attention went exclusively to GDP [ 27 , 29 , 46 , 57 , 65 , 71 ]. It was often the case that research had a more particular focus. Among others, minimum wages [ 79 ], hospital payment schemes [ 23 ], cigarette prices [ 63 ], social expenditure [ 20 ], residents’ dissatisfaction [ 56 ], income inequality [ 30 , 69 ], and work leave [ 41 , 58 ] took center stage. Whenever variables outside of these specific areas were also included, they were usually identified as confounders or controls, moderators or mediators.

We visualized the combinations in which the different determinants have been studied in Fig 2 , which was obtained via multidimensional scaling and a subsequent cluster analysis (details outlined in S2 Appendix ). It depicts the spatial positioning of each determinant relative to all others, based on the number of times the effects of each pair of determinants have been studied simultaneously. When interpreting Fig 2 , one should keep in mind that determinants marked with an asterisk represent, in fact, collectives of variables.

thumbnail

Groups of determinants are marked by asterisks (see S1 Table in S1 Appendix ). Diminishing color intensity reflects a decrease in the total number of “connections” for a given determinant. Noteworthy pairwise “connections” are emphasized via lines (solid-dashed-dotted indicates decreasing frequency). Grey contour lines encircle groups of variables that were identified via cluster analysis. Abbreviations: age = population age distribution, associations = membership in associations, AT-index = atherogenic-thrombogenic index, BR = birth rate, CAPB = Cyclically Adjusted Primary Balance, civilian-labor = civilian labor force, C-section = Cesarean delivery rate, credit-info = depth of credit information, dissatisf = residents’ dissatisfaction, distrib.orient = distributional orientation, EDU = education, eHealth = eHealth index at GP-level, exch.rate = exchange rate, fat = fat consumption, GDP = gross domestic product, GFCF = Gross Fixed Capital Formation/Creation, GH-gas = greenhouse gas, GII = gender inequality index, gov = governance index, gov.revenue = government revenues, HC-coverage = healthcare coverage, HE = health(care) expenditure, HHconsump = household consumption, hosp.beds = hospital beds, hosp.payment = hospital payment scheme, hosp.stay = length of hospital stay, IDI = ICT development index, inc.ineq = income inequality, industry-labor = industrial labor force, infant-sex = infant sex ratio, labor-product = labor production, LBW = low birth weight, leave = work leave, life-satisf = life satisfaction, M-age = maternal age, marginal-tax = marginal tax rate, MDs = physicians, mult.preg = multiple pregnancy, NHS = Nation Health System, NO = nitrous oxide emissions, PM10 = particulate matter (PM10) emissions, pop = population size, pop.density = population density, pre-term = pre-term birth rate, prison = prison population, researchE = research&development expenditure, school.ref = compulsory schooling reform, smoke-free = smoke-free places, SO = sulfur oxide emissions, soc.E = social expenditure, soc.workers = social workers, sugar = sugar consumption, terror = terrorism, union = union density, UR = unemployment rate, urban = urbanization, veg-fr = vegetable-and-fruit consumption, welfare = welfare regime, Wwater = wastewater treatment.

https://doi.org/10.1371/journal.pone.0239031.g002

Distances between determinants in Fig 2 are indicative of determinants’ “connectedness” with each other. While the statistical procedure called for higher dimensionality of the model, for demonstration purposes we show here a two-dimensional solution. This simplification unfortunately comes with a caveat. To use the factor smoking as an example, it would appear it stands at a much greater distance from GDP than it does from alcohol. In reality however, smoking was considered together with alcohol consumption [ 21 , 25 , 26 , 52 , 68 ] in just as many studies as it was with GDP [ 21 , 25 , 26 , 52 , 59 ], five. To aid with respect to this apparent shortcoming, we have emphasized the strongest pairwise links. Solid lines connect GDP with health expenditure (HE), unemployment rate (UR), and education (EDU), indicating that the effect of GDP on health, taking into account the effects of the other three determinants as well, was evaluated in between 12 to 16 studies of the 60 included in this review. Tracing the dashed lines, we can also tell that GDP appeared jointly with income inequality, and HE together with either EDU or UR, in anywhere between 8 to 10 of our selected studies. Finally, some weaker but still worth-mentioning “connections” between variables are displayed as well via the dotted lines.

The fact that all notable pairwise “connections” are concentrated within a relatively small region of the plot may be interpreted as low overall “connectedness” among the health indicators studied. GDP is the most widely investigated determinant in relation to general population health. Its total number of “connections” is disproportionately high (159) compared to its runner-up–HE (with 113 “connections”), and then subsequently EDU (with 90) and UR (with 86). In fact, all of these determinants could be thought of as outliers, given that none of the remaining factors have a total count of pairings above 52. This decrease in individual determinants’ overall “connectedness” can be tracked on the graph via the change of color intensity as we move outwards from the symbolic center of GDP and its closest “co-determinants”, to finally reach the other extreme of the ten indicators (welfare regime, household consumption, compulsory school reform, life satisfaction, government revenues, literacy, research expenditure, multiple pregnancy, Cyclically Adjusted Primary Balance, and residents’ dissatisfaction; in white) the effects on health of which were only studied in isolation.

Lastly, we point to the few small but stable clusters of covariates encircled by the grey bubbles on Fig 2 . These groups of determinants were identified as “close” by both statistical procedures used for the production of the graph (see details in S2 Appendix ).

Statistical methodology

There was great variation in the level of statistical detail reported. Some authors provided too vague a description of their analytical approach, necessitating some inference in this section.

The issue of missing data is a challenging reality in this field of research, but few of the studies under review (12/60) explain how they dealt with it. Among the ones that do, three general approaches to handling missingness can be identified, listed in increasing level of sophistication: case-wise deletion, i.e., removal of countries from the sample [ 20 , 45 , 48 , 58 , 59 ], (linear) interpolation [ 28 , 30 , 34 , 58 , 59 , 63 ], and multiple imputation [ 26 , 41 , 52 ].

Correlations, Pearson, Spearman, or unspecified, were the only technique applied with respect to the health outcomes of interest in eight analyses [ 33 , 42 – 44 , 46 , 53 , 57 , 61 ]. Among the more advanced statistical methods, the family of regression models proved to be, by and large, predominant. Before examining this closer, we note the techniques that were, in a way, “unique” within this selection of studies: meta-analyses were performed (random and fixed effects, respectively) on the reduced form and 2-sample two stage least squares (2SLS) estimations done within countries [ 39 ]; difference-in-difference (DiD) analysis was applied in one case [ 23 ]; dynamic time-series methods, among which co-integration, impulse-response function (IRF), and panel vector autoregressive (VAR) modeling, were utilized in one study [ 80 ]; longitudinal generalized estimating equation (GEE) models were developed on two occasions [ 70 , 78 ]; hierarchical Bayesian spatial models [ 51 ] and special autoregressive regression [ 62 ] were also implemented.

Purely cross-sectional data analyses were performed in eight studies [ 25 , 45 , 47 , 50 , 55 , 56 , 67 , 71 ]. These consisted of linear regression (assumed ordinary least squares (OLS)), generalized least squares (GLS) regression, and multilevel analyses. However, six other studies that used longitudinal data in fact had a cross-sectional design, through which they applied regression at multiple time-points separately [ 27 , 29 , 36 , 48 , 68 , 72 ].

Apart from these “multi-point cross-sectional studies”, some other simplistic approaches to longitudinal data analysis were found, involving calculating and regressing 3-year averages of both the response and the predictor variables [ 54 ], taking the average of a few data-points (i.e., survey waves) [ 56 ] or using difference scores over 10-year [ 19 , 29 ] or unspecified time intervals [ 40 , 55 ].

Moving further in the direction of more sensible longitudinal data usage, we turn to the methods widely known among (health) economists as “panel data analysis” or “panel regression”. Most often seen were models with fixed effects for country/region and sometimes also time-point (occasionally including a country-specific trend as well), with robust standard errors for the parameter estimates to take into account correlations among clustered observations [ 20 , 21 , 24 , 28 , 30 , 32 , 34 , 37 , 38 , 41 , 52 , 59 , 60 , 63 , 66 , 69 , 73 , 79 , 81 , 82 ]. The Hausman test [ 83 ] was sometimes mentioned as the tool used to decide between fixed and random effects [ 26 , 49 , 63 , 66 , 73 , 82 ]. A few studies considered the latter more appropriate for their particular analyses, with some further specifying that (feasible) GLS estimation was employed [ 26 , 34 , 49 , 58 , 60 , 73 ]. Apart from these two types of models, the first differences method was encountered once as well [ 31 ]. Across all, the error terms were sometimes assumed to come from a first-order autoregressive process (AR(1)), i.e., they were allowed to be serially correlated [ 20 , 30 , 38 , 58 – 60 , 73 ], and lags of (typically) predictor variables were included in the model specification, too [ 20 , 21 , 37 , 38 , 48 , 69 , 81 ]. Lastly, a somewhat different approach to longitudinal data analysis was undertaken in four studies [ 22 , 35 , 48 , 65 ] in which multilevel–linear or Poisson–models were developed.

Regardless of the exact techniques used, most studies included in this review presented multiple model applications within their main analysis. None attempted to formally compare models in order to identify the “best”, even if goodness-of-fit statistics were occasionally reported. As indicated above, many studies investigated women’s and men’s health separately [ 19 , 21 , 22 , 27 – 29 , 31 , 33 , 35 , 36 , 38 , 39 , 45 , 50 , 51 , 64 , 65 , 69 , 82 ], and covariates were often tested one at a time, including other covariates only incrementally [ 20 , 25 , 28 , 36 , 40 , 50 , 55 , 67 , 73 ]. Furthermore, there were a few instances where analyses within countries were performed as well [ 32 , 39 , 51 ] or where the full time period of interest was divided into a few sub-periods [ 24 , 26 , 28 , 31 ]. There were also cases where different statistical techniques were applied in parallel [ 29 , 55 , 60 , 66 , 69 , 73 , 82 ], sometimes as a form of sensitivity analysis [ 24 , 26 , 30 , 58 , 73 ]. However, the most common approach to sensitivity analysis was to re-run models with somewhat different samples [ 39 , 50 , 59 , 67 , 69 , 80 , 82 ]. Other strategies included different categorization of variables or adding (more/other) controls [ 21 , 23 , 25 , 28 , 37 , 50 , 63 , 69 ], using an alternative main covariate measure [ 59 , 82 ], including lags for predictors or outcomes [ 28 , 30 , 58 , 63 , 65 , 79 ], using weights [ 24 , 67 ] or alternative data sources [ 37 , 69 ], or using non-imputed data [ 41 ].

As the methods and not the findings are the main focus of the current review, and because generic checklists cannot discern the underlying quality in this application field (see also below), we opted to pool all reported findings together, regardless of individual study characteristics or particular outcome(s) used, and speak generally of positive and negative effects on health. For this summary we have adopted the 0.05-significance level and only considered results from multivariate analyses. Strictly birth-related factors are omitted since these potentially only relate to the group of infant mortality indicators and not to any of the other general population health measures.

Starting with the determinants most often studied, higher GDP levels [ 21 , 26 , 27 , 29 , 30 , 32 , 43 , 48 , 52 , 58 , 60 , 66 , 67 , 73 , 79 , 81 , 82 ], higher health [ 21 , 37 , 47 , 49 , 52 , 58 , 59 , 68 , 72 , 82 ] and social [ 20 , 21 , 26 , 38 , 79 ] expenditures, higher education [ 26 , 39 , 52 , 62 , 72 , 73 ], lower unemployment [ 60 , 61 , 66 ], and lower income inequality [ 30 , 42 , 53 , 55 , 73 ] were found to be significantly associated with better population health on a number of occasions. In addition to that, there was also some evidence that democracy [ 36 ] and freedom [ 50 ], higher work compensation [ 43 , 79 ], distributional orientation [ 54 ], cigarette prices [ 63 ], gross national income [ 22 , 72 ], labor productivity [ 26 ], exchange rates [ 32 ], marginal tax rates [ 79 ], vaccination rates [ 52 ], total fertility [ 59 , 66 ], fruit and vegetable [ 68 ], fat [ 52 ] and sugar consumption [ 52 ], as well as bigger depth of credit information [ 22 ] and percentage of civilian labor force [ 79 ], longer work leaves [ 41 , 58 ], more physicians [ 37 , 52 , 72 ], nurses [ 72 ], and hospital beds [ 79 , 82 ], and also membership in associations, perceived corruption and societal trust [ 48 ] were beneficial to health. Higher nitrous oxide (NO) levels [ 52 ], longer average hospital stay [ 48 ], deprivation [ 51 ], dissatisfaction with healthcare and the social environment [ 56 ], corruption [ 40 , 50 ], smoking [ 19 , 26 , 52 , 68 ], alcohol consumption [ 26 , 52 , 68 ] and illegal drug use [ 68 ], poverty [ 64 ], higher percentage of industrial workers [ 26 ], Gross Fixed Capital creation [ 66 ] and older population [ 38 , 66 , 79 ], gender inequality [ 22 ], and fertility [ 26 , 66 ] were detrimental.

It is important to point out that the above-mentioned effects could not be considered stable either across or within studies. Very often, statistical significance of a given covariate fluctuated between the different model specifications tried out within the same study [ 20 , 49 , 59 , 66 , 68 , 69 , 73 , 80 , 82 ], testifying to the importance of control variables and multivariate research (i.e., analyzing multiple independent variables simultaneously) in general. Furthermore, conflicting results were observed even with regards to the “core” determinants given special attention, so to speak, throughout this text. Thus, some studies reported negative effects of health expenditure [ 32 , 82 ], social expenditure [ 58 ], GDP [ 49 , 66 ], and education [ 82 ], and positive effects of income inequality [ 82 ] and unemployment [ 24 , 31 , 32 , 52 , 66 , 68 ]. Interestingly, one study [ 34 ] differentiated between temporary and long-term effects of GDP and unemployment, alluding to possibly much greater complexity of the association with health. It is also worth noting that some gender differences were found, with determinants being more influential for males than for females, or only having statistically significant effects for male health [ 19 , 21 , 28 , 34 , 36 , 37 , 39 , 64 , 65 , 69 ].

The purpose of this scoping review was to examine recent quantitative work on the topic of multi-country analyses of determinants of population health in high-income countries.

Measuring population health via relatively simple mortality-based indicators still seems to be the state of the art. What is more, these indicators are routinely considered one at a time, instead of, for example, employing existing statistical procedures to devise a more general, composite, index of population health, or using some of the established indices, such as disability-adjusted life expectancy (DALE) or quality-adjusted life expectancy (QALE). Although strong arguments for their wider use were already voiced decades ago [ 84 ], such summary measures surface only rarely in this research field.

On a related note, the greater data availability and accessibility that we enjoy today does not automatically equate to data quality. Nonetheless, this is routinely assumed in aggregate level studies. We almost never encountered a discussion on the topic. The non-mundane issue of data missingness, too, goes largely underappreciated. With all recent methodological advancements in this area [ 85 – 88 ], there is no excuse for ignorance; and still, too few of the reviewed studies tackled the matter in any adequate fashion.

Much optimism can be gained considering the abundance of different determinants that have attracted researchers’ attention in relation to population health. We took on a visual approach with regards to these determinants and presented a graph that links spatial distances between determinants with frequencies of being studies together. To facilitate interpretation, we grouped some variables, which resulted in some loss of finer detail. Nevertheless, the graph is helpful in exemplifying how many effects continue to be studied in a very limited context, if any. Since in reality no factor acts in isolation, this oversimplification practice threatens to render the whole exercise meaningless from the outset. The importance of multivariate analysis cannot be stressed enough. While there is no “best method” to be recommended and appropriate techniques vary according to the specifics of the research question and the characteristics of the data at hand [ 89 – 93 ], in the future, in addition to abandoning simplistic univariate approaches, we hope to see a shift from the currently dominating fixed effects to the more flexible random/mixed effects models [ 94 ], as well as wider application of more sophisticated methods, such as principle component regression, partial least squares, covariance structure models (e.g., structural equations), canonical correlations, time-series, and generalized estimating equations.

Finally, there are some limitations of the current scoping review. We searched the two main databases for published research in medical and non-medical sciences (PubMed and Web of Science) since 2013, thus potentially excluding publications and reports that are not indexed in these databases, as well as older indexed publications. These choices were guided by our interest in the most recent (i.e., the current state-of-the-art) and arguably the highest-quality research (i.e., peer-reviewed articles, primarily in indexed non-predatory journals). Furthermore, despite holding a critical stance with regards to some aspects of how determinants-of-health research is currently conducted, we opted out of formally assessing the quality of the individual studies included. The reason for that is two-fold. On the one hand, we are unaware of the existence of a formal and standard tool for quality assessment of ecological designs. And on the other, we consider trying to score the quality of these diverse studies (in terms of regional setting, specific topic, outcome indices, and methodology) undesirable and misleading, particularly since we would sometimes have been rating the quality of only a (small) part of the original studies—the part that was relevant to our review’s goal.

Our aim was to investigate the current state of research on the very broad and general topic of population health, specifically, the way it has been examined in a multi-country context. We learned that data treatment and analytical approach were, in the majority of these recent studies, ill-equipped or insufficiently transparent to provide clarity regarding the underlying mechanisms of population health in high-income countries. Whether due to methodological shortcomings or the inherent complexity of the topic, research so far fails to provide any definitive answers. It is our sincere belief that with the application of more advanced analytical techniques this continuous quest could come to fruition sooner.

Supporting information

S1 checklist. preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews (prisma-scr) checklist..

https://doi.org/10.1371/journal.pone.0239031.s001

S1 Appendix.

https://doi.org/10.1371/journal.pone.0239031.s002

S2 Appendix.

https://doi.org/10.1371/journal.pone.0239031.s003

  • View Article
  • Google Scholar
  • PubMed/NCBI
  • 75. Dahlgren G, Whitehead M. Policies and Strategies to Promote Equity in Health. Stockholm, Sweden: Institute for Future Studies; 1991.
  • 76. Brunner E, Marmot M. Social Organization, Stress, and Health. In: Marmot M, Wilkinson RG, editors. Social Determinants of Health. Oxford, England: Oxford University Press; 1999.
  • 77. Najman JM. A General Model of the Social Origins of Health and Well-being. In: Eckersley R, Dixon J, Douglas B, editors. The Social Origins of Health and Well-being. Cambridge, England: Cambridge University Press; 2001.
  • 85. Carpenter JR, Kenward MG. Multiple Imputation and its Application. New York: John Wiley & Sons; 2013.
  • 86. Molenberghs G, Fitzmaurice G, Kenward MG, Verbeke G, Tsiatis AA. Handbook of Missing Data Methodology. Boca Raton: Chapman & Hall/CRC; 2014.
  • 87. van Buuren S. Flexible Imputation of Missing Data. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2018.
  • 88. Enders CK. Applied Missing Data Analysis. New York: Guilford; 2010.
  • 89. Shayle R. Searle GC, Charles E. McCulloch. Variance Components: John Wiley & Sons, Inc.; 1992.
  • 90. Agresti A. Foundations of Linear and Generalized Linear Models. Hoboken, New Jersey: John Wiley & Sons Inc.; 2015.
  • 91. Leyland A. H. (Editor) HGE. Multilevel Modelling of Health Statistics: John Wiley & Sons Inc; 2001.
  • 92. Garrett Fitzmaurice MD, Geert Verbeke, Geert Molenberghs. Longitudinal Data Analysis. New York: Chapman and Hall/CRC; 2008.
  • 93. Wolfgang Karl Härdle LS. Applied Multivariate Statistical Analysis. Berlin, Heidelberg: Springer; 2015.

Advertisement

Issue Cover

  • Previous Issue
  • Previous Article
  • Next Article

Clarifying the Research Purpose

Methodology, measurement, data analysis and interpretation, tools for evaluating the quality of medical education research, research support, competing interests, quantitative research methods in medical education.

Submitted for publication January 8, 2018. Accepted for publication November 29, 2018.

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Cite Icon Cite
  • Get Permissions
  • Search Site

John T. Ratelle , Adam P. Sawatsky , Thomas J. Beckman; Quantitative Research Methods in Medical Education. Anesthesiology 2019; 131:23–35 doi: https://doi.org/10.1097/ALN.0000000000002727

Download citation file:

  • Ris (Zotero)
  • Reference Manager

There has been a dramatic growth of scholarly articles in medical education in recent years. Evaluating medical education research requires specific orientation to issues related to format and content. Our goal is to review the quantitative aspects of research in medical education so that clinicians may understand these articles with respect to framing the study, recognizing methodologic issues, and utilizing instruments for evaluating the quality of medical education research. This review can be used both as a tool when appraising medical education research articles and as a primer for clinicians interested in pursuing scholarship in medical education.

Image: J. P. Rathmell and Terri Navarette.

Image: J. P. Rathmell and Terri Navarette.

There has been an explosion of research in the field of medical education. A search of PubMed demonstrates that more than 40,000 articles have been indexed under the medical subject heading “Medical Education” since 2010, which is more than the total number of articles indexed under this heading in the 1980s and 1990s combined. Keeping up to date requires that practicing clinicians have the skills to interpret and appraise the quality of research articles, especially when serving as editors, reviewers, and consumers of the literature.

While medical education shares many characteristics with other biomedical fields, substantial particularities exist. We recognize that practicing clinicians may not be familiar with the nuances of education research and how to assess its quality. Therefore, our purpose is to provide a review of quantitative research methodologies in medical education. Specifically, we describe a structure that can be used when conducting or evaluating medical education research articles.

Clarifying the research purpose is an essential first step when reading or conducting scholarship in medical education. 1   Medical education research can serve a variety of purposes, from advancing the science of learning to improving the outcomes of medical trainees and the patients they care for. However, a well-designed study has limited value if it addresses vague, redundant, or unimportant medical education research questions.

What is the research topic and why is it important? What is unknown about the research topic? Why is further research necessary?

What is the conceptual framework being used to approach the study?

What is the statement of study intent?

What are the research methodology and study design? Are they appropriate for the study objective(s)?

Which threats to internal validity are most relevant for the study?

What is the outcome and how was it measured?

Can the results be trusted? What is the validity and reliability of the measurements?

How were research subjects selected? Is the research sample representative of the target population?

Was the data analysis appropriate for the study design and type of data?

What is the effect size? Do the results have educational significance?

Fortunately, there are steps to ensure that the purpose of a research study is clear and logical. Table 1   2–5   outlines these steps, which will be described in detail in the following sections. We describe these elements not as a simple “checklist,” but as an advanced organizer that can be used to understand a medical education research study. These steps can also be used by clinician educators who are new to the field of education research and who wish to conduct scholarship in medical education.

Steps in Clarifying the Purpose of a Research Study in Medical Education

Steps in Clarifying the Purpose of a Research Study in Medical Education

Literature Review and Problem Statement

A literature review is the first step in clarifying the purpose of a medical education research article. 2 , 5 , 6   When conducting scholarship in medical education, a literature review helps researchers develop an understanding of their topic of interest. This understanding includes both existing knowledge about the topic as well as key gaps in the literature, which aids the researcher in refining their study question. Additionally, a literature review helps researchers identify conceptual frameworks that have been used to approach the research topic. 2  

When reading scholarship in medical education, a successful literature review provides background information so that even someone unfamiliar with the research topic can understand the rationale for the study. Located in the introduction of the manuscript, the literature review guides the reader through what is already known in a manner that highlights the importance of the research topic. The literature review should also identify key gaps in the literature so the reader can understand the need for further research. This gap description includes an explicit problem statement that summarizes the important issues and provides a reason for the study. 2 , 4   The following is one example of a problem statement:

“Identifying gaps in the competency of anesthesia residents in time for intervention is critical to patient safety and an effective learning system… [However], few available instruments relate to complex behavioral performance or provide descriptors…that could inform subsequent feedback, individualized teaching, remediation, and curriculum revision.” 7  

This problem statement articulates the research topic (identifying resident performance gaps), why it is important (to intervene for the sake of learning and patient safety), and current gaps in the literature (few tools are available to assess resident performance). The researchers have now underscored why further research is needed and have helped readers anticipate the overarching goals of their study (to develop an instrument to measure anesthesiology resident performance). 4  

The Conceptual Framework

Following the literature review and articulation of the problem statement, the next step in clarifying the research purpose is to select a conceptual framework that can be applied to the research topic. Conceptual frameworks are “ways of thinking about a problem or a study, or ways of representing how complex things work.” 3   Just as clinical trials are informed by basic science research in the laboratory, conceptual frameworks often serve as the “basic science” that informs scholarship in medical education. At a fundamental level, conceptual frameworks provide a structured approach to solving the problem identified in the problem statement.

Conceptual frameworks may take the form of theories, principles, or models that help to explain the research problem by identifying its essential variables or elements. Alternatively, conceptual frameworks may represent evidence-based best practices that researchers can apply to an issue identified in the problem statement. 3   Importantly, there is no single best conceptual framework for a particular research topic, although the choice of a conceptual framework is often informed by the literature review and knowing which conceptual frameworks have been used in similar research. 8   For further information on selecting a conceptual framework for research in medical education, we direct readers to the work of Bordage 3   and Irby et al. 9  

To illustrate how different conceptual frameworks can be applied to a research problem, suppose you encounter a study to reduce the frequency of communication errors among anesthesiology residents during day-to-night handoff. Table 2 10 , 11   identifies two different conceptual frameworks researchers might use to approach the task. The first framework, cognitive load theory, has been proposed as a conceptual framework to identify potential variables that may lead to handoff errors. 12   Specifically, cognitive load theory identifies the three factors that affect short-term memory and thus may lead to communication errors:

Conceptual Frameworks to Address the Issue of Handoff Errors in the Intensive Care Unit

Conceptual Frameworks to Address the Issue of Handoff Errors in the Intensive Care Unit

Intrinsic load: Inherent complexity or difficulty of the information the resident is trying to learn ( e.g. , complex patients).

Extraneous load: Distractions or demands on short-term memory that are not related to the information the resident is trying to learn ( e.g. , background noise, interruptions).

Germane load: Effort or mental strategies used by the resident to organize and understand the information he/she is trying to learn ( e.g. , teach back, note taking).

Using cognitive load theory as a conceptual framework, researchers may design an intervention to reduce extraneous load and help the resident remember the overnight to-do’s. An example might be dedicated, pager-free handoff times where distractions are minimized.

The second framework identified in table 2 , the I-PASS (Illness severity, Patient summary, Action list, Situational awareness and contingency planning, and Synthesis by receiver) handoff mnemonic, 11   is an evidence-based best practice that, when incorporated as part of a handoff bundle, has been shown to reduce handoff errors on pediatric wards. 13   Researchers choosing this conceptual framework may adapt some or all of the I-PASS elements for resident handoffs in the intensive care unit.

Note that both of the conceptual frameworks outlined above provide researchers with a structured approach to addressing the issue of handoff errors; one is not necessarily better than the other. Indeed, it is possible for researchers to use both frameworks when designing their study. Ultimately, we provide this example to demonstrate the necessity of selecting conceptual frameworks to clarify the research purpose. 3 , 8   Readers should look for conceptual frameworks in the introduction section and should be wary of their omission, as commonly seen in less well-developed medical education research articles. 14  

Statement of Study Intent

After reviewing the literature, articulating the problem statement, and selecting a conceptual framework to address the research topic, the final step in clarifying the research purpose is the statement of study intent. The statement of study intent is arguably the most important element of framing the study because it makes the research purpose explicit. 2   Consider the following example:

This study aimed to test the hypothesis that the introduction of the BASIC Examination was associated with an accelerated knowledge acquisition during residency training, as measured by increments in annual ITE scores. 15  

This statement of study intent succinctly identifies several key study elements including the population (anesthesiology residents), the intervention/independent variable (introduction of the BASIC Examination), the outcome/dependent variable (knowledge acquisition, as measure by in In-training Examination [ITE] scores), and the hypothesized relationship between the independent and dependent variable (the authors hypothesize a positive correlation between the BASIC examination and the speed of knowledge acquisition). 6 , 14  

The statement of study intent will sometimes manifest as a research objective, rather than hypothesis or question. In such instances there may not be explicit independent and dependent variables, but the study population and research aim should be clearly identified. The following is an example:

“In this report, we present the results of 3 [years] of course data with respect to the practice improvements proposed by participating anesthesiologists and their success in implementing those plans. Specifically, our primary aim is to assess the frequency and type of improvements that were completed and any factors that influence completion.” 16  

The statement of study intent is the logical culmination of the literature review, problem statement, and conceptual framework, and is a transition point between the Introduction and Methods sections of a medical education research report. Nonetheless, a systematic review of experimental research in medical education demonstrated that statements of study intent are absent in the majority of articles. 14   When reading a medical education research article where the statement of study intent is absent, it may be necessary to infer the research aim by gathering information from the Introduction and Methods sections. In these cases, it can be useful to identify the following key elements 6 , 14 , 17   :

Population of interest/type of learner ( e.g. , pain medicine fellow or anesthesiology residents)

Independent/predictor variable ( e.g. , educational intervention or characteristic of the learners)

Dependent/outcome variable ( e.g. , intubation skills or knowledge of anesthetic agents)

Relationship between the variables ( e.g. , “improve” or “mitigate”)

Occasionally, it may be difficult to differentiate the independent study variable from the dependent study variable. 17   For example, consider a study aiming to measure the relationship between burnout and personal debt among anesthesiology residents. Do the researchers believe burnout might lead to high personal debt, or that high personal debt may lead to burnout? This “chicken or egg” conundrum reinforces the importance of the conceptual framework which, if present, should serve as an explanation or rationale for the predicted relationship between study variables.

Research methodology is the “…design or plan that shapes the methods to be used in a study.” 1   Essentially, methodology is the general strategy for answering a research question, whereas methods are the specific steps and techniques that are used to collect data and implement the strategy. Our objective here is to provide an overview of quantitative methodologies ( i.e. , approaches) in medical education research.

The choice of research methodology is made by balancing the approach that best answers the research question against the feasibility of completing the study. There is no perfect methodology because each has its own potential caveats, flaws and/or sources of bias. Before delving into an overview of the methodologies, it is important to highlight common sources of bias in education research. We use the term internal validity to describe the degree to which the findings of a research study represent “the truth,” as opposed to some alternative hypothesis or variables. 18   Table 3   18–20   provides a list of common threats to internal validity in medical education research, along with tactics to mitigate these threats.

Threats to Internal Validity and Strategies to Mitigate Their Effects

Threats to Internal Validity and Strategies to Mitigate Their Effects

Experimental Research

The fundamental tenet of experimental research is the manipulation of an independent or experimental variable to measure its effect on a dependent or outcome variable.

True Experiment

True experimental study designs minimize threats to internal validity by randomizing study subjects to experimental and control groups. Through ensuring that differences between groups are—beyond the intervention/variable of interest—purely due to chance, researchers reduce the internal validity threats related to subject characteristics, time-related maturation, and regression to the mean. 18 , 19  

Quasi-experiment

There are many instances in medical education where randomization may not be feasible or ethical. For instance, researchers wanting to test the effect of a new curriculum among medical students may not be able to randomize learners due to competing curricular obligations and schedules. In these cases, researchers may be forced to assign subjects to experimental and control groups based upon some other criterion beyond randomization, such as different classrooms or different sections of the same course. This process, called quasi-randomization, does not inherently lead to internal validity threats, as long as research investigators are mindful of measuring and controlling for extraneous variables between study groups. 19  

Single-group Methodologies

All experimental study designs compare two or more groups: experimental and control. A common experimental study design in medical education research is the single-group pretest–posttest design, which compares a group of learners before and after the implementation of an intervention. 21   In essence, a single-group pre–post design compares an experimental group ( i.e. , postintervention) to a “no-intervention” control group ( i.e. , preintervention). 19   This study design is problematic for several reasons. Consider the following hypothetical example: A research article reports the effects of a year-long intubation curriculum for first-year anesthesiology residents. All residents participate in monthly, half-day workshops over the course of an academic year. The article reports a positive effect on residents’ skills as demonstrated by a significant improvement in intubation success rates at the end of the year when compared to the beginning.

This study does little to advance the science of learning among anesthesiology residents. While this hypothetical report demonstrates an improvement in residents’ intubation success before versus after the intervention, it does not tell why the workshop worked, how it compares to other educational interventions, or how it fits in to the broader picture of anesthesia training.

Single-group pre–post study designs open themselves to a myriad of threats to internal validity. 20   In our hypothetical example, the improvement in residents’ intubation skills may have been due to other educational experience(s) ( i.e. , implementation threat) and/or improvement in manual dexterity that occurred naturally with time ( i.e. , maturation threat), rather than the airway curriculum. Consequently, single-group pre–post studies should be interpreted with caution. 18  

Repeated testing, before and after the intervention, is one strategy that can be used to reduce the some of the inherent limitations of the single-group study design. Repeated pretesting can mitigate the effect of regression toward the mean, a statistical phenomenon whereby low pretest scores tend to move closer to the mean on subsequent testing (regardless of intervention). 20   Likewise, repeated posttesting at multiple time intervals can provide potentially useful information about the short- and long-term effects of an intervention ( e.g. , the “durability” of the gain in knowledge, skill, or attitude).

Observational Research

Unlike experimental studies, observational research does not involve manipulation of any variables. These studies often involve measuring associations, developing psychometric instruments, or conducting surveys.

Association Research

Association research seeks to identify relationships between two or more variables within a group or groups (correlational research), or similarities/differences between two or more existing groups (causal–comparative research). For example, correlational research might seek to measure the relationship between burnout and educational debt among anesthesiology residents, while causal–comparative research may seek to measure differences in educational debt and/or burnout between anesthesiology and surgery residents. Notably, association research may identify relationships between variables, but does not necessarily support a causal relationship between them.

Psychometric and Survey Research

Psychometric instruments measure a psychologic or cognitive construct such as knowledge, satisfaction, beliefs, and symptoms. Surveys are one type of psychometric instrument, but many other types exist, such as evaluations of direct observation, written examinations, or screening tools. 22   Psychometric instruments are ubiquitous in medical education research and can be used to describe a trait within a study population ( e.g. , rates of depression among medical students) or to measure associations between study variables ( e.g. , association between depression and board scores among medical students).

Psychometric and survey research studies are prone to the internal validity threats listed in table 3 , particularly those relating to mortality, location, and instrumentation. 18   Additionally, readers must ensure that the instrument scores can be trusted to truly represent the construct being measured. For example, suppose you encounter a research article demonstrating a positive association between attending physician teaching effectiveness as measured by a survey of medical students, and the frequency with which the attending physician provides coffee and doughnuts on rounds. Can we be confident that this survey administered to medical students is truly measuring teaching effectiveness? Or is it simply measuring the attending physician’s “likability”? Issues related to measurement and the trustworthiness of data are described in detail in the following section on measurement and the related issues of validity and reliability.

Measurement refers to “the assigning of numbers to individuals in a systematic way as a means of representing properties of the individuals.” 23   Research data can only be trusted insofar as we trust the measurement used to obtain the data. Measurement is of particular importance in medical education research because many of the constructs being measured ( e.g. , knowledge, skill, attitudes) are abstract and subject to measurement error. 24   This section highlights two specific issues related to the trustworthiness of data: the validity and reliability of measurements.

Validity regarding the scores of a measurement instrument “refers to the degree to which evidence and theory support the interpretations of the [instrument’s results] for the proposed use of the [instrument].” 25   In essence, do we believe the results obtained from a measurement really represent what we were trying to measure? Note that validity evidence for the scores of a measurement instrument is separate from the internal validity of a research study. Several frameworks for validity evidence exist. Table 4 2 , 22 , 26   represents the most commonly used framework, developed by Messick, 27   which identifies sources of validity evidence—to support the target construct—from five main categories: content, response process, internal structure, relations to other variables, and consequences.

Sources of Validity Evidence for Measurement Instruments

Sources of Validity Evidence for Measurement Instruments

Reliability

Reliability refers to the consistency of scores for a measurement instrument. 22 , 25 , 28   For an instrument to be reliable, we would anticipate that two individuals rating the same object of measurement in a specific context would provide the same scores. 25   Further, if the scores for an instrument are reliable between raters of the same object of measurement, then we can extrapolate that any difference in scores between two objects represents a true difference across the sample, and is not due to random variation in measurement. 29   Reliability can be demonstrated through a variety of methods such as internal consistency ( e.g. , Cronbach’s alpha), temporal stability ( e.g. , test–retest reliability), interrater agreement ( e.g. , intraclass correlation coefficient), and generalizability theory (generalizability coefficient). 22 , 29  

Example of a Validity and Reliability Argument

This section provides an illustration of validity and reliability in medical education. We use the signaling questions outlined in table 4 to make a validity and reliability argument for the Harvard Assessment of Anesthesia Resident Performance (HARP) instrument. 7   The HARP was developed by Blum et al. to measure the performance of anesthesia trainees that is required to provide safe anesthetic care to patients. According to the authors, the HARP is designed to be used “…as part of a multiscenario, simulation-based assessment” of resident performance. 7  

Content Validity: Does the Instrument’s Content Represent the Construct Being Measured?

To demonstrate content validity, instrument developers should describe the construct being measured and how the instrument was developed, and justify their approach. 25   The HARP is intended to measure resident performance in the critical domains required to provide safe anesthetic care. As such, investigators note that the HARP items were created through a two-step process. First, the instrument’s developers interviewed anesthesiologists with experience in resident education to identify the key traits needed for successful completion of anesthesia residency training. Second, the authors used a modified Delphi process to synthesize the responses into five key behaviors: (1) formulate a clear anesthetic plan, (2) modify the plan under changing conditions, (3) communicate effectively, (4) identify performance improvement opportunities, and (5) recognize one’s limits. 7 , 30  

Response Process Validity: Are Raters Interpreting the Instrument Items as Intended?

In the case of the HARP, the developers included a scoring rubric with behavioral anchors to ensure that faculty raters could clearly identify how resident performance in each domain should be scored. 7  

Internal Structure Validity: Do Instrument Items Measuring Similar Constructs Yield Homogenous Results? Do Instrument Items Measuring Different Constructs Yield Heterogeneous Results?

Item-correlation for the HARP demonstrated a high degree of correlation between some items ( e.g. , formulating a plan and modifying the plan under changing conditions) and a lower degree of correlation between other items ( e.g. , formulating a plan and identifying performance improvement opportunities). 30   This finding is expected since the items within the HARP are designed to assess separate performance domains, and we would expect residents’ functioning to vary across domains.

Relationship to Other Variables’ Validity: Do Instrument Scores Correlate with Other Measures of Similar or Different Constructs as Expected?

As it applies to the HARP, one would expect that the performance of anesthesia residents will improve over the course of training. Indeed, HARP scores were found to be generally higher among third-year residents compared to first-year residents. 30  

Consequence Validity: Are Instrument Results Being Used as Intended? Are There Unintended or Negative Uses of the Instrument Results?

While investigators did not intentionally seek out consequence validity evidence for the HARP, unanticipated consequences of HARP scores were identified by the authors as follows:

“Data indicated that CA-3s had a lower percentage of worrisome scores (rating 2 or lower) than CA-1s… However, it is concerning that any CA-3s had any worrisome scores…low performance of some CA-3 residents, albeit in the simulated environment, suggests opportunities for training improvement.” 30  

That is, using the HARP to measure the performance of CA-3 anesthesia residents had the unintended consequence of identifying the need for improvement in resident training.

Reliability: Are the Instrument’s Scores Reproducible and Consistent between Raters?

The HARP was applied by two raters for every resident in the study across seven different simulation scenarios. The investigators conducted a generalizability study of HARP scores to estimate the variance in assessment scores that was due to the resident, the rater, and the scenario. They found little variance was due to the rater ( i.e. , scores were consistent between raters), indicating a high level of reliability. 7  

Sampling refers to the selection of research subjects ( i.e. , the sample) from a larger group of eligible individuals ( i.e. , the population). 31   Effective sampling leads to the inclusion of research subjects who represent the larger population of interest. Alternatively, ineffective sampling may lead to the selection of research subjects who are significantly different from the target population. Imagine that researchers want to explore the relationship between burnout and educational debt among pain medicine specialists. The researchers distribute a survey to 1,000 pain medicine specialists (the population), but only 300 individuals complete the survey (the sample). This result is problematic because the characteristics of those individuals who completed the survey and the entire population of pain medicine specialists may be fundamentally different. It is possible that the 300 study subjects may be experiencing more burnout and/or debt, and thus, were more motivated to complete the survey. Alternatively, the 700 nonresponders might have been too busy to respond and even more burned out than the 300 responders, which would suggest that the study findings were even more amplified than actually observed.

When evaluating a medical education research article, it is important to identify the sampling technique the researchers employed, how it might have influenced the results, and whether the results apply to the target population. 24  

Sampling Techniques

Sampling techniques generally fall into two categories: probability- or nonprobability-based. Probability-based sampling ensures that each individual within the target population has an equal opportunity of being selected as a research subject. Most commonly, this is done through random sampling, which should lead to a sample of research subjects that is similar to the target population. If significant differences between sample and population exist, those differences should be due to random chance, rather than systematic bias. The difference between data from a random sample and that from the population is referred to as sampling error. 24  

Nonprobability-based sampling involves selecting research participants such that inclusion of some individuals may be more likely than the inclusion of others. 31   Convenience sampling is one such example and involves selection of research subjects based upon ease or opportuneness. Convenience sampling is common in medical education research, but, as outlined in the example at the beginning of this section, it can lead to sampling bias. 24   When evaluating an article that uses nonprobability-based sampling, it is important to look for participation/response rate. In general, a participation rate of less than 75% should be viewed with skepticism. 21   Additionally, it is important to determine whether characteristics of participants and nonparticipants were reported and if significant differences between the two groups exist.

Interpreting medical education research requires a basic understanding of common ways in which quantitative data are analyzed and displayed. In this section, we highlight two broad topics that are of particular importance when evaluating research articles.

The Nature of the Measurement Variable

Measurement variables in quantitative research generally fall into three categories: nominal, ordinal, or interval. 24   Nominal variables (sometimes called categorical variables) involve data that can be placed into discrete categories without a specific order or structure. Examples include sex (male or female) and professional degree (M.D., D.O., M.B.B.S., etc .) where there is no clear hierarchical order to the categories. Ordinal variables can be ranked according to some criterion, but the spacing between categories may not be equal. Examples of ordinal variables may include measurements of satisfaction (satisfied vs . unsatisfied), agreement (disagree vs . agree), and educational experience (medical student, resident, fellow). As it applies to educational experience, it is noteworthy that even though education can be quantified in years, the spacing between years ( i.e. , educational “growth”) remains unequal. For instance, the difference in performance between second- and third-year medical students is dramatically different than third- and fourth-year medical students. Interval variables can also be ranked according to some criteria, but, unlike ordinal variables, the spacing between variable categories is equal. Examples of interval variables include test scores and salary. However, the conceptual boundaries between these measurement variables are not always clear, as in the case where ordinal scales can be assumed to have the properties of an interval scale, so long as the data’s distribution is not substantially skewed. 32  

Understanding the nature of the measurement variable is important when evaluating how the data are analyzed and reported. Medical education research commonly uses measurement instruments with items that are rated on Likert-type scales, whereby the respondent is asked to assess their level of agreement with a given statement. The response is often translated into a corresponding number ( e.g. , 1 = strongly disagree, 3 = neutral, 5 = strongly agree). It is remarkable that scores from Likert-type scales are sometimes not normally distributed ( i.e. , are skewed toward one end of the scale), indicating that the spacing between scores is unequal and the variable is ordinal in nature. In these cases, it is recommended to report results as frequencies or medians, rather than means and SDs. 33  

Consider an article evaluating medical students’ satisfaction with a new curriculum. Researchers measure satisfaction using a Likert-type scale (1 = very unsatisfied, 2 = unsatisfied, 3 = neutral, 4 = satisfied, 5 = very satisfied). A total of 20 medical students evaluate the curriculum, 10 of whom rate their satisfaction as “satisfied,” and 10 of whom rate it as “very satisfied.” In this case, it does not make much sense to report an average score of 4.5; it makes more sense to report results in terms of frequency ( e.g. , half of the students were “very satisfied” with the curriculum, and half were not).

Effect Size and CIs

In medical education, as in other research disciplines, it is common to report statistically significant results ( i.e. , small P values) in order to increase the likelihood of publication. 34 , 35   However, a significant P value in itself does necessarily represent the educational impact of the study results. A statement like “Intervention x was associated with a significant improvement in learners’ intubation skill compared to education intervention y ( P < 0.05)” tells us that there was a less than 5% chance that the difference in improvement between interventions x and y was due to chance. Yet that does not mean that the study intervention necessarily caused the nonchance results, or indicate whether the between-group difference is educationally significant. Therefore, readers should consider looking beyond the P value to effect size and/or CI when interpreting the study results. 36 , 37  

Effect size is “the magnitude of the difference between two groups,” which helps to quantify the educational significance of the research results. 37   Common measures of effect size include Cohen’s d (standardized difference between two means), risk ratio (compares binary outcomes between two groups), and Pearson’s r correlation (linear relationship between two continuous variables). 37   CIs represent “a range of values around a sample mean or proportion” and are a measure of precision. 31   While effect size and CI give more useful information than simple statistical significance, they are commonly omitted from medical education research articles. 35   In such instances, readers should be wary of overinterpreting a P value in isolation. For further information effect size and CI, we direct readers the work of Sullivan and Feinn 37   and Hulley et al. 31  

In this final section, we identify instruments that can be used to evaluate the quality of quantitative medical education research articles. To this point, we have focused on framing the study and research methodologies and identifying potential pitfalls to consider when appraising a specific article. This is important because how a study is framed and the choice of methodology require some subjective interpretation. Fortunately, there are several instruments available for evaluating medical education research methods and providing a structured approach to the evaluation process.

The Medical Education Research Study Quality Instrument (MERSQI) 21   and the Newcastle Ottawa Scale-Education (NOS-E) 38   are two commonly used instruments, both of which have an extensive body of validity evidence to support the interpretation of their scores. Table 5 21 , 39   provides more detail regarding the MERSQI, which includes evaluation of study design, sampling, data type, validity, data analysis, and outcomes. We have found that applying the MERSQI to manuscripts, articles, and protocols has intrinsic educational value, because this practice of application familiarizes MERSQI users with fundamental principles of medical education research. One aspect of the MERSQI that deserves special mention is the section on evaluating outcomes based on Kirkpatrick’s widely recognized hierarchy of reaction, learning, behavior, and results ( table 5 ; fig .). 40   Validity evidence for the scores of the MERSQI include its operational definitions to improve response process, excellent reliability, and internal consistency, as well as high correlation with other measures of study quality, likelihood of publication, citation rate, and an association between MERSQI score and the likelihood of study funding. 21 , 41   Additionally, consequence validity for the MERSQI scores has been demonstrated by its utility for identifying and disseminating high-quality research in medical education. 42  

Fig. Kirkpatrick’s hierarchy of outcomes as applied to education research. Reaction = Level 1, Learning = Level 2, Behavior = Level 3, Results = Level 4. Outcomes become more meaningful, yet more difficult to achieve, when progressing from Level 1 through Level 4. Adapted with permission from Beckman and Cook, 2007.2

Kirkpatrick’s hierarchy of outcomes as applied to education research. Reaction = Level 1, Learning = Level 2, Behavior = Level 3, Results = Level 4. Outcomes become more meaningful, yet more difficult to achieve, when progressing from Level 1 through Level 4. Adapted with permission from Beckman and Cook, 2007. 2  

The Medical Education Research Study Quality Instrument for Evaluating the Quality of Medical Education Research

The Medical Education Research Study Quality Instrument for Evaluating the Quality of Medical Education Research

The NOS-E is a newer tool to evaluate the quality of medication education research. It was developed as a modification of the Newcastle-Ottawa Scale 43   for appraising the quality of nonrandomized studies. The NOS-E includes items focusing on the representativeness of the experimental group, selection and compatibility of the control group, missing data/study retention, and blinding of outcome assessors. 38 , 39   Additional validity evidence for NOS-E scores includes operational definitions to improve response process, excellent reliability and internal consistency, and its correlation with other measures of study quality. 39   Notably, the complete NOS-E, along with its scoring rubric, can found in the article by Cook and Reed. 39  

A recent comparison of the MERSQI and NOS-E found acceptable interrater reliability and good correlation between the two instruments 39   However, noted differences exist between the MERSQI and NOS-E. Specifically, the MERSQI may be applied to a broad range of study designs, including experimental and cross-sectional research. Additionally, the MERSQI addresses issues related to measurement validity and data analysis, and places emphasis on educational outcomes. On the other hand, the NOS-E focuses specifically on experimental study designs, and on issues related to sampling techniques and outcome assessment. 39   Ultimately, the MERSQI and NOS-E are complementary tools that may be used together when evaluating the quality of medical education research.

Conclusions

This article provides an overview of quantitative research in medical education, underscores the main components of education research, and provides a general framework for evaluating research quality. We highlighted the importance of framing a study with respect to purpose, conceptual framework, and statement of study intent. We reviewed the most common research methodologies, along with threats to the validity of a study and its measurement instruments. Finally, we identified two complementary instruments, the MERSQI and NOS-E, for evaluating the quality of a medical education research study.

Bordage G: Conceptual frameworks to illuminate and magnify. Medical education. 2009; 43(4):312–9.

Cook DA, Beckman TJ: Current concepts in validity and reliability for psychometric instruments: Theory and application. The American journal of medicine. 2006; 119(2):166. e7–166. e116.

Franenkel JR, Wallen NE, Hyun HH: How to Design and Evaluate Research in Education. 9th edition. New York, McGraw-Hill Education, 2015.

Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB: Designing clinical research. 4th edition. Philadelphia, Lippincott Williams & Wilkins, 2011.

Irby BJ, Brown G, Lara-Alecio R, Jackson S: The Handbook of Educational Theories. Charlotte, NC, Information Age Publishing, Inc., 2015

Standards for Educational and Psychological Testing (American Educational Research Association & American Psychological Association, 2014)

Swanwick T: Understanding medical education: Evidence, theory and practice, 2nd edition. Wiley-Blackwell, 2013.

Sullivan GM, Artino Jr AR: Analyzing and interpreting data from Likert-type scales. Journal of graduate medical education. 2013; 5(4):541–2.

Sullivan GM, Feinn R: Using effect size—or why the P value is not enough. Journal of graduate medical education. 2012; 4(3):279–82.

Tavakol M, Sandars J: Quantitative and qualitative methods in medical education research: AMEE Guide No 90: Part II. Medical teacher. 2014; 36(10):838–48.

Support was provided solely from institutional and/or departmental sources.

The authors declare no competing interests.

Citing articles via

Most viewed, email alerts, related articles, social media, affiliations.

  • ASA Practice Parameters
  • Online First
  • Author Resource Center
  • About the Journal
  • Editorial Board
  • Rights & Permissions
  • Online ISSN 1528-1175
  • Print ISSN 0003-3022
  • Anesthesiology
  • ASA Monitor

Silverchair Information Systems

  • Terms & Conditions Privacy Policy
  • Manage Cookie Preferences
  • © Copyright 2024 American Society of Anesthesiologists

This Feature Is Available To Subscribers Only

Sign In or Create an Account

  • U.S. Department of Health & Human Services

National Institutes of Health (NIH) - Turning Discovery into Health

  • Virtual Tour
  • Staff Directory
  • En Español

You are here

Nih research matters.

December 22, 2021

2021 Research Highlights — Promising Medical Findings

Results with potential for enhancing human health.

With NIH support, scientists across the United States and around the world conduct wide-ranging research to discover ways to enhance health, lengthen life, and reduce illness and disability. Groundbreaking NIH-funded research often receives top scientific honors. In 2021, these honors included Nobel Prizes to five NIH-supported scientists . Here’s just a small sample of the NIH-supported research accomplishments in 2021.

Printer-friendly version of full 2021 NIH Research Highlights

20210615-covid.jpg

Novel Coronavirus SARS-CoV-2

Advancing COVID-19 treatment and prevention

Amid the sustained pandemic, researchers continued to develop new drugs and vaccines for COVID-19. They found oral drugs that could  inhibit virus replication in hamsters and shut down a key enzyme that the virus needs to replicate. Both drugs are currently in clinical trials. Another drug effectively treated both SARS-CoV-2 and RSV, another serious respiratory virus, in animals. Other researchers used an airway-on-a-chip to screen approved drugs for use against COVID-19. These studies identified oral drugs that could be administered outside of clinical settings. Such drugs could become powerful tools for fighting the ongoing pandemic. Also in development are an intranasal vaccine , which could help prevent virus transmission, and vaccines that can protect against a range of coronaviruses .

202211214-alz.jpg

Portrait of an older man deep in thought

Developments in Alzheimer’s disease research

One of the hallmarks of Alzheimer’s is an abnormal buildup of amyloid-beta protein. A study in mice suggests that antibody therapies targeting amyloid-beta protein could be more effective after enhancing the brain’s waste drainage system . In another study, irisin, an exercise-induced hormone, was found to improve cognitive performance in mice . New approaches also found two approved drugs (described below) with promise for treating AD. These findings point to potential strategies for treating Alzheimer’s. Meanwhile, researchers found that people who slept six hours or less per night in their 50s and 60s were more likely to develop dementia later in life, suggesting that inadequate sleep duration could increase dementia risk.

20211109-retinal.jpg

Photograph of retina

New uses for old drugs

Developing new drugs can be costly, and the odds of success can be slim. So, some researchers have turned to repurposing drugs that are already approved for other conditions. Scientists found that two FDA-approved drugs were associated with lower rates of Alzheimer’s disease. One is used for high blood pressure and swelling. The other is FDA-approved to treat erectile dysfunction and pulmonary hypertension. Meanwhile, the antidepressant fluoxetine was associated with reduced risk of age-related macular degeneration. Clinical trials will be needed to confirm these drugs’ effects.

20210713-heart.jpg

Temporary pacemaker mounted on the heart.

Making a wireless, biodegradable pacemaker

Pacemakers are a vital part of medical care for many people with heart rhythm disorders. Temporary pacemakers currently use wires connected to a power source outside the body. Researchers developed a temporary pacemaker that is powered wirelessly. It also breaks down harmlessly in the body after use. Studies showed that the device can generate enough power to pace a human heart without causing damage or inflammation.

20210330-crohns.jpg

Woman lying on sofa holding her stomach

Fungi may impair wound healing in Crohn’s disease

Inflammatory bowel disease develops when immune cells in the gut overreact to a perceived threat to the body. It’s thought that the microbiome plays a role in this process. Researchers found that a fungus called  Debaryomyces hansenii  impaired gut wound healing in mice and was also found in damaged gut tissue in people with Crohn’s disease, a type of inflammatory bowel disease. Blocking this microbe might encourage tissue repair in Crohn’s disease.

20210406-flu.jpg

Nanoparticle with different colored proteins on surface

Nanoparticle-based flu vaccine

Influenza, or flu, kills an estimated 290,000-650,000 people each year worldwide. The flu virus changes, or mutates, quickly. A single vaccine that conferred protection against a wide variety of strains would provide a major boost to global health. Researchers developed a nanoparticle-based vaccine that protected against a broad range of flu virus strains in animals. The vaccine may prevent flu more effectively than current seasonal vaccines. Researchers are planning a Phase 1 clinical trial to test the vaccine in people.

20211002-lyme.jpg

Photograph of a mouse eating a piece of bait

A targeted antibiotic for treating Lyme disease

Lyme disease cases are becoming more frequent and widespread. Current treatment entails the use of broad-spectrum antibiotics. But these drugs can damage the patient’s gut microbiome and select for resistance in non-target bacteria. Researchers found that a neglected antibiotic called hygromycin A selectively kills the bacteria that cause Lyme disease. The antibiotic was able to treat Lyme disease in mice without disrupting the microbiome and could make an attractive therapeutic candidate.

20211102-back.jpg

Young woman standing and holding back while working on laptop at home

Retraining the brain to treat chronic pain

More than 25 million people in the U.S. live with chronic pain. After a treatment called pain reprocessing therapy, two-thirds of people with mild or moderate chronic back pain for which no physical cause could be found were mostly or completely pain-free. The findings suggest that people can learn to reduce the brain activity causing some types of chronic pain that occur in the absence of injury or persist after healing.

2021 Research Highlights — Basic Research Insights >>

Connect with Us

  • More Social Media from NIH

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.55; Jan-Dec 2018

A Quantitative Observational Study of Physician Influence on Hospital Costs

Herbert wong.

1 U.S. Department of Health and Human Services, Agency for Healthcare Research and Quality, Rockville, MD, USA

Zeynal Karaca

Teresa b. gibson.

2 IBM Watson Health, Ann Arbor, MI, USA

Physicians serve as the nexus of treatment decision-making in hospitalized patients; however, little empirical evidence describes the influence of individual physicians on hospital costs. In this study, we examine the extent to which hospital costs vary across physicians and physician characteristics. We used all-payer data from 2 states representing 15 237 physicians and 2.5 million hospital visits. Regression analysis and propensity score matching were used to understand the role of observable provider characteristics on hospital costs controlling for patient demographics, socioeconomic characteristics, clinical risk, and hospital characteristics. We used hierarchical models to estimate the amount of variation attributable to physicians. We found that the average cost of hospital inpatient stays registered to female physicians was consistently lower across all empirical specifications when compared with male physicians. We also found a negative association between physicians’ years of experience and the average costs. The average cost of hospital inpatient stays registered to foreign-trained physicians was lower than US-trained physicians. We observed sizable variation in average costs of hospital inpatient stays across medical specialties. In addition, we used hierarchical methods and estimated the amount of remaining variation attributable to physicians and found that it was nonnegligible (intraclass correlation coefficient [ICC]: 0.33 in the full sample). Historically, most physicians have been reimbursed separately from hospitals, and our study shows that physicians play a role in influencing hospital costs. Future policies and practices should acknowledge these important dependencies. This study lends further support for alignment of physician and hospital incentives to control costs and improve outcomes.

  • What do we already know about this topic?
  • Specific physician characteristics influence a physician’s practice style as well as health care cost, delivery of care and outcomes.
  • How does your research contribute to the field?
  • Our research expands the current literature by performing an all-payer (vs single payer) analysis, using hierarchical models to estimate the amount of variation attributable to individual physicians, and partitioning the variation in hospital costs to understand the extent of influence attributable to physicians.
  • What are your research’s implications toward theory, practice, or policy?
  • We found substantial variation in hospital costs with observable physician characteristics, lending further support for payment and organizational models that align physician and hospital incentives that seek to control costs and improve outcomes.

Introduction

It has been well established that health care spending varies with geography. 1 - 3 The source of this variation has been often questioned—whether it is arising from area practice patterns, patient health status, patient characteristics, price, and/or individual provider decision making. 3 , 4

An Institute of Medicine (IoM) Committee examining geographic variations in Medicare spending convened earlier this decade concluded that individual providers of care had a great deal of influence on spending. 5 The Committee found post-acute care and inpatient care had the largest amounts of variation in spending, and discovered large variations in provider behavior. 4 Recommendations from the IoM Committee stated that evidence pointed away from geographic or small area spending signatures and toward health care decision-makers. Similarly, Gottleib and colleagues 6 performed a study of spending variation controlling for patient demographic characteristics, health status, and prices between regions, and found that price contributed only a small fraction of variation in spending although patients with similar characteristics received different levels of care from providers.

Previous studies have long demonstrated that specific physician characteristics influence a physician’s practice style. 7 - 10 Several studies have assessed how well physician characteristics explain the variation in hospital resource use. 1 , 11 - 13 Other researchers profiled physicians by analyzing and comparing the effects of their characteristics on health care cost, delivery, and outcomes. 14 - 19 A recent study by Tsugawa and colleagues 20 demonstrated the existence of physician influence on Part B Medicare spending and the extent of spending attributable to physicians.

Other recent studies have examined the relationship between observable characteristics of physicians and health care spending and outcomes. For example, patients treated by graduates of foreign medical schools had lower mortality but higher Medicare Part B payments than those graduating from US medical schools. 21 Elderly patients with a female physician had lower mortality and readmission rates than male physicians. 22 In a separate study, no clear pattern was found between patient mortality and physician age for elderly patients, but patients with an older physician had higher Medicare Part B payments. 23 Also, Southern and colleagues 24 found that tenure in practice was positively associated with higher risk of mortality and longer lengths of stay in a local hospital system.

In this study, we use all-payer inpatient data from 2 states, Arizona and Florida, to analyze and quantify the extent of physician influence on inpatient hospital costs other than professional services. Hospital care accounts for 32% of national health care expenditures and is the largest expense category in 2015. 25 In addition, physicians are responsible for selecting the course of care provision and treatment, thereby influencing hospital costs of care.

Our research has 2 aims. First, we describe the relationship between hospital costs and observable characteristics of physicians including physician gender and foreign medical school graduation while controlling for patient demographics, socioeconomic characteristics, clinical risk, and hospital characteristics, although cost in this analysis cannot be distinguished between patients and payers. Second, we measure the fraction of variation in costs of hospital inpatient visits due to individual physicians, controlling for observable physician characteristics, patient demographics, socioeconomic characteristics, clinical risk, and hospital characteristics.

This article complements and expands upon the existing empirical literature in several important ways. First, our data are all-payer and do not limit the analysis to a specific payer group or patient group. This extends the previous literature as most recent studies have focused on the physician role in Part B spending variation in large Medicare samples 20 - 23 or within small, local samples. 24 Most physicians have a mix of patients covered by Medicare, Medicaid, private payers, and the uninsured, and we seek to understand their role in influencing hospital costs across all-payer groups. In addition, we use hierarchical models to estimate the amount of variation attributable to individual physicians, controlling for patient demographics, socioeconomic characteristics, clinical risk, and hospital characteristics, allowing us to partition the variation in hospital costs and to understand the extent of influence attributable to physicians. Finally, we use regression analysis and propensity score matching to further understand the role of providers on hospital costs.

We used the Healthcare Cost and Utilization Project (HCUP) 2008 State Inpatient Databases (SID) for Arizona and Florida. These HCUP SID files include all inpatient hospitalizations for nearly all acute care nonfederal hospitals in the subject states. The SID provide detailed diagnoses and procedures, total charges, and patient demographics including gender, age, race, and expected payment source (ie, Medicare, Medicaid, private insurance, other insurance, and self-pay). Physician characteristic information (eg, specialty, year of graduation from medical school, and the name of the medical school) was obtained from the Arizona Board of Medical Examiners and the Florida Department of Health. With permissions from all data partners, information was linked to the Arizona SID using both physician license number and physician name, and to the Florida SID using physician license numbers as the Florida SID do not provide physician name. i The physician represented the surgeon (operating physician), if a surgery was performed, otherwise, the attending physician who is responsible for overall care from admission to discharge. In addition, supplemental hospital characteristic and area characteristic information were obtained, respectively, from the American Hospital Association (AHA) and Area Resource Files. The total number of hospital inpatient visits during 2008 in Arizona and Florida was about 3.31 million, and about 5% were missing physician identifiers. We successfully linked 2.53 million of these visits to physician licensure databases and AHA hospital survey data. All investigators signed a Data Use Agreement. Because HCUP does not involve human subjects, institutional review board approval was not required for this study.

Our key covariates of interest were the physician’s gender, years of experience, board certified specialties, and whether they graduated from a medical school outside of the United States. We calculated years of experience as the difference between 2008 and the year the physician graduated from medical school. We created a series of dummy variables to represent the physician’s specialties of surgery, internal medicine, obstetrics and gynecology, neurology, psychiatry, pediatrics, cardiology, family medicine and general practitioners, and urology. The effect of being foreign-trained was examined by including a separate dummy variable for physicians if they graduated from a medical school outside of the United States. While physicians’ names and the name of their medical school are included in physicians’ licensure databases, physicians’ gender and the location of their medical schools are not readily available. We obtained these from various data sources and online search engines including http://doctor.webmd.com , http://www.aamc.org , http://www.babynames.com , and http://www.google.com . For physician gender, we followed a systematic assignment process requiring matching information from at least 2 independent data sources. Complete information regarding major physician characteristics was obtained for 2.53 million discharges studied in this study.

Hospital costs represent the underlying expenses to produce the hospital services. Since hospitals differ in their markup from costs to charges, we first reduced the charge for each case based on the hospital’s all-payer, inpatient cost-to-charge ratio. ii We applied hospital-specific all-payer cost-to-charge ratios, and replaced all-payer cost-to-charge ratios with group-average all-payer inpatient cost-to-charge ratios when hospital-specific all-payer inpatient cost-to-charge ratios were missing. Next, we adjusted these costs with the area wage index iii computed by the Centers for Medicare and Medicaid Services (CMS) to control for price factors beyond the hospital’s control. We also obtained information about hospital characteristics (eg, teaching status and bed size) using the AHA Annual Survey Database.

Empirical Models

Our study’s empirical models employ a hierarchical framework 26 to assess the effects of physician characteristics on the costs of hospital inpatient visits; we developed a model that controls for physician characteristics, patient demographics, socioeconomic characteristics, clinical risk, and hospital characteristics.

We reassessed the impacts of physician characteristics on costs of hospital inpatient visits using multilevel regression analysis where hospital inpatient visits were clustered by physician.

Our empirical model takes the following general form:

where variation in the intercept is predicted at level 2 by

Substituting (2) into Equation (1) yields the following single multilevel equation:

where i indexes the hospital inpatient visits and j indexes the physicians who treated the i th visit, and LogCost ij is the natural log value of the total hospital inpatient cost associated with the i th visit in the j th physician unit. Physician j is a vector of physicians’ characteristics that includes physicians’ years of experience measured as the difference between 2008 and their year of graduation from medical school, a set of dummy variables for physicians’ board certified specialties (surgery, internal medicine, obstetrics and gynecology, neurology, psychiatry, pediatrics, cardiology, family medicine and general practitioners, urology), for physicians’ gender, and for physicians who graduated from a medical school outside of the United States. Demographic i is a vector of observable patient demographic characteristics, which include age (in age/10 scale), and dummy variables for race and gender. Socioecon i includes a set of county-level dummy variables for income (low, low-medium, medium-high, and high) and for patients’ primary insurance providers (ie, Medicare, Medicaid, private, and other). Risk i includes dummy variables for the Elixhauser comorbidity index. 27 Severity i is the high-severity-measure dummy variable (with value 1 for the patient when All Patient Refined Diagnosis Related Groups (APR-DRG) severity index takes a value of 3 or 4). 28 Hospital i includes a set of dummy variables related to hospital characteristics—including teaching status, ownership type, bed size, and state (Arizona or Florida)—that may also represent unmeasured severity of illness for a patient referred to a highly capable institution. Finally, γ j represents departures of the j th physician from the overall mean that serves to shift the overall regression line representing the population average up or down according to each physician, and ξ ij is the level 1 random error. The random components of this model provide information about intraclass correlation coefficients (ICCs), which enables us to understand variation in costs of hospital inpatient visits associated with physicians’ characteristics. Our level 1 predictor variables are dummy variables except for age, which we standardized by dividing by 10. In our case, centering around the grand mean or using raw metric values did not change the direction of estimates. Therefore, we used raw metric values in our regression analysis. iv We present findings overall, and for teaching and nonteaching hospitals, as physician mix and patient complexity may vary between these types of facilities.

Sensitivity Analysis

We also developed various scenarios to test the robustness of our results. Specifically, we enhanced our model by incorporating level 2 variation not only in intercept but also in slope. Under this model, we assumed that patients had certain preferences in their choice of physician. We ran 3 models with level 2 variations within physicians by these patient characteristics: gender, severity of illness, and gender and severity of illness. Our empirical findings in these 3 models, where both intercepts and slopes varied in level 2, were parallel to our model with level 2 intercept-only variations. For the purpose of clarity, we provide the results for our base model where level 2 variations are only observed through intercepts that represent departures for each physician from the overall mean.

Some researchers claim that there is an implicit relationship between patient gender and physician gender 7 , 29 - 32 or physicians’ practice style and their graduating medical school, 34 which could introduce some degree of endogeneity into our empirical model as presented above. Although our multilevel model substantially reduces the unobservable endogeneity by clustering patients across physicians, we employed propensity score matching techniques 33 to address the potential endogeneity issues when estimating the impact of physicians’ practice style on hospital inpatient costs. We employed the propensity score nearest neighbor (NN) matching without replacement method to create subsamples of physicians based on their observable characteristics. We created our first subsample of physicians by matching female physicians with male physicians based on their observable characteristic of medical specialties, experience, foreign- versus US-trained, state (Arizona or Florida), and whether physicians practiced at both teaching and nonteaching hospitals. Then, we reestimated our multilevel model using hospital inpatient visits registered to these matched cohorts of physicians. The new estimates provide more robust findings regarding the impact of practice styles of female physicians on hospital inpatient costs when compared with their matching male cohorts. Next, we created our second subsample of physicians by matching foreign-trained physicians with US-trained physicians based on their observable characteristics of medical specialties, experience, gender, state, and whether physicians practiced at both teaching and nonteaching hospitals and reestimated our multilevel model.

The average cost of hospital inpatient visits was $9172 for all visits, $9492 for visits to teaching hospitals, and $8679 for visits to nonteaching hospitals (see Appendix Table A1 for visit characteristics). There were 7993 physicians who worked only at teaching hospitals, 4249 physicians who worked only at nonteaching hospitals, and 2995 physicians who worked in both settings for a total of 15 237 physicians ( Table 1 ). The physicians had an average of 24 years of experience. The proportion of female physicians was 26.5%, and the relative distribution working only at teaching hospitals or nonteaching hospitals, or at both, were comparable. About a third of the physicians graduated from medical schools outside of the United States, and we observed a higher prevalence at nonteaching hospitals when compared with teaching hospitals. We also observed that 16.4% of physicians in our sample were board certified surgeons and 31.7% of physicians had board certification in internal medicine. The percentage of physicians with other board certified specialties was lower: obstetrics and gynecology (8.0), neurology (2.3), psychiatry (1.2), pediatrics (12.7), cardiology (7.0), family medicine and general practitioners (7.3), urology (2.5).

Profile of Physicians at Hospital Inpatient Settings.

Note. Data include all hospital inpatient stays incurred during 2008 in Arizona and Florida. We excluded all records associated with physicians with 12 or fewer observations during 2008, which is about 1% of entire sample.

Table 1 also presents the average cost per hospital inpatient visit by physician characteristics. The average cost of hospital inpatient visits for patients visiting female physicians was $2264 lower when compared with costs for patients visiting male physicians. This difference was larger in teaching hospitals when compared with nonteaching hospitals. Similarly, we observed the average cost per hospital visit treated by foreign-trained physicians was $1191 less when compared with physicians who graduated from a medical college in the United States. Although we observed a larger difference in average hospital inpatient costs between foreign-trained and US-trained physicians who work only at teaching hospitals, there was only about $64 difference for physicians working only at nonteaching hospitals. We found sizable variation in the average cost of a hospital inpatient visit across physicians’ specialties. Patients treated by physicians with specialties in surgery, neurology, and cardiology had relatively higher average costs per hospital visit, which were $17 431, $16 496, and $14 714, respectively.

We also documented the distribution of patients’ severity of illness by physician characteristics. The results presented in Table 1 show that the percentage with high severity of illness was higher for male patients than for female patients regardless of the hospital setting. We also observed that foreign-trained physicians had a relatively higher share of high-severity patients at teaching hospitals when compared with nonteaching hospitals. Finally, we found that the relative share of high-severity patients was greater for physicians with specialties in internal medicine or family medicine and general practitioners working at nonteaching hospitals when compared with physicians with the same specialties working at teaching hospitals. However, for most of the remaining physicians working only at teaching hospitals, we observed a higher share of patients with high severity of illness when compared with physicians working only at nonteaching hospitals.

Regression Results

Linear regression results presented in column 1 of Table 2 show that the average cost of hospital inpatient visits for patients visiting female physicians was 0.1% lower than male physicians and was 0.5% lower for patients visiting foreign-trained physicians versus US-trained physicians. Each additional year of experience was associated with 4.3% lower costs. We also observed sizable variation in average costs of hospital inpatient visits across medical specialties where surgeons and cardiologists were associated with the highest average cost and pediatricians and psychiatrists were associated with the lowest average cost per hospital inpatient visit. The regression results based on hospital inpatient visits to teaching hospitals were parallel to our main results for all key covariates ( Table 2 , column 2). We also found similar results for nonteaching hospitals ( Table 2 , column 3).

Estimated Effects of Physician Characteristics on Log Inpatient Cost Per Visit.

Note. Data include all hospital inpatient stays incurred during 2008 in Arizona and Florida. We excluded all records associated with physicians with 12 or fewer observations during 2008, which is about 1% of the entire sample. All regression models include patient’s primary payers, median household income for residences in patient’s ZIP Code, and the Elixhauser comorbidity index. Level 1 is visit level and level 2 is physician level. Percent impact is calculated as (exp(coefficient) – 1) × 100. Standard errors are in parentheses.

Columns 4 to 6 of Table 2 present the results of multilevel regressions estimated separately for hospital inpatient visits to all hospitals, to teaching hospitals, and to nonteaching hospitals to assess the robustness of our earlier results derived from single-level linear regression. The average cost of hospital inpatient visits for patients visiting female physicians was 11% lower than male physicians and was 3.6% lower for patients visiting foreign-trained physicians versus US-trained physicians. Each additional year of experience was associated with 0.10% lower costs. Similar to our earlier results, we found substantial variation in costs of hospital inpatient visits across medical specialties. The multilevel regression results based on inpatient visits to teaching hospitals and nonteaching hospitals retained the same sign and statistical significance, which enhanced the validity and robustness of our results, specifically how physician characteristics impact the cost per hospital inpatient visits. v

Table 2 presents the estimates separately for 2 cohorts of physicians where the first cohort includes equal numbers of male and female physicians with a similar distribution of other characteristics, and the second cohort includes equal numbers of foreign-trained and US-trained physicians with a similar distribution of other characteristics (see matching results in Appendix Table A2 ). The estimated coefficients on key physician characteristics are highly statistically significant and have the same direction as our earlier results. In our female-male matched cohort, the regression results show that the hospital inpatient costs registered to female physicians are 10.8% lower when compared with hospital inpatient visits registered to male physicians. Similarly, the estimated effect of foreign-trained physicians on hospital inpatient costs is 3.8% lower in our second cohort where each foreign-trained physician is matched with a US-trained physician. The coefficients on physicians’ experience and medical specialties remain statistically significant and parallel to our earlier findings in the hierarchical models.

The multilevel regression results presented in Tables 2 and ​ and3 3 also enable us to empirically measure the average correlation of patients registered to the same physicians. ICC, which is calculated by dividing the level 1 variance by the sum of the level 1 and level 2 variations, describes how strongly hospital inpatient visits registered to the same physicians are correlated with each other. In general, if ICC approaches to value zero, then one might chose to ignore multilevel estimation models and analyze the data in standard ways. On the contrary, if the ICC approaches the value one, there is no variation among patients registered to same physicians, so one might aggregate the data at the physician level and run a single-level linear regression model on aggregated data. For our case, the ICC values ranged from 0.329 (0.241 / [0.241 + 0.419]) (nonteaching hospitals) to 0.364 (teaching hospitals) ( Table 2 ) before matching and 0.605 (female models) to 0.643 (0.481 / [0.481 + 0.267]) (foreign-trained physician models) ( Table 3 ) after matching which indicates modest to sizable variation among visits registered to the same physician. The ICC range of our multilevel model also empirically validates our discussion around the necessity of using a multilevel model rather than single-level linear regression model.

Estimated Effects of Physician Characteristics on Log Inpatient Spending Per Visit.

Note. Level 1 is visit level and level 2 is physician level. Percent impact is calculated as (exp(coefficient) – 1) × 100. NN = nearest neighbor. Absolute values of t -ratios are in parentheses.

In this examination of all-payer data from two states, we found substantial variation in the costs of producing these hospital services with observable physician characteristics such as physician age, gender, foreign training, and physician specialty. We found that the average cost of hospital inpatient stays registered to female physicians was consistently lower across all empirical specifications when compared with the average cost of hospital inpatient stays registered to male physicians. We also found a negative association between physicians’ years of experience and the average costs of hospital inpatient stays. Similarly, the average cost of hospital inpatient stays registered to foreign-trained physicians was significantly lower when compared with the average cost of hospital inpatient stays registered to US-trained physicians. Finally, we observed sizable variation in average costs of hospital inpatient stays across medical specialties where surgeons and cardiologists were generally associated with higher average costs and pediatricians and psychiatrists were generally associated with lower average costs. Further research should investigate the sources of the differences associated with physician characteristics.

Using hierarchical methods and random effects, we estimated the percentage of remaining variation attributable to individual physicians. Using the entire sample, the ICC was approximately 0.35, or one third of the variation was attributable to physicians. Our approach partitions the variation in hospital costs and allows physicians to practice at multiple hospitals. Other studies have employed hospital fixed effects and partitioned the remaining variation in physician costs effectively comparing physicians within the same hospital. 21 This is an important distinction in approaches and could result in slightly different conclusions based on the variation that is being partitioned (total or net of hospital fixed effects).

Our data are all-payer and focus on the underlying costs of providing care. These differ from reimbursement amounts which may be relatively standardized across hospitals through Diagnosis Related Groups (DRG) payments within payers. Our results confirm that physician behavior is associated with variation in hospital costs other than professional services and this could occur through variations in physician practice styles and treatment decision-making.

Our study is limited to data from 2 large US states, and analysis of physician behavior in other states or countries may differ. This study relies on accurate attribution of individual physicians to hospital discharges. Our study is not experimental, and is observational, revealing a retrospective view of the association between physicians and hospital costs. Physicians were not randomized to patients, so potential endogeneity exists in patient selection of physicians. We attempted to minimize the impact of potential endogeneity in physician gender and foreign-trained physicians by creating matched samples of physicians and found that the ICC increased substantially, exceeding 0.60. This result is likely due to the retention of more similar samples of physicians, where residual variation is lower, and the percentage of variation attributable to physicians is higher.

When compared with recent studies, our findings are consistent with Tsugawa and colleagues 22 who found that female physicians treating Medicare patients had lower Part B payments. However, while we found that foreign medical graduates had slightly lower hospital costs, Tsugawa and colleagues 21 also found that foreign medical graduates had slightly higher Part B spending ($47 per discharge). The difference may be in the data used; ours is all-payer and focuses on hospital costs, and Tsugawa and colleagues 21 analyze Medicare enrollees and Medicare Part B payments as well as a methodological difference. Tsugawa and colleagues employ hospital fixed effects which compares physicians practicing at the same hospital.

Historically, physician and hospitals have been reimbursed via separate mechanisms, and our results quantify the physician role in the provision of care in hospital facilities. Our study lends support to the interconnected relationship between physicians and facilities in providing care to patients. Future policies, practices, and training processes for hospital administrators and physicians should acknowledge and address these important dependencies.

This study predates large systemic changes to align incentives of physicians and hospitals including some types of Alternative Payment Models and Accountable Care Organizations, and allows a window into physician influence on hospital costs prior to the expansion of these initiatives. At the time of this study, physicians generally had fewer incentives to control hospital costs. As aligned incentives expand, repeating this analysis will be important to understand trends in cost variation and physician influence. Our study also lends further support for payment and organizational models that align physician and hospital incentives that seek to control costs and improve outcomes.

Acknowledgments

Arizona Department of Health Services and Florida Department of Health granted special permission to access physician identifiers used by the research team. The authors would like to acknowledge the following Healthcare Cost and Utilization Project (HCUP) Partner organizations for contributing data to the HCUP State Inpatient Databases (SID) used in this study: Arizona Department of Health Services and Florida Agency for Health Care Administration. A full list of HCUP Data Partners can be found at www.hcup-us.ahrq.gov/db/hcupdatapartners.jsp .

Profile of Hospital Inpatient Visits.

Note. Data include all hospital inpatient stays incurred during 2008 in Arizona and Florida. We excluded all records associated with physicians with 12 or fewer observations during 2008, which was about 1% of the entire sample.

Analytic Framework for Hierarchical Models

Following existing studies on multilevel models ( Bryk and Raudenbush 1992 , Rice and Jones 1997 , Carey 2000 , Diez-Roux 2000 ), a basic formal 2-level model is presented, with a single level 1 predictor and a single level 2 predictor with the intercept modeled to vary randomly at level 2. The level 1 model takes the form

Response variable Y represents hospital inpatient cost per visit, X is a predictor that varies with hospital inpatient visits, and subscripts i and j reference hospital inpatient visits and physicians, respectively. Residual ξ i j is the random error for the i th hospital inpatient visit in the j th physician unit. At level 2, variation in the intercept is predicted by

The terms β 02 represent fixed elements and β 12 , the coefficients on P j , varies for each physician. The terms γ j are the random error components and along with ξ ij are assumed to be normally distributed with zero mean. Furthermore,

Substituting (2) into Equation (1) yields the single 2-level multilevel equation:

The first 3 terms on the right-hand side make up the deterministic part of the model. The 2 terms in parentheses comprise the stochastic or residual portion, which, in this example, contains 2 random variables. Components γ j represent departures of the j th physician from the overall mean; ξ i j is the hospital-inpatient-visit-level random error. Equation (3) requires the estimation of 3 fixed coefficients, 2 variances, and one covariance component. The presence of more than one residual term distinguishes this model from standard regression models. It is straightforward to enhance this model with more predictors and higher levels.

We present the descriptive characteristics for the 2 separate subsamples of physicians obtained from the propensity score nearest neighbor (NN) matching without replacement method as explained earlier. The descriptive results presented in Table A2 shows that the distribution of physician characteristics in the matching cohorts are very similar. For example, 3978 female physicians were individually matched with 3978 male physicians based on their observable characteristics. In this sample, the relative distribution of medical specialties and mean value for experience among female physicians were very similar to those of their male physician counterparts. Similarly, Table A2 shows that 5298 foreign-trained physicians were matched with 5298 US-trained physicians. The relative distributions of medical specialties, gender, and mean value for experience for foreign-trained physicians were very close to those statistics among the US-trained physicians.

Profile of Physicians Matched Through Propensity Score NN Matching Without Replacement Method.

Note. NN = nearest neighbor.

  • Bryk A, Raudenbush S. Hierarchical Linear Models . Newbury Park, CA: Sage; 1992. [ Google Scholar ]
  • Carey K. A multilevel modelling approach to analysis of patient costs under managed care . Health Econ . 2000; 9 :435-446. [ PubMed ] [ Google Scholar ]
  • Diez-Roux A. Multilevel analysis in public health research . Annu Rev Public Health . 2000; 21 :171-192. [ PubMed ] [ Google Scholar ]
  • Rice N, Jones A. Multilevel models and health economics . Health Econ . 1997; 6 :561-575. [ PubMed ] [ Google Scholar ]

i. Arizona Department of Health and Florida Agency for Health Care Administration granted special permission to access physician identifiers used by the research team

ii. The methodology uses the hospital’s accounting report covering all patients submitted to Centers for Medicare and Medicaid Services (CMS) and is described in user guides at http://www.hcup-us.ahrq.gov/db/state/costtocharge.jsp (accessed October 10, 2012).

iii. Costs throughout this article are inflation-adjusted. The methodology is described in user guides at http://www.hcup-us.ahrq.gov/db/state/costtocharge.jsp (accessed October 10, 2012).

iv. We also used grand mean centering for all level 1 variables (except age, which was scaled as age/10), and we found the direction and significance of results remained same.

v. Some researchers may suggest further clustering instead of estimating 2-level multilevel regression model separately using patients’ discharge data from teaching hospitals and nonteaching hospitals. We added further clustering by hospital’s teaching status and regression results for 3-level multilevel regression model were parallel to our earlier 2-level multilevel regression results.

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding: The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was funded by the Agency for Healthcare Research and Quality (AHRQ) under contract HHSA-290-2013-00002-C and through AHRQ intramural research funds. The views expressed herein are those of the authors and do not necessarily reflect those of the AHRQ Quality or the US Department of Department of Health and Human Services. No official endorsement by any agency of the federal or state governments or IBM Watson Health is intended or should be inferred.

IRB Statement: The Healthcare Cost and Utilization Project (HCUP) databases are consistent with the definition of limited data sets under the Health Insurance Portability and Accountability Act Privacy Rule. The Agency for Healthcare Research and Quality (AHRQ) Institutional Review Board considers research using HCUP data to have exempt status.

An external file that holds a picture, illustration, etc.
Object name is 10.1177_0046958018800906-img1.jpg

  • U.S. Department of Health & Human Services
  • National Institutes of Health

NIBIB Logo

En Español | Site Map | Staff Directory | Contact Us

  • Labs @ NIBIB
  • Laboratory on Quantitative Medical Imaging

Laboratory on Quantitative Medical Imaging Research Topics

Biomarkers 1 are of fundamental importance for any research endeavor aimed at improving human health. The main objective of the Laboratory on Quantitative Medical Imaging is to research quantitative markers obtained with non-invasive imaging techniques, primarily MRI, and encompassing methods development, biologic validation, and clinical application. We have been particularly focused on MRI of the normal brain and of neurologic disorders, but we are expanding our investigation to other organs.

Perspective

Quantitative MRI markers rely on the quality, accuracy, and reliability of MRI data, which presents a major challenge for acquisitions, such as diffusion MRI (dMRI), that are vulnerable to artifacts. However, if we can understand the source and behavior of these factors then we can design approaches that are highly effective for correcting images during the post-acquisition processing stage.

Methods Development

Our lab has made contributions in imaging research which encompass the full quantitative imaging spectrum including: acquisition, processing, analysis, and clinical interpretation of findings. The tools we develop are publicly available in the TORTOISE software suite ( www.tortoisedti.org ) which currently includes artifact and distortion correction strategies, sophisticated multi-subject registration, and a combined voxelwise analysis paradigm to detect microstructural and morphometric abnormalities in a robust and bias-free manner.

Clinical Translation

Because the ultimate goal of our research effort is to advance medical care, we have established several projects with intramural and extramural collaborators including both clinical and pre-clinical studies. Our current projects include probing the neurobiological underpinnings of the diffusion MRI signal, identifying MRI markers of pathology in experimental animal models of brain disorders, characterizing diffusion and morphometric brain changes during childhood and determining the presence and nature of abnormalities in human disorders such as stroke, traumatic brain injury, Down syndrome, Hereditary Spastic Paraparesis, and Moebius syndrome. We are also developing imaging strategies useful for prostate cancer assessment.

Our work aims at improving the quality, reliability and interpretability of clinical MRI.  The imaging methods we develop enable the creation of reliable normative databases and provide a framework for accurate phenotyping in personalized medicine. The quantitative nature of the novel biomarkers we investigate provides data suitable to be analyzed with artificial intelligence approaches for addressing clinical questions.

1. A biomarker is defined as: a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.

Explore More

Science Education

  • Science Topics
  • 60 Seconds of Science
  • Understanding Medical Imaging Mobile App
  • Science Fact Sheets
  • Video Gallery
  • Audio Library

Recent News

Scientific Program Areas

  • Division of Applied Science & Technology (Bioimaging)
  • Division of Discovery Science & Technology (Bioengineering)
  • Division of Health Informatics Technologies (Informatics)
  • Division of Interdisciplinary Training (DIDT)

Inside NIBIB

  • Director's Corner
  • Funding Policies
  • NIBIB Fact Sheets
  • Press Releases

Thesis Helpers

medicine research topics quantitative

Find the best tips and advice to improve your writing. Or, have a top expert write your paper.

201 Stellar Medical Researches Topics For Any Taste

medical research Topics

If you are in a medical college, you probably understand the struggle students face in finding medical research topics. On top of having to view corpses during practical sessions, there is another scary part of looking for best-rated medical research topic ideas.

What Is A Medical Research Paper?

It refers to an academic paper designed to test medical students’ understanding of medicine’s various aspects. These include nursing, psychotherapy, surgery, diseases, and many more.

Finding great medical research paper topics is not as hard as most students perceive it to be. It is only the fear that turns down most students, preventing them from unleashing their potential. However, here are some of the readily available sources that will give you medical topics for research papers:

Reputable medicine-related websites such as the WHO’s Known books and scholarly journals in medicine A credible online writing site (such as ours)

Through this paper’s help, you will know how to write top-rated medical research papers topics in an easy-to-understand manner.

Medical Research Topics For College Students

  • Discuss why doctors use a snake in their logo
  • Why is the field of medicine not preferred by most students?
  • Evaluate the effectiveness of using simulations instead of natural bodies in a medical class
  • The role of therapy in advancing the economic and political status of a country
  • Why schools should incorporate First Aid skills as part of their curriculum
  • Are the medical internships too long for students?
  • Assess the possibility of paying doctors more than any other workers
  • Should all the staff in a medical facility have a background in medicine?
  • Discuss the impact of technological advancements on medicine
  • Do movies depict the unfair practice of medicine?
  • The perception of students towards medicine: A case study of middle school students
  • What is the greatest challenge facing doctors and clinicians?
  • Does the medical curriculum cover every aspect of medicine
  • Discuss the impact of online learning on medical students
  • Should doctors down their tools in case of a disagreement with their employers?
  • How often should one go for a dental check-up?
  • Analyze the number of medical colleges in the US
  • Should doctors undergo a psychological check-up after every three months?
  • What is the role of the government in ensuring a sustainable healthcare program?
  • The impact of long shifts to the mental state of a doctor

Med Research Topics in Nursing

  • Analyze the factors affecting elderly nursing care programs
  • Discuss why memory loss is associated with advancement in age
  • Should first responders to an accident scene dress the wounds of the victims?
  • Why is the field of nursing not a favorite for men?
  • Compare and contrast the roles of a doctor versus those of a nurse
  • Evaluate the effectiveness of nursing shifts in case of a pandemic
  • Why is the uniform of most nurses white in color?
  • Analyze the different ethical challenges associated with the nursing profession
  • What is the motivation story behind most of the nurses in work?
  • The impact of domestic violence on the effectiveness of a nurse
  • How nurses manage to stay sober despite the horrific scenes they encounter daily
  • Are nurses born or made: A case study of nurses at a hospital of your choice
  • The role of nurses in caring for those in Acoma
  • The impact of the nursing profession on one’s social interactions
  • Compare and contrast nursing in developing countries versus developed countries
  • Describe the effect of negligence on the part of the nurses to patients
  • Are nurses compensated enough for their labor?
  • Describe what constitutes a typical day of a nurse
  • Is stereotyping a leading cause for the dominance of females in the nursing profession
  • Conduct a critical analysis of the role of nurses in a surgery room

Interesting Medical Topics on Health

  • The impact of global warming on the behavior of disease-causing micro-organisms
  • Dealing with the problem of poor sanitation in developing countries
  • Why are the whites primarily susceptible to malaria attacks
  • Discuss why vaccines can only be effective if made within one year
  • Conduct a comparative analysis of the effectiveness of syringes versus tablets
  • What is the impact of taking a dose and not completing it?
  • Evaluate why sourcing doctors from outside may not be effective
  • Are the research papers on health conclusive enough?
  • Why governments need to invest more in the health systems of a nation
  • Barriers to affordable medical care among low-income families
  • What are the considerations for an effective universal healthcare program?
  • Analyze the various factors that impede the productivity of healthcare workers
  • The effectiveness of counseling and psychology before a surgery
  • Is it possible to achieve a healthy world with the ravaging effects of greenhouse gases?
  • The impact of private health firms on the existing public one
  • How to regulate the sale of medical products
  • Discuss why most people opt for advanced medical procedures overseas
  • Analyze the challenges encountered in maternity wards
  • The role of religious persons in a medical facility
  • Should the government tax medical products?

Medical Research Topics For High School Students

  • Discuss why HIV/AIDS has not found a cure to date
  • What is the impact of alternative medicine in promoting healthcare services?
  • The role of exercises and fitness in leading a healthy lifestyle
  • Why is there a need for health care reform measures
  • The part of fast-food restaurants in deteriorating the health of a country
  • Evaluate the impact of dietary supplements on one’s health
  • Reasons why Over-the-Counter prescription drugs are killing many
  • Considerations before going for a weight loss surgery
  • What are the medical reasons behind vegetarianism?
  • The impact of organic foods on the health of a person
  • Why depression is the leading cause of health complications among teens
  • Discuss drug abuse in the line of health impacts
  • Practical ways of helping a smoking addict to reform
  • Discuss the relationship between fat diets and obesity
  • Why do people who work in offices predominantly suffer from obesity?
  • Compare and contrast between cycling and jogging: Which is advisable?
  • Why do some people prefer injections while others opt for syrups?
  • Should medicine as a course be introduced at the high school level?
  • What are the physical traits and qualities of a person aspiring to do the treatment?
  • Evaluate the time taken to complete a medical course: is it long or short?

COVID-19 Medical Topics To Write About

  • Why is the world experiencing second and third waves of COVID-19?
  • Assess the viability and effectiveness of the coronavirus vaccines?
  • How does washing hands prevent one from contracting COVID-19?
  • Compare and contrast the point of a surgical mask and one made of cloth
  • Discuss why there are more COVID-19 related deaths in European countries than African countries
  • The impact of quarantines on the mental state of a person
  • What is the maximum number of nasal swabs that a person should take?
  • Discuss the science behind social distancing in curbing the spread of the virus
  • Why coronavirus cases are still on the rise despite the availability of vaccines
  • What determines the immunity of a person against coronavirus?
  • Evaluate the chances of contracting coronavirus from handling a corpse
  • Is it possible to eliminate coronavirus?
  • How effective are the COVID-19 certificates for travelers?
  • Is it possible to curb the spread of coronavirus in kindergartens?
  • Critically evaluate COVID-19 treatment and containment measures in developed and developing countries
  • The role of researchers in providing medical information during the COVID-19 pandemic
  • What are the differences between coronavirus and the Spanish flu?
  • Impact of economic recessions on the containment of the virus
  • Analyze the roles of various stakeholders in containing coronavirus
  • Discuss the mutation of the coronavirus

Top Topics For Medical Research Paper

  • Discuss the differences between epidemic and pandemics
  • Analyze the critical considerations for a child health care program
  • The role of humanitarian medical missions in reaching the developing nations
  • Why are most people suffering from heart diseases of late?
  • Discuss the dangers and benefits of vaccination
  • Critically analyze the ethical considerations of conducting medical research on animals
  • The impact of rare genetic disorders on the stability of families
  • What are the effects of surgeries on organs and artificial tissues
  • Discuss why brain surgeries are always a matter between life and death
  • Evaluate the various causes and treatments of virus infections
  • Are antibiotics treatments effective for complex diseases?
  • Discuss the ethical considerations in ending the life of a person with a terminal illness
  • The causes and remedies of eating disorders
  • How age affects mental health and physical development
  • Analyze the shortcomings of palliative treatment
  • The impact of modern lifestyles on people’s health
  • How technology is helping patients battling with Alzheimer’s disease
  • Considerations before being part of a blood donation exercise
  • How to care for cancer patients in their critical stages
  • Are professional conditions only for specific careers?

Controversial Medical Topics For Research Paper

  • Do doctors have the right to conduct abortions when it is a matter between life and death?
  • The ethical underlining of artificial insemination in man
  • Discuss why most surrogate parents are not considered
  • Is it right to use birth control pills for school-going children?
  • Discuss the impact of stem cell research on a society’s morals
  • Is plastic surgery, for whatever case, unethical?
  • Should male doctors attend to female patients?
  • Is it possible to achieve confidentiality in a hospital set-up?
  • Why do most male patients prefer being treated by female nurses?
  • Discuss the ethical implications behind sperm and egg donation
  • Is donating blood unethical? A case study of selected religious sects
  • Should families pay for medical bills after their death of their beloved one?
  • Discuss the implication of LGBTQ on medical care
  • Is it ethical to sell body organs before or after death?
  • Critically discuss the impact of transplanting a sexual organ
  • Discuss how to deal with teen pregnancy
  • How do religion, culture, and tradition differ from the field of medicine?
  • Are health insurance companies to cover all healthcare costs?
  • Discuss the impact of taxing on medical supplies
  • Who should be paid more between doctors and nurses?

Researchable Medical Research Topics Examples

  • Discuss the medical implications of male circumcision
  • The impact of political action on the effectiveness of health care systems
  • The role of international collaborations in improving medical care
  • Evaluate the challenges faced in the regulation of biomedical research
  • A survey of the different attitudes towards psychiatry in the United States
  • Evaluate the occupational safety concerns of medical laboratories
  • Discuss the considerations of a controlled clinical trial
  • Challenges during mass medical reparations: A case study of terrorist attacks
  • The essence of introducing research training in psychiatry
  • Evaluate the effectiveness of the courses offered in the medical colleges
  • Discuss the impact of the US-African medical partnerships
  • Why scientists need to collaborate in the case of a pandemic
  • Are vaccines the best way to prevent one from contracting a disease?
  • The impact of community-based participatory approaches in improving hygiene standards
  • The vital role of pharmacy workers in a medical profession
  • The critical place of knowledge and experience in the field of medicine
  • The role of stakeholders in developing better health care policies
  • The impact of demoralization of HIV/AIDS
  • Discuss the process of production and distribution of medical products
  • Analyze the critical aspect of globalization in medical research

Hot Medical Research Paper Topics For College Students

  • The role of medicine in setting and implementing food standards
  • What are the critical causes of gluten allergy
  • Is it ethical to conduct assisted suicide for terminal patients?
  • Ethical concerns of charging fees for patients who die in the process of treatment
  • The ethical considerations when conducting a postmortem
  • How is virtual reality transforming medicine?
  • An analysis of the myths and misconceptions surrounding medicine?
  • Why many people are against cloning
  • Is it legal to use marijuana as a medical product?
  • Evaluate the benefits and dangers of immunization at a tender age
  • Is increased life expectancy a burden on the healthcare system?
  • Analyze the health effects of female genital mutilation
  • The impact of the environment on human health
  • How to deal with deafness as a communication disorder
  • Discuss air pollution in the context of a household
  • Alcohol control practices
  • The public danger of diabetes
  • Urban population and respiratory diseases
  • Effectiveness of oral health assessments
  • Unhealthy diets

Unbeatable Research Topics in Medical Field

  • Factors leading to increased cancer cases
  • Resistance to insulin
  • Treating autism
  • Genetic engineering
  • Latest developments in cancer
  • Terrorism and mental health
  • Dealing with coma
  • Treating mental diseases
  • Inequalities in healthcare
  • Effects of smoking on body organs
  • Healthcare considerations for prison inmates
  • Economic development and healthcare
  • The role of infrastructure in healthcare systems
  • Recent developments in coronavirus
  • Genetic mutations
  • Benefits of banning tobacco ads
  • Dealing with anti-vaccine movements
  • How to deal with childhood trauma
  • Effects of posttraumatic stress disorder
  • Importance of the lymphatic system
  • How to care for the liver

From the marvelous medical research topics ideas above, we hope you find one that suits your task. If not, you can still opt for our quality research paper writing help.

Let an expert complete your paper quickly and fast at a cheap rate today!

Anatomy Research Topics

Make PhD experience your own

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Urban Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Natural Disasters (Environment)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Oxford Textbook of Medical Education

  • < Previous chapter
  • Next chapter >

53 Quantitative research methods in medical education

  • Published: October 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Quantitative research in medical education tends to be predominantly observational research based on survey or correlational studies. As researchers strive towards making inferences about the impact of education interventions, a shift towards experimental research designs may enhance the quality and conclusions made in medical education. The establishment of experiment research designs, where interventions (i.e. curriculum, teaching or assessment interventions) are tested with an experimental group and either a comparison or controlled group of learners, may allow researchers to overcome validity concerns and infer potential cause–effect generalizations. There are a number of internal and external validity concerns that researchers need to be conscious of when designing their own or looking at others’ experimental research studies. The selection of a research design for any study should fit within the parameters of the stated research question or hypothesis. In quantitative research, the findings will reflect the reliability and validity (psychometric characteristics) of the measured outcomes or dependent variables (such as changes in knowledge, skills, or attitudes) used to assess the effectiveness of the medical education intervention (the independent variable of interest). It is important to remember that not all quantitative research involves experimental studies—important results can also be drawn from quantitative observational studies. This chapter outlines commonly used quantitative methods in medical education research. It explains their theoretical underpinnings, the evidence base for their use, and gives practical guidance on their application. It concludes with a section on the role of meta-analyses of quantitative research in medical education.

Signed in as

Institutional accounts.

  • Google Scholar Indexing
  • GoogleCrawler [DO NOT DELETE]

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Sign in through your institution

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

100+ Quantitative Research Topics For Students

Quantitative Research Topics

Quantitative research is a research strategy focusing on quantified data collection and analysis processes. This research strategy emphasizes testing theories on various subjects. It also includes collecting and analyzing non-numerical data.

Quantitative research is a common approach in the natural and social sciences , like marketing, business, sociology, chemistry, biology, economics, and psychology. So, if you are fond of statistics and figures, a quantitative research title would be an excellent option for your research proposal or project.

How to Get a Title of Quantitative Research

How to make quantitative research title, what is the best title for quantitative research, amazing quantitative research topics for students, creative quantitative research topics, perfect quantitative research title examples, unique quantitative research titles, outstanding quantitative research title examples for students, creative example title of quantitative research samples, outstanding quantitative research problems examples, fantastic quantitative research topic examples, the best quantitative research topics, grade 12 quantitative research title for students, list of quantitative research titles for high school, easy quantitative research topics for students, trending topics for quantitative research, quantitative research proposal topics, samples of quantitative research titles, research title about business quantitative.

Finding a great title is the key to writing a great quantitative research proposal or paper. A title for quantitative research prepares you for success, failure, or mediocre grades. This post features examples of quantitative research titles for all students.

Putting together a research title and quantitative research design is not as easy as some students assume. So, an example topic of quantitative research can help you craft your own. However, even with the examples, you may need some guidelines for personalizing your research project or proposal topics.

So, here are some tips for getting a title for quantitative research:

  • Consider your area of studies
  • Look out for relevant subjects in the area
  • Expert advice may come in handy
  • Check out some sample quantitative research titles

Making a quantitative research title is easy if you know the qualities of a good title in quantitative research. Reading about how to make a quantitative research title may not help as much as looking at some samples. Looking at a quantitative research example title will give you an idea of where to start.

However, let’s look at some tips for how to make a quantitative research title:

  • The title should seem interesting to readers
  • Ensure that the title represents the content of the research paper
  • Reflect on the tone of the writing in the title
  • The title should contain important keywords in your chosen subject to help readers find your paper
  • The title should not be too lengthy
  • It should be grammatically correct and creative
  • It must generate curiosity

An excellent quantitative title should be clear, which implies that it should effectively explain the paper and what readers can expect. A research title for quantitative research is the gateway to your article or proposal. So, it should be well thought out. Additionally, it should give you room for extensive topic research.

A sample of quantitative research titles will give you an idea of what a good title for quantitative research looks like. Here are some examples:

  • What is the correlation between inflation rates and unemployment rates?
  • Has climate adaptation influenced the mitigation of funds allocation?
  • Job satisfaction and employee turnover: What is the link?
  • A look at the relationship between poor households and the development of entrepreneurship skills
  • Urbanization and economic growth: What is the link between these elements?
  • Does education achievement influence people’s economic status?
  • What is the impact of solar electricity on the wholesale energy market?
  • Debt accumulation and retirement: What is the relationship between these concepts?
  • Can people with psychiatric disorders develop independent living skills?
  • Children’s nutrition and its impact on cognitive development

Quantitative research applies to various subjects in the natural and social sciences. Therefore, depending on your intended subject, you have numerous options. Below are some good quantitative research topics for students:

  • The difference between the colorific intake of men and women in your country
  • Top strategies used to measure customer satisfaction and how they work
  • Black Friday sales: are they profitable?
  • The correlation between estimated target market and practical competitive risk assignment
  • Are smartphones making us brighter or dumber?
  • Nuclear families Vs. Joint families: Is there a difference?
  • What will society look like in the absence of organized religion?
  • A comparison between carbohydrate weight loss benefits and high carbohydrate diets?
  • How does emotional stability influence your overall well-being?
  • The extent of the impact of technology in the communications sector

Creativity is the key to creating a good research topic in quantitative research. Find a good quantitative research topic below:

  • How much exercise is good for lasting physical well-being?
  • A comparison of the nutritional therapy uses and contemporary medical approaches
  • Does sugar intake have a direct impact on diabetes diagnosis?
  • Education attainment: Does it influence crime rates in society?
  • Is there an actual link between obesity and cancer rates?
  • Do kids with siblings have better social skills than those without?
  • Computer games and their impact on the young generation
  • Has social media marketing taken over conventional marketing strategies?
  • The impact of technology development on human relationships and communication
  • What is the link between drug addiction and age?

Need more quantitative research title examples to inspire you? Here are some quantitative research title examples to look at:

  • Habitation fragmentation and biodiversity loss: What is the link?
  • Radiation has affected biodiversity: Assessing its effects
  • An assessment of the impact of the CORONA virus on global population growth
  • Is the pandemic truly over, or have human bodies built resistance against the virus?
  • The ozone hole and its impact on the environment
  • The greenhouse gas effect: What is it and how has it impacted the atmosphere
  • GMO crops: are they good or bad for your health?
  • Is there a direct link between education quality and job attainment?
  • How have education systems changed from traditional to modern times?
  • The good and bad impacts of technology on education qualities

Your examiner will give you excellent grades if you come up with a unique title and outstanding content. Here are some quantitative research examples titles.

  • Online classes: are they helpful or not?
  • What changes has the global CORONA pandemic had on the population growth curve?
  • Daily habits influenced by the global pandemic
  • An analysis of the impact of culture on people’s personalities
  • How has feminism influenced the education system’s approach to the girl child’s education?
  • Academic competition: what are its benefits and downsides for students?
  • Is there a link between education and student integrity?
  • An analysis of how the education sector can influence a country’s economy
  • An overview of the link between crime rates and concern for crime
  • Is there a link between education and obesity?

Research title example quantitative topics when well-thought guarantees a paper that is a good read. Look at the examples below to get started.

  • What are the impacts of online games on students?
  • Sex education in schools: how important is it?
  • Should schools be teaching about safe sex in their sex education classes?
  • The correlation between extreme parent interference on student academic performance
  • Is there a real link between academic marks and intelligence?
  • Teacher feedback: How necessary is it, and how does it help students?
  • An analysis of modern education systems and their impact on student performance
  • An overview of the link between academic performance/marks and intelligence
  • Are grading systems helpful or harmful to students?
  • What was the impact of the pandemic on students?

Irrespective of the course you take, here are some titles that can fit diverse subjects pretty well. Here are some creative quantitative research title ideas:

  • A look at the pre-corona and post-corona economy
  • How are conventional retail businesses fairing against eCommerce sites like Amazon and Shopify?
  • An evaluation of mortality rates of heart attacks
  • Effective treatments for cardiovascular issues and their prevention
  • A comparison of the effectiveness of home care and nursing home care
  • Strategies for managing effective dissemination of information to modern students
  • How does educational discrimination influence students’ futures?
  • The impacts of unfavorable classroom environment and bullying on students and teachers
  • An overview of the implementation of STEM education to K-12 students
  • How effective is digital learning?

If your paper addresses a problem, you must present facts that solve the question or tell more about the question. Here are examples of quantitative research titles that will inspire you.

  • An elaborate study of the influence of telemedicine in healthcare practices
  • How has scientific innovation influenced the defense or military system?
  • The link between technology and people’s mental health
  • Has social media helped create awareness or worsened people’s mental health?
  • How do engineers promote green technology?
  • How can engineers raise sustainability in building and structural infrastructures?
  • An analysis of how decision-making is dependent on someone’s sub-conscious
  • A comprehensive study of ADHD and its impact on students’ capabilities
  • The impact of racism on people’s mental health and overall wellbeing
  • How has the current surge in social activism helped shape people’s relationships?

Are you looking for an example of a quantitative research title? These ten examples below will get you started.

  • The prevalence of nonverbal communication in social control and people’s interactions
  • The impacts of stress on people’s behavior in society
  • A study of the connection between capital structures and corporate strategies
  • How do changes in credit ratings impact equality returns?
  • A quantitative analysis of the effect of bond rating changes on stock prices
  • The impact of semantics on web technology
  • An analysis of persuasion, propaganda, and marketing impact on individuals
  • The dominant-firm model: what is it, and how does it apply to your country’s retail sector?
  • The role of income inequality in economy growth
  • An examination of juvenile delinquents’ treatment in your country

Excellent Topics For Quantitative Research

Here are some titles for quantitative research you should consider:

  • Does studying mathematics help implement data safety for businesses
  • How are art-related subjects interdependent with mathematics?
  • How do eco-friendly practices in the hospitality industry influence tourism rates?
  • A deep insight into how people view eco-tourisms
  • Religion vs. hospitality: Details on their correlation
  • Has your country’s tourist sector revived after the pandemic?
  • How effective is non-verbal communication in conveying emotions?
  • Are there similarities between the English and French vocabulary?
  • How do politicians use persuasive language in political speeches?
  • The correlation between popular culture and translation

Here are some quantitative research titles examples for your consideration:

  • How do world leaders use language to change the emotional climate in their nations?
  • Extensive research on how linguistics cultivate political buzzwords
  • The impact of globalization on the global tourism sector
  • An analysis of the effects of the pandemic on the worldwide hospitality sector
  • The influence of social media platforms on people’s choice of tourism destinations
  • Educational tourism: What is it and what you should know about it
  • Why do college students experience math anxiety?
  • Is math anxiety a phenomenon?
  • A guide on effective ways to fight cultural bias in modern society
  • Creative ways to solve the overpopulation issue

An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones:

  • The link between global warming and climate change
  • What is the greenhouse gas impact on biodiversity and the atmosphere
  • Has the internet successfully influenced literacy rates in society
  • The value and downsides of competition for students
  • A comparison of the education system in first-world and third-world countries
  • The impact of alcohol addiction on the younger generation
  • How has social media influenced human relationships?
  • Has education helped boost feminism among men and women?
  • Are computers in classrooms beneficial or detrimental to students?
  • How has social media improved bullying rates among teenagers?

High school students can apply research titles on social issues  or other elements, depending on the subject. Let’s look at some quantitative topics for students:

  • What is the right age to introduce sex education for students
  • Can extreme punishment help reduce alcohol consumption among teenagers?
  • Should the government increase the age of sexual consent?
  • The link between globalization and the local economy collapses
  • How are global companies influencing local economies?

There are numerous possible quantitative research topics you can write about. Here are some great quantitative research topics examples:

  • The correlation between video games and crime rates
  • Do college studies impact future job satisfaction?
  • What can the education sector do to encourage more college enrollment?
  • The impact of education on self-esteem
  • The relationship between income and occupation

You can find inspiration for your research topic from trending affairs on social media or in the news. Such topics will make your research enticing. Find a trending topic for quantitative research example from the list below:

  • How the country’s economy is fairing after the pandemic
  • An analysis of the riots by women in Iran and what the women gain to achieve
  • Is the current US government living up to the voter’s expectations?
  • How is the war in Ukraine affecting the global economy?
  • Can social media riots affect political decisions?

A proposal is a paper you write proposing the subject you would like to cover for your research and the research techniques you will apply. If the proposal is approved, it turns to your research topic. Here are some quantitative titles you should consider for your research proposal:

  • Military support and economic development: What is the impact in developing nations?
  • How does gun ownership influence crime rates in developed countries?
  • How can the US government reduce gun violence without influencing people’s rights?
  • What is the link between school prestige and academic standards?
  • Is there a scientific link between abortion and the definition of viability?

You can never have too many sample titles. The samples allow you to find a unique title you’re your research or proposal. Find a sample quantitative research title here:

  • Does weight loss indicate good or poor health?
  • Should schools do away with grading systems?
  • The impact of culture on student interactions and personalities
  • How can parents successfully protect their kids from the dangers of the internet?
  • Is the US education system better or worse than Europe’s?

If you’re a business major, then you must choose a research title quantitative about business. Let’s look at some research title examples quantitative in business:

  • Creating shareholder value in business: How important is it?
  • The changes in credit ratings and their impact on equity returns
  • The importance of data privacy laws in business operations
  • How do businesses benefit from e-waste and carbon footprint reduction?
  • Organizational culture in business: what is its importance?

We Are A Call Away

Interesting, creative, unique, and easy quantitative research topics allow you to explain your paper and make research easy. Therefore, you should not take choosing a research paper or proposal topic lightly. With your topic ready, reach out to us today for excellent research paper writing services .

Leave a Reply Cancel reply

Research Topics

The links below will take you to the Research pages for all of the Department of Medicine’s different Section and Centers. You can explore more specific research topics within those pages.

StatAnalytica

399+ Amazing Medtech Research Topics

MedTech Research Topics

Get ready to see the world of medical technology with our collection of 399+ Amazing Medtech Research Topics. We’ve got the knowledge on cutting-edge subjects that impact healthcare, from artificial intelligence in medicine to innovative drug delivery systems. 

No complicated texts, just straightforward insights into the future of medical technology. Whether you’re curious about advancements in imaging, wearable health tech, or the potential of 3D printing in medicine, this list has it all. 

It’s like having a roadmap to the latest trends and breakthroughs in the medical field. So, if you’re keen on staying in the know about what’s shaping the future of healthcare, you’re in the right place. Let’s go on this journey and analyze these medtech research topics.

What Is Medtech?

Table of Contents

Medtech, used for medical technology, refers to the use of technology, devices, and innovations in healthcare to improve diagnosis, treatment, and overall patient care. 

It includes numerous tools and equipment, from medical imaging devices to wearable health gadgets and advanced surgical instruments. Medtech aims to enhance the effectiveness of healthcare practices, provide more accurate diagnostics, and contribute to better patient outcomes. 

In simple terms, medtech combines technology with medical expertise to create solutions that benefit both healthcare professionals and patients.

Importance Of Medtech In Current Scenario

Medtech plays an important role in the current healthcare landscape, offering several key advantages:

  • Enhanced Diagnostics

 Medtech advancements provide more accurate and swift diagnostic tools, aiding healthcare professionals in identifying illnesses at earlier stages for timely intervention.

  • Remote Monitoring

Medtech enables remote patient monitoring, allowing healthcare providers to track patients’ health in real-time and intervene promptly, especially beneficial in managing chronic conditions.

  • Efficiency and Precision in Surgery

Surgical procedures benefit from precision instruments and robotics, leading to minimally invasive surgeries, quicker recovery times, and reduced risks.

  • Access to Healthcare

Medtech facilitates telemedicine and telehealth solutions, making healthcare services more accessible to remote or underserved populations.

  • Data Management and Analysis

Digital health technologies allows data management, fostering efficient analysis for research, treatment optimization, and public health planning.

  • Preventive Healthcare

Wearable devices and health apps allows individuals to monitor their health, promoting preventive measures and healthier lifestyles.

  • Drug Delivery Systems

Medtech innovations contribute to more efficient and targeted drug delivery, improving the effectiveness of medications while minimizing side effects.

  • Cost-Effective Solutions

In the long run, medtech investments can make it possible to save costs by decreasing hospital stays, preventing complications, and optimizing resource utilization.

In conclusion, the importance of medtech in the current scenario lies in its ability to revolutionize healthcare by making it more accurate, accessible, and patient-centric. These technologies contribute significantly to improving both the quality and efficiency of healthcare services worldwide.

Top 20 MedTech Research Topics On Advancements in Medical Imaging Technology

  • Emerging Trends in Medical Imaging Technology
  • Applications of Artificial Intelligence in Diagnostic Imaging
  • Role of Machine Learning in Improving Image Analysis
  • Advancements in 3D and 4D Medical Imaging
  • Augmented Reality in Surgical Navigation Systems
  • Integration of Virtual Reality in Medical Imaging
  • Ultrasound Imaging Innovations and Applications
  • Molecular Imaging for Early Disease Detection
  • Optical Coherence Tomography: Recent Developments
  • Dual-Energy X-ray Absorptiometry in Bone Health Assessment
  • Functional Magnetic Resonance Imaging (fMRI) in Neuroimaging
  • PET-MRI Hybrid Imaging: Clinical Applications
  • Challenges and Opportunities in Portable Imaging Devices
  • Advances in Positron Emission Tomography (PET) Technology
  • Cone Beam Computed Tomography in Dentistry and Orthopedics
  • Photoacoustic Imaging: Principles and Applications
  • Innovations in Nuclear Medicine Imaging Techniques
  • Wireless Capsule Endoscopy for Gastrointestinal Imaging
  • Application of Imaging Biomarkers in Disease Monitoring
  • Quantitative Imaging for Precision Medicine

Top 20 Research Topics On Robotics in Surgery: Current Trends and Future Prospects

  • Robotic-Assisted Minimally Invasive Surgery: State-of-the-Art
  • Applications of Robotics in Cardiovascular Surgery
  • Robotics in Orthopedic Surgery: Advances and Challenges
  • Role of Robotics in Neurosurgery: Current Landscape
  • Telesurgery: Remote Robotic Surgical Procedures
  • Robotics in Gynecological Surgery: Innovations and Outcomes
  • Enhancing Precision with Surgical Robotics: Case Studies
  • Human-Robot Collaboration in Surgical Procedures
  • AI Integration in Robotic Surgery: Future Implications
  • Evolving Trends in Pediatric Robotic Surgery
  • Ethical Considerations in Robotic-Assisted Surgery
  • Autonomous Robotic Surgery: Progress and Controversies
  • Robotics in Urological Surgery: Latest Developments
  • Telerobotics for Global Access to Surgical Expertise
  • Navigating Challenges in Robotic Colorectal Surgery
  • Advancements in Robotic Ophthalmic Surgery
  • Patient Outcomes and Safety in Robotic-Assisted Procedures
  • Innovations in Robotic Head and Neck Surgery
  • Cost-Benefit Analysis of Robotic Surgery Programs
  • Human Factors in the Adoption of Robotic Surgical Systems

Top 20 MedTech Research Topics On Artificial Intelligence Applications in Healthcare

  • AI-Driven Diagnostics: Impact on Disease Detection
  • Predictive Analytics in Personalized Medicine
  • Natural Language Processing in Healthcare Data Management
  • Clinical Decision Support Systems: Enhancing Patient Care
  • Remote Patient Monitoring with AI Technologies
  • Machine Learning for Drug Discovery and Development
  • AI-Based Imaging Analysis for Disease Identification
  • Virtual Health Assistants: Role and Potential
  • Ethical Considerations in AI-Driven Healthcare
  • Blockchain in Securing Healthcare Data with AI Integration
  • Robotic Process Automation in Healthcare Administration
  • Telehealth Platforms Enhanced by Artificial Intelligence
  • AI Applications in Mental Health Diagnosis and Treatment
  • Real-Time Health Monitoring Wearables with AI
  • AI-Based Robotics in Rehabilitation Therapy
  • Chronic Disease Management with AI-Powered Solutions
  • Precision Medicine Algorithms and AI Integration
  • Cybersecurity Measures for AI in Healthcare Systems
  • AI in Epidemiology: Predicting and Managing Outbreaks
  • Adoption and Acceptance of AI Technologies in Healthcare

Top 20 Research Topics On Telemedicine: Bridging Gaps in Healthcare Accessibility

  • Telehealth Adoption: Trends and Challenges
  • Remote Patient Monitoring in Telemedicine
  • Telemedicine and Rural Healthcare Access
  • Telepsychiatry: Addressing Mental Health Disparities
  • Effectiveness of Telemedicine in Chronic Disease Management
  • Telemedicine for Emergency Medical Services
  • Teleophthalmology: Advancements and Applications
  • Telemedicine in Maternal and Child Health
  • Legal and Ethical Considerations in Telehealth
  • Impact of Telemedicine on Preventive Healthcare
  • Telecardiology: Remote Cardiac Care Solutions
  • Tele-rehabilitation: Innovations and Outcomes
  • Patient Satisfaction and Telehealth Services
  • Telemedicine’s Role in Disaster Response and Preparedness
  • Tele-dermatology: Remote Skin Health Consultations
  • Barriers to Telemedicine Adoption and Solutions
  • Telehealth Policies and Regulation: Global Perspectives
  • Teleaudiology: Improving Hearing Healthcare Access
  • Cost-Effectiveness of Telemedicine Programs
  • Integration of AI and Telemedicine for Enhanced Services

Top 20 Research Topics On Wearable Health Technology: Impact on Patient Monitoring

  • Continuous Glucose Monitoring with Wearable Devices
  • Wearable ECG Monitors for Cardiovascular Health
  • Smart Wearables in Monitoring Respiratory Conditions
  • Impact of Fitness Trackers on Physical Activity and Health
  • Wearable Sensors for Early Detection of Neurological Disorders
  • Integration of Wearables in Chronic Disease Management
  • Wearable Health Technology and Elderly Patient Care
  • Wearables in Sleep Monitoring and Sleep Disorders
  • Biofeedback Wearables for Stress Management
  • Remote Patient Monitoring with Wearable Devices
  • Wearable Devices for Postoperative Rehabilitation
  • Ethical and Privacy Considerations in Wearable Health Tech
  • Wearable Technology in Pediatric Healthcare
  • Effectiveness of Wearables in Weight Management
  • Wearable Mental Health Monitoring and Intervention
  • Impact of Smartwatches on Lifestyle and Health Choices
  • Wearable Technology for Medication Adherence
  • Wearables and Patient Empowerment in Healthcare
  • Telemedicine Integration with Wearable Health Devices
  • Long-term Health Outcomes with Wearable Technology Use

Top 20 MedTech Research Topics On Blockchain Technology in Healthcare Data Management

  • Blockchain for Secure Health Data Exchange
  • Smart Contracts in Healthcare: Applications and Challenges
  • Decentralized Identity Management in Medical Records
  • Blockchain-Based Drug Traceability and Supply Chain
  • Interoperability Solutions with Blockchain in Healthcare
  • Patient-Centric Health Data Ownership on Blockchain
  • Ensuring Privacy in Electronic Health Records with Blockchain
  • Blockchain in Clinical Trials: Transparency and Trust
  • Tokenization of Health Data for Monetization and Privacy
  • Blockchain-Based Health Insurance Claims Processing
  • Securing IoT Devices in Healthcare with Blockchain
  • Blockchain for Medical Credentialing and Licensing
  • Immutable Audit Trails in Healthcare Operations
  • Using Blockchain to Combat Counterfeit Pharmaceuticals
  • Implementing Consensus Algorithms in Healthcare Blockchains
  • Patient Consent Management on Blockchain
  • Blockchain-Based Public Health Surveillance
  • Data Integrity and Authenticity in Genomic Data on Blockchain
  • Blockchain in Telehealth: Enhancing Security
  • Smart Hospitals: Integrating Blockchain for Data Security

Top 20 Research Topics On Nanotechnology in Medicine: Innovations and Challenges

  • Nanoparticles for Targeted Drug Delivery in Cancer Treatment
  • Applications of Nanotechnology in Regenerative Medicine
  • Nanostructures for Imaging and Diagnosis in Medicine
  • Nanomaterials in Wound Healing and Tissue Engineering
  • Nanoparticle-Based Therapeutics for Neurological Disorders
  • Challenges and Solutions in Nanomedicine Translation to Clinic
  • Nanotechnology in Immunotherapy: Recent Developments
  • Bio-Nanorobotics for Targeted Cellular Interventions
  • Nanoparticle-Mediated Gene Therapy in Medicine
  • Nanotechnology in Cardiovascular Medicine: Innovations
  • Nanoscale Sensors for In Vivo Disease Monitoring
  • Biocompatibility and Toxicity Considerations in Nanomedicine
  • Nanostructured Biomaterials for Orthopedic Applications
  • Nanotechnology in Infectious Disease Diagnosis and Treatment
  • Challenges of Scaling Up Nanomedicine Production
  • Nanoparticles for Enhanced Vaccine Delivery and Efficacy
  • Nanoscale Imaging Techniques in Medical Research
  • Ethical Implications of Nanotechnology in Medicine
  • Nanodevices for Point-of-Care Diagnostics
  • Nanomedicine for Personalized Treatment Strategies

Top 20 Research Topics On Smart Health Devices for Chronic Disease Management

  • Wearable Sensors for Continuous Glucose Monitoring in Diabetes
  • Smart Inhalers: Improving Asthma and COPD Management
  • IoT-Based Blood Pressure Monitoring Devices for Hypertension
  • Telemonitoring Systems for Cardiac Patients with Heart Failure
  • Smart Pill Dispensers for Medication Adherence in Chronic Diseases
  • Digital Therapeutics in the Management of Mental Health Disorders
  • Mobile Apps for Remote Pain Management in Chronic Conditions
  • Smart Contact Lenses for Glaucoma Monitoring
  • Virtual Reality Therapy for Chronic Pain Management
  • Smart Textiles for Monitoring and Managing Rheumatoid Arthritis
  • Smart Hearing Aids: Technological Advancements for Hearing Loss
  • Personalized Nutrition Apps for Chronic Disease Prevention
  • mHealth Solutions for Cognitive Rehabilitation in Neurological Disorders
  • Smart Orthopedic Devices for Arthritis and Joint Health
  • Smart Home Technologies for Aging in Place and Chronic Care
  • Connected Devices for Sleep Disorders and Management
  • Telehealth Platforms for Chronic Respiratory Disease Monitoring
  • Digital Footwear and Insoles for Diabetic Foot Ulcer Prevention
  • Smart Rehabilitation Devices for Stroke Survivors
  • Robotic Assistive Devices for Movement Disorders in Neurological Diseases

Top 20 MedTech Research Topics On Biomedical Engineering Innovations

  • Advancements in Wearable Biomedical Sensors
  • Nanotechnology Applications in Biomedical Engineering
  • Innovations in Biomechanics for Prosthetics and Orthotics
  • Artificial Organs and Biomedical Implants
  • Biosensors for Rapid Disease Detection
  • Bioinformatics and Computational Biology in Biomedical Engineering
  • Biomedical Robotics for Surgery and Rehabilitation
  • Biomedical Imaging Modalities: Beyond Traditional Techniques
  • Neuroprosthetics for Restoring Sensory and Motor Functions
  • Tissue Engineering: Creating Functional Biological Constructs
  • Biomedical Engineering Solutions for Cardiovascular Health
  • Smart Drug Delivery Systems: Precision Medicine Approaches
  • Advances in Biomedical Materials and Biomimicry
  • Point-of-Care Diagnostic Technologies for Global Health
  • Telemedicine Platforms Enhanced by Biomedical Engineering
  • Biomedical Signal Processing for Health Monitoring
  • Biomedical Engineering in Cancer Diagnosis and Treatment
  • Regenerative Medicine and Stem Cell Therapies
  • Biomedical Devices for Remote Patient Monitoring
  • Ethical and Social Implications of Biomedical Engineering Innovations

Top 20 Research Topics On Health Information Exchange Systems

  • Interoperability Challenges in Health Information Exchange (HIE)
  • Blockchain Technology for Securing Health Information Exchange
  • Patient Consent Management in HIE Systems
  • Role of Artificial Intelligence in Optimizing HIE
  • Data Standardization and Semantic Interoperability in HIE
  • HIE Platforms and Data Sharing in Emergency Situations
  • Mobile Health Apps Integration with HIE Systems
  • Impact of HIE on Care Coordination and Continuity
  • Privacy and Security Concerns in HIE Implementation
  • Economic and Financial Aspects of Health Information Exchange
  • HIE and Population Health Management Strategies
  • Health Information Exchange in Rural and Underserved Areas
  • HIE Systems in the Context of Value-Based Care
  • Consumer-Mediated Exchange of Health Information
  • Health Information Exchange in Mental Health Services
  • The Role of HIE in Managing Chronic Diseases
  • Legal and Ethical Considerations in HIE Governance
  • HIE for Integrating Behavioral Health and Primary Care
  • Data Analytics and Insights Derived from HIE Systems
  • Usability and User Experience in HIE Interfaces

Top 20 MedTech Research Topics On Innovative Drug Delivery Systems

  • Nanoparticle-Based Drug Delivery for Targeted Therapies
  • Implantable Drug Delivery Systems for Prolonged Treatment
  • Biodegradable Polymers in Drug Delivery Innovations
  • Microneedle Technology for Transdermal Drug Delivery
  • Inhaled Drug Delivery Systems for Respiratory Diseases
  • Smart Drug Delivery Devices with Remote Monitoring
  • Hydrogel-Based Drug Delivery for Controlled Release
  • Nanomedicine Approaches for Crossing the Blood-Brain Barrier
  • 3D-Printed Drug Delivery Systems for Personalized Medicine
  • Implantable Biosensors for Continuous Drug Monitoring
  • Liposomal Drug Delivery: Advances and Applications
  • Peptide-Based Drug Delivery for Enhanced Therapeutic Efficacy
  • Oral Insulin Delivery Systems for Diabetes Management
  • Exosome-Mediated Drug Delivery for Precision Medicine
  • Photothermal and Photodynamic Drug Delivery Strategies
  • Bioadhesive Drug Delivery Systems for Localized Treatment
  • Responsive Drug Delivery: Stimuli-Responsive Nanoparticles
  • Microfluidic Platforms for High-Throughput Drug Screening
  • RNA-Based Drug Delivery for Gene Therapies
  • Implantable Microchips for Programmable Drug Release

Top 20 Research Topics On 3D Printing in Medicine: Customization and Applications

  • Bioprinting of Functional Human Organs for Transplantation
  • Customized Prosthetics and Orthopedic Implants with 3D Printing
  • 3D Printing in Drug Delivery: Personalized Medicine Approaches
  • Bioinks and Biomaterials for Biocompatible 3D Printing
  • 3D-Printed Medical Models for Surgical Planning and Training
  • Dental Applications of 3D Printing: Crowns, Bridges, and Implants
  • Patient-Specific Surgical Guides and Instruments via 3D Printing
  • 3D-Printed Wearable Health Devices for Continuous Monitoring
  • Tissue Engineering with 3D-Printed Scaffolds and Constructs
  • Regulatory and Ethical Challenges in 3D-Printed Medical Devices
  • 3D Bioprinting of Skin Tissues for Wound Healing
  • 3D-Printed Medical Robotics for Minimally Invasive Procedures
  • 3D-Printed Pharmaceutical Dosage Forms: Drug Printing
  • Biomechanical Analysis of 3D-Printed Implants and Prosthetics
  • 3D Printing in Maxillofacial Reconstruction and Surgery
  • 3D-Printed Sensors for In Vivo Monitoring of Health Parameters
  • 3D-Printed Medical Equipment for Low-Resource Settings
  • Educational Applications of 3D Printing in Medical Training
  • 3D Printing in Pediatric Healthcare: Custom Solutions
  • Personalized Cancer Models Using 3D Printing Technology

Top 20 Research Topics On Wireless Sensor Networks for Healthcare Monitoring

  • Energy-Efficient Routing Protocols in Healthcare WSNs
  • Security and Privacy Concerns in Wireless Medical Sensor Networks
  • QoS Optimization for Real-Time Health Monitoring Applications
  • Machine Learning for Anomaly Detection in WSNs for Healthcare
  • Scalability and Reliability in Large-Scale Healthcare WSNs
  • Integration of IoT and WSNs for Comprehensive Health Monitoring
  • Optimizing Data Aggregation Techniques in Medical WSNs
  • Wireless Sensor Networks for Elderly Patient Monitoring
  • Innovations in Wearable Sensor Devices for Healthcare
  • Fault Tolerance Mechanisms in WSNs for Medical Applications
  • Body Area Networks (BANs) for Continuous Health Monitoring
  • Edge Computing in Wireless Healthcare Sensor Networks
  • Localization Techniques for Precise Patient Tracking
  • Dynamic Spectrum Access for Efficient WSN Communication
  • Wireless Sensor Networks for Rehabilitation Monitoring
  • Hybrid Communication Protocols in Healthcare WSNs
  • Ambient Assisted Living with Wireless Health Sensors
  • Cross-Layer Design for Enhanced Performance in WSNs
  • Wireless Capsule Endoscopy for Gastrointestinal Monitoring
  • Ethical Considerations in Wireless Health Monitoring Technologies

Top 20 MedTech Research Topics On Virtual Reality in Medical Training and Therapy

  • Simulation Training with Virtual Reality for Surgical Skills
  • Immersive Virtual Reality Environments for Medical Education
  • VR-Based Anatomy Learning for Medical Students
  • Cognitive Rehabilitation Using Virtual Reality Therapy
  • Psychological Therapy and Exposure Therapy in VR
  • Patient Education and Empowerment through VR
  • Pain Management with Virtual Reality in Healthcare
  • VR-Based Rehabilitation for Neurological Disorders
  • Surgical Planning and Preoperative Visualization in VR
  • VR Simulations for Emergency Medical Training
  • Enhancing Physical Rehabilitation with VR Technologies
  • VR in Pain Distraction for Pediatric Patients
  • Remote Consultations and Telemedicine in Virtual Reality
  • Simulated Medical Procedures and Interventions in VR
  • Virtual Reality for Stress Reduction and Mindfulness
  • VR-Based Exposure Therapy for Anxiety and Phobias
  • Recreating Medical Environments for Realistic Training
  • VR in Occupational Therapy for Rehabilitation
  • Haptic Feedback in Virtual Reality Medical Simulations
  • Ethical Considerations in the Use of VR in Medical Practice

Top 20 Research Topics On Bioinformatics: Analyzing Biological Data for Medical Insights

  • Next-Generation Sequencing Data Analysis Techniques
  • Machine Learning Algorithms for Predicting Disease Risk
  • Integration of Multi-Omics Data in Systems Biology
  • Structural Bioinformatics: Protein Structure Prediction
  • Genome-Wide Association Studies in Medical Research
  • Network Pharmacology for Drug Target Identification
  • Metagenomics: Analyzing Microbial Communities in Health
  • Deep Learning Applications in Biomedical Image Analysis
  • Bioinformatics Tools for Personalized Medicine
  • Functional Annotation of Non-Coding RNAs
  • Phylogenomics: Evolutionary Analysis of Genomes
  • Clinical Bioinformatics in Cancer Genomics
  • Data Mining for Biomarker Discovery in Diseases
  • Text Mining and Natural Language Processing in Biomedicine
  • Computational Epigenetics: Analyzing Epigenomic Data
  • Quantitative Proteomics for Biomarker Identification
  • Bioinformatics Approaches in Drug Repurposing
  • Population Genomics: Understanding Genetic Diversity
  • Integration of Electronic Health Records in Bioinformatics
  • Ethical and Privacy Considerations in Biomedical Data Analysis

Top 20 Research Topics On Personalized Medicine: Tailoring Treatment Plans

  • Genomic Medicine: Precision Diagnosis and Treatment
  • Pharmacogenomics in Personalized Drug Prescription
  • Role of Artificial Intelligence in Personalized Medicine
  • Patient-Derived Organoids for Drug Screening
  • Immunotherapy and Personalized Cancer Treatment
  • Epigenetic Markers in Predicting Disease Risk
  • Digital Twins for Personalized Health Predictions
  • Metabolomics and Personalized Nutrition Plans
  • Microbiome Analysis for Tailored Therapies
  • Real-world Evidence in Personalized Medicine Research
  • Remote Patient Monitoring for Personalized Care
  • Individualized Vaccine Development and Administration
  • Applications of Wearable Technology in Personalized Health
  • Machine Learning for Predicting Treatment Response
  • Patient-Reported Outcomes in Personalized Healthcare
  • Ethical and Legal Implications of Personalized Medicine
  • Biomarker Discovery for Personalized Disease Monitoring
  • Innovations in Personalized Cardiovascular Interventions
  • Psychiatric Genetics and Personalized Mental Health Treatments
  • Patient Empowerment in Decision-Making in Personalized Medicine

Top 20 MedTech Research Topics On Implantable Medical Devices: Enhancing Patient Lives

  • Wireless Communication in Implantable Medical Devices
  • Nanotechnology in Designing Miniaturized Implants
  • Smart Implants for Continuous Health Monitoring
  • Biocompatible Materials for Long-Term Implant Stability
  • Neural Interfaces for Brain-Computer Interface Implants
  • Biomechanics of Orthopedic Implants: Innovations
  • Cardiac Implantable Devices: Advancements in Pacemakers
  • Implantable Drug Delivery Systems for Targeted Therapies
  • Energy Harvesting for Self-Powered Implantable Devices
  • Neurostimulation Implants for Chronic Pain Management
  • Bionic Limbs and Prosthetics: Enhancing Mobility
  • Implantable Biosensors for Real-Time Disease Monitoring
  • 3D Printing Technology in Customized Implant Production
  • Implantable Medical Devices and IoT Integration
  • Implants for Vision Restoration: Retinal Prosthetics
  • Implantable Cardioverter Defibrillators (ICDs) Innovations
  • Wireless Charging Systems for Implantable Devices
  • Biodegradable Implants: Applications and Challenges
  • Implantable Sensors for Continuous Glucose Monitoring
  • Ethical Considerations in the Development of Implantable Devices

Top 20 Research Topics On Regenerative Medicine: Tissue Engineering and Stem Cells

  • 3D Bioprinting in Tissue Engineering: Current Progress
  • Stem Cell Therapy for Cardiovascular Regeneration
  • Biomaterials for Scaffold Design in Tissue Engineering
  • CRISPR/Cas9 Gene Editing in Stem Cell Research
  • Mesenchymal Stem Cells in Orthopedic Tissue Regeneration
  • Organoids: Miniature Organs for Disease Modeling
  • Decellularized Tissue Matrices in Regenerative Medicine
  • Induced Pluripotent Stem Cells (iPSCs) Applications
  • Bioreactors in Tissue Engineering and Regeneration
  • Neural Tissue Engineering for Spinal Cord Injury Repair
  • Engineering Vascularized Tissues for Transplantation
  • Immunomodulation in Stem Cell-Based Therapies
  • MicroRNA Regulation in Stem Cell Differentiation
  • Regenerative Dentistry: Stem Cells in Oral Tissue Engineering
  • Clinical Translation Challenges in Stem Cell Therapies
  • Synthetic Biology Approaches in Tissue Engineering
  • Regeneration of Skin Tissues: Advances and Applications
  • Exosome-Based Therapies for Regenerative Medicine
  • Bioactive Molecules in Tissue Regeneration Strategies
  • Biofabrication Techniques for Stem Cell-Derived Constructs

Top 20 MedTech Research Topics On Cybersecurity in Healthcare: Protecting Patient Data

  • Security Measures for Electronic Health Records (EHRs)
  • Blockchain Technology for Securing Health Data Transactions
  • Role of Artificial Intelligence in Healthcare Cybersecurity
  • Medical Device Cybersecurity: Vulnerabilities and Solutions
  • Data Encryption in Healthcare Communication Systems
  • Secure Cloud Computing for Health Information Storage
  • Biometric Authentication in Accessing Patient Records
  • Cybersecurity Awareness and Training in Healthcare
  • IoT Security in Connected Medical Devices
  • Risk Assessment and Management in Healthcare Cybersecurity
  • Incident Response Plans for Healthcare Institutions
  • Securing Telehealth Platforms from Cyber Threats
  • Regulatory Compliance and Cybersecurity in Healthcare
  • Emerging Threats in MedTech: Preparing for the Future
  • Data Integrity and Authentication in Health Information
  • Healthcare Cybersecurity Standards and Best Practices
  • Cybersecurity in Wearable Health Technology
  • Securing Health Information Exchanges (HIEs)
  • Biomedical Research Data Protection Strategies
  • Collaboration and Information Sharing in Cybersecurity for Healthcare

Top 20 Research Topics On Global Health Technologies: Addressing Healthcare Disparities

  • Telemedicine in Low-Resource Settings: Overcoming Barriers
  • Mobile Health (mHealth) Interventions for Maternal Health
  • Remote Patient Monitoring for Chronic Disease Management
  • Community Health Worker Programs and Technology Integration
  • Role of Artificial Intelligence in Global Health Diagnostics
  • Low-Cost Diagnostics for Infectious Diseases in Developing Countries
  • Health Information Systems for Efficient Data Management
  • Access to Essential Medicines: Technological Solutions
  • Solar-Powered Health Technologies in Off-Grid Areas
  • Wearable Devices for Health Surveillance in Underserved Communities
  • Water and Sanitation Technologies for Preventive Healthcare
  • Global Health Mobile Apps: Education and Awareness
  • Drones in Healthcare Delivery: Remote and Rural Areas
  • Digital Health Records for Improving Patient Outcomes
  • Technology-Enabled Community Health Campaigns
  • E-health Platforms for Health Education and Promotion
  • Innovative Vaccination Technologies in Global Health
  • Role of Blockchain in Improving Health Equity
  • Global Health Data Analytics for Epidemiological Research
  • Partnerships and Collaborations for Sustainable Health Technologies

In ending, this diverse collection of Medtech Research Topics opens doors to a world of innovative possibilities. From smart health devices to futuristic surgery tech, these topics promise a wealth of insights for anyone curious about the future of healthcare. 

Whether you’re fascinated by AI in medicine or the potential of regenerative therapies, these topics will spark curiosity and encourage a in depth understanding of the ever-evolving field of medical technology.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

  • Research article
  • Open access
  • Published: 24 September 2018

Research topics and trends in medical education by social network analysis

  • Young A Ji 1 ,
  • Se Jin Nam 2 ,
  • Hong Gee Kim 1 ,
  • Jaeil Lee 3 &
  • Soo-Kyoung Lee   ORCID: orcid.org/0000-0003-1439-1607 4  

BMC Medical Education volume  18 , Article number:  222 ( 2018 ) Cite this article

23k Accesses

18 Citations

2 Altmetric

Metrics details

As studies analyzing the networks and relational structures of research topics in academic fields emerge, studies that apply methods of network and relationship analysis, such as social network analysis (SNA), are drawing more attention. The purpose of this study is to explore the interaction of medical education subjects in the framework of complex systems theory using SNA and to analyze the trends in medical education.

The authors extracted keywords using Medical Subject Headings terms from 9,379 research articles (162,866 keywords) published in 1963–2015 in PubMed. They generated an occurrence frequency matrix, calculated relatedness using Weighted Jaccard Similarity, and analyzed and visualized the networks with Gephi software.

Newly emerging topics by period units were identified as historical trends, and 20 global-level topic clusters were obtained through network analysis. A time-series analysis led to the definition of five historical periods: the waking phase (1963–1975), the birth phase (1976–1990), the growth phase (1991–1996), the maturity phase (1997–2005), and the expansion phase (2006–2015).

Conclusions

The study analyzed the trends in medical education research using SNA and analyzed their meaning using complex systems theory. During the 53-year period studied, medical education research has been subdivided and has expanded, improved, and changed along with shifts in society’s needs. By analyzing the trends in medical education using the conceptual framework of complex systems theory, the research team determined that medical education is forming a sense of the voluntary order within the field of medicine by interacting with social studies, philosophy, etc., and establishing legitimacy and originality.

Peer Review reports

An ancient scholar, Aristotle, established the basis of predicate logic, which divides knowledge into the smallest units and expresses it by linking them together (Sung-ho H: Structure and emergence analyses of knowledge network based on the social network analysis (SNA) methods: Focused on chungcheong strategic industries, unpublished) [ 1 ]. Recent studies have begun to use social network analysis as a means to analyze the trends of studies and understand the knowledge systems of each field by analyzing previously researched results. Generally, the purpose of research trend analysis in a particular academic field is to comprehend the current state of research by examining the existing results and to present future research directions [ 2 ].

Research trend analysis has been conducted for articles published in representative journals in medical education (ME), and its results serve as fundamental measures for securing academic identity [ 3 , 4 ]. Analysis is being conducted from multiple angles to confirm this identity from a holistic perspective, and research methods analyzing the relationship through the application of SNA in research trend analysis are steadily increasing in the social studies field.

The study of trends in medical education analyzes the entire academic field or the subject of a particular academic field. There are studies taking quantitative approaches such as those analyzing the frequency of medical training in medical education [ 4 , 5 , 6 , 7 , 8 ]. Other examples include studies that a) focused on the main subjects studied in medical education by analyzing common research topics in medical education from six journals [ 4 ], b) analyzed the co-topics occurring frequently in ME articles and the differences among journals’ publication of co-topics [ 9 ], c) focused on top-cited articles identified by keyword search [ 10 ], and d) focused on network analysis of the researchers in medical education [ 11 ]. In addition, analysis of unit subjects in specific academic fields, such as an analysis of the trends in research topics including a study on the geographical distribution of researchers whose works have published in major journals of medical education [ 12 ] and a study on the social relationships of medical students and the dispersion of their attitudes [ 13 ], have been conducted steadily each year.

These studies are meaningful in that they analyze the trends of medical education subjects from a macro perspective or study specific research topics from a micro perspective, thus enabling the analysis of the trends in medical education and its knowledge system. However, this method requires the collection and analysis of vast amounts of data, demanding considerable time and manpower for interpretation. In addition, it is highly likely that researchers rely on the knowledge, experience, and insight of experts during analysis [ 14 , 15 ]. In addition, the analysis has to be conducted by sorting the impactful keywords based on frequency [ 9 , 11 ] or citation factors [ 10 ] or through keyword analysis by topics [ 4 ]. However, such methods are limited in their ability to identify historical changes in the relationships between specific topics. SNA is a commonly accepted method for quantitatively and visually obtaining the overall structures of network connections.

As studies analyzing the networks and relational structures of research topics in academic fields emerge, studies that apply methods of network and relationship analysis, such as SNA, are drawing more attention [ 16 ]. General methods of analyzing research trends include using co-word analysis on keywords extracted from databases [ 10 , 11 ], co-citation analysis using the citation information of articles [ 12 ]. And there have also been studies on topics network analysis [ 13 , 16 , 17 , 18 ].

SNA is an actively utilized method that recognizes and interprets complex phenomena under micro units as an issue of order [ 17 ]. Exploring the interactions and qualitative changes in research topics in medical education according to the framework of complex systems theory will provide new answers regarding the knowledge network of medical education. Unlike previous quantitative studies on the issues in medical education, this paper aims to identify the phases of medical education distinguished by changing topics and explore the topics that emerge during the phases.

Therefore, the study utilizes SNA to investigate the interaction patterns among the issues in medical education by applying the framework of complex systems theory [ 18 ] and realistically contemplating the abstract knowledge network of medical education.

In order to grasp the features of research trends in the field of medical education, the study extracted social-network keywords connected to terms from the title and abstract of available articles in Medline. Mesh terms were used during the process of retrieving articles from Pubmed, and the keyword extraction was conducted through text analysis. The information used for the analysis in this paper includes the title, abstract, and publication year of the paper. Since MeSH terms are not attached to all of the papers to be analyzed in this study, the authors extracted the keywords using the TextRank algorithm from the text consisting of the title and abstract. The TextRank algorithm is advantageous in that it provides high performance without being influenced by the linguistic characteristics of the text to be analyzed (Mihalcea R, Tarau P: TextRank - bringing order into texts. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, unpublished). A more detailed analysis was conducted by collecting the articles for analysis. This analysis included 1) category-setting through analysis of keyword similarity, 2) performing content analysis on the keywords, 3) analyzing the resulting network, and 4) conducting a trend analysis.

In June 2015, we searched PubMed for articles indexed under the “medical” major topic whose titles or abstracts included the term “medical education.” Our query terms included related terms such as “medical learner,” “medical teacher,” “medical teaching,” “medical training,” “medical learning,” and “medical education.” In this stage, two researchers reviewed and evaluated the list of keywords. For all of the papers, the extracted keywords with the use of the TextRank Algorithm underwent a refining process by two researchers. During the refining process, in order to refine the keywords, we looked at the whole list, checked and summarized the thesaurus, exception list, and defined words that needed refinement, and conducted a re-analysis of keywords. For instance, the research team deleted numbers or keywords such as “the”, “% +/”, “% <”, “% ci -0/3”, “(99 m) tc” which make it difficult to draw out the meaning of a keyword before data analysis. They also considered singular and plural keywords, such as “cardiac problem” and “cardiac problems,” as synonyms. Moreover, abbreviations were normalized by controlling them with a list of synonyms.

Then, as the first stage in the data analysis, the team generated a frequency matrix sized 3,030X53 that consisted of the yearly frequency of all the terms and the year of publication of each article. Next, to sort out the terms, the team calculated the weighted value of the terms by applying the Term Frequency–Inverse Document Frequency (TF–IDF) formula used in the field of information search [ 19 ]. The weighted value W t,D was calculated using the formula below.

The tf(t,D) refers to the adjusted value of the sum of the frequencies of t of terms used in data collection using yearly frequency, and N from \( \mathit{\log}\left(\frac{\left|Y\right|}{\left|\left\{y\in Y:\right.\left.t\ appears\ in\ y\right\}\right|}\right) \) refers to the yearly range 53 {y ∈ Y: t appears in y}.

TF–IDF is a weighted value used in text mining, and it indicates how many times a certain word appears in a given document. The higher the value of TF-IDF, the greater its importance; this also means that the word appears often. Therefore, the value multiplies DF (Document Frequency) with IDF (Inverse Document Frequency), a reciprocal number. Since this value increases with the frequency of a specific word and decreases with the number of documents containing the word out of the total number of documents, it filters the words that appear often in most documents [ 20 ].

In order to quantitatively calculate the relationship between MeSH terms, the research team calculated the Weighted Jaccard Similarity [ 20 ].

That is, the relationship between the terms and t was calculated with the formula below, using the yearly frequency information from the frequency matrix.

Relatedness ( S ,  T ) = \( \frac{\sum_y mina\left({S}_y,{T}_y\right)}{\sum_y maxa\left({S}_y,{T}_y\right).} \)

Distributional Hypothesis [ 21 ] is the result of a study showing that when two words are used in the same context, these two words tend to have a similar meaning, and we assumed that there is a higher correlation between the two words if two keywords were used many times in the same year compared to the case where they were not. The science mapping principle dictates that the more related two elements are, the closer to each other they are positioned in a map [ 22 ]. This study based on the approach of distribution hypothesis and the science mapping principle for the correlation between words, the frequency value of each word’s annual appearance was used. The calculation method used in this study is a Weighted Jaccard similarity that used the appearance frequency of keywords. When using a Weighted Jaccard similarity, if two words are used together with high frequency in multiple years, they return a high similarity value.

Clustering of keywords was calculated using the Markov Cluster(MCL) Algorithm [ 23 ], which is widely applied to weight graphs in the computer science field, after constructing a graph with the keyword as the node of the graph and the similarity between the keywords as the weight of the edge between the nodes.

The MCL algorithm is a simple yet useful algorithm that is used for sequence data clustering in the biotechnology field which can be expressed as a weight graph. Therefore, it can be understood that the keywords with a high frequency of simultaneous appearance are used in the same context and have a higher correlation than other words in the same year. That is to say, they return a high similarity value.

Data analysis and interpretation

In order to analyze the process of change in research topics in the medical education field, the study used the Frequency Matrix and the Weighted Jaccard Similarity and marked the times at which clear changes occurred, such as when new keywords rapidly emerged or diminished, using yearly similarities as cut-off points. The entire data collection process was separated into five phases based on the emergence of keywords, and each phase was analyzed using SNA. In order to conduct the network analysis, the input file for Gephi, a tool used in network analysis, was generated by calculating the relevance of terms for each phase using the methods mentioned above and representing the values as the relevance between nodes. The size of each node was expressed as the authority score obtained by the HITS (Hypertext Induced Topic Selection) algorithm of Gephi [ 24 ]. The authority score enabled the extraction of main research topics by using the mutual information between the nodes that comprised the network. Here, the authority score refers to the frequency of the reception of links [ 25 ].

The study used PubMed articles that were available for electronic search using MeSH terms in October 2015. From 1963, the year of the first publication related to medical education, to 2015, a total of 9,379 articles (with 162,866 keywords) on medical education were published in PubMed, with a slow increase over time and a rapid increase since the 2000s.

Category-setting through analysis of keyword similarity

Figure  1 shows the results of the analysis of keywords by year, arranged in three-year sections. In the graph, points at which similarity begins to increase after decreasing indicate a great increase in change in keywords; these were set as phase cut-off points.

figure 1

Phase-setting by similarity

On the basis of the similarity analysis by year, phase 1 was set to range from 1963 to 1975; phase 2 from 1976 to 1990; phase 3 from 1991 to 1996; phase 4 from 1997 to 2005; and phase 5 from 2006 to 2015. The next subsection characterizes these phases by keyword (and the keywords by phase).

Content analysis in the key words

Figure  2 shows increases and decreases in the top 20 keywords newly appearing in each phase. Keywords newly emerging as research topics were as follows for each phase: From phase 1 to 2, “Internship and Residency,” “Medical Staff, Hospital,” and “Psychiatry;” from phase 2 to 3, “Problem-Based Learning,” “Program Development,” and “Health Care Reform;” from phase 3 to 4, “Internet,” “Evidence-Based Medicine,” and “Education, Distance;” and from phase 4 to 5, “Young Adult,” “Quality Improvement,” “General Practice,” “Patient Safety,” “Cultural Competency,” and “Self-Efficacy.”

figure 2

Top20 new keywords for each phase

Analysis of the resulting network

To systematically understand research trends and changes in knowledge structure in medical education over time, this study analyzed connections between keywords using social network analysis.

Figure  3 shows a schematization of the network resulting from extraction of keywords with high connectivity and high weighted value for each phase. In all, 20 clusters were schematized.

figure 3

Topic clusters in medical education

Topics in cluster 1, the largest group (comprising 19 nodes), are as follows: “Education, Medical, Graduate,” “Questionnaires,” “Clinical Competence,” and “Internship and Residency.” Cluster 2 is made up of eight nodes, under the following topics: “Middle Aged,” “Data Collection,” “Accreditation,” and “Problem-Based Learning.” Cluster 3 has seven nodes, under the following topics: “Communication,” “Career Choice,” and “Computer-Assisted Instruction.” Topics in cluster 4 are gathered around “Computer Simulation,” “Leadership,” and “User–Computer Interface.” In cluster 5, “Competency-Based Education” and “Professional Competence” are the topics, and cluster 6 mainly deals with “Adolescents,” “Fellowships and Scholarships,” and “Interview as Topic.”

Trend-watching: All five phases

Figure  4 shows the SNA over all five phases, with detailed topic networks for each phase given in the Additional files  1 , 2 , 3 , 4 and 5 : Figures S1–S5. Phase 1 (1963–1975) showed lower connectedness among research topics compared to other phases, due to the difference in scale of article publication. Central keywords included “Education, Medical, Undergraduate,” “Curriculum,” “Male,” “Female,” and “Adult.” On the basis of these keywords, a subnetwork emerged, continuing up to phase 5. In phase 2 (1976–1990), connections between central keywords grew tighter, and new keywords appeared, including “Professional Competence,” “Attitude of Health Personnel,” and “Peer Review.” In phase 3 (1991–1996), connections among keywords such as “Clinical Competency,” “Educational Measurement,” and “Physician–Patient Relations” were enhanced. In phase 4 (1997–2005), the association of keywords with high connectedness became dual, and connections among keywords such as “Data Collection,” “Problem-Based Learning,” and “Health Knowledge, Attitudes, Practice” were enhanced. In phase 5 (2006–2015), the number and connectedness of keywords increased, and new keywords, such as “Computer-Assisted Instruction,” “Personal Staffing and Scheduling,” “User–Computer Interface,” “Professional Competency,” “Accreditation,” “Program Evaluation,” and “Educational Measurement,” appeared.

figure 4

SNA of each historical phase of medical education

The study realistically contemplated the abstract knowledge network of medical education by identifying the network trends in medical education research topics through the use of SNA and investigating the use patterns in interactions by time. The study contains articles from the year when PubMed made it possible to electronically search for MeSH term in medical education articles, and coincidentally, this is consistent with Norman’s suggestion that a new generation of medical education has emerged [ 25 ].

The study identified five phases based on the changes in time indicated by clear differences in keyword similarities and identified newly derived keywords and networks in each phase. The clustering was conducted by deriving the keywords with high similarity using the appearance frequency values ​​of the two keywords and constructing a weighted graph based on the similarity between the keywords. This can be observed by clustering the sequences of the main keywords overall.

When the trend of the newly emerged keywords from five phases was analyzed, the keywords with the highest increase rates in all the phases, such as “Education,” “Medical,” “Humans,” “Curriculum,” “Continuing Medical Education,” and “Internship and Residency,” were similar to the keywords from a previous study by Lee K. [ 9 ]. Such repetition of research topics, as noted in the study by Eva K. W., probably occurs because studies in medical education are mostly observational [ 26 ].

In a similar study, Lee K. also analyzed the historical trends in medical publications in the field of medical education [ 9 ]. Even though the general trend appears similar, it did not distinguish the semantic unit that grasps the variations in the emergence of new keywords. Therefore, the study is meaningful in that it distinguishes between the phases by analyzing the interactions between medical education keywords using the complex systems framework.

Research in medical education has mostly been dominated by a positivist approach [ 26 ], and the emergence of new keywords with time represents the extent of the efforts being made to reflect social needs using the educational paradigm [ 27 ]. When the contents of topics that increased in a certain period or had newly emerged were analyzed, the first phase was characterized by important keywords being continuously mentioned in medical education, and new keywords such as “competency” or “accreditation” began to appear in the second phase. This could be due to the fact that the authentication program was formally declared in 1975 in order to improve the quality of medical education [ 28 ]. Considering that the top-cited articles in medical education began to contain reviews and research on competency since then, the studies seem to have been accumulated from this time [ 10 ]. Keywords that emerged in the third phase, such as “problem-based learning” and “computer communication networks” imply an increased interest in new education methods [ 4 ]. Keywords such as “competency-based assessments” and “outcome-based education,” which emerged in the fourth phase, represent the extension of research topics during the time period in which medical education became a topic of conversation [ 28 ]. Finally, the fifth phase is characterized by the emergence of keywords such as “quality improvement,” “patient safety,” “cultural competency,” and “self-efficacy,” which confirms that more research reflecting the trend is being conducted and realistic demands of medical education are being made. This period is also marked by increased interest in medical education and emphasis on the importance of evaluation, and thus, qualitative analysis and program evaluation were among the most important research topics (Fligstein N: Theoretical perspectives in medical education: past experience and future possibilities, unpublished). It appears that interest in quality improvement increased as social requirements for doctors gradually influenced educational institutions [ 27 , 29 , 30 ]. Therefore, various educational programs should be developed and evaluated with a focus on the effectiveness of medical education [ 31 , 32 , 33 , 34 ].

After exploring the keywords used in medical education research using SNA from a macro perspective, the research team analyzed the research trends of each phase by historical flow. When a network is considered to be one ecosystem, it corresponds with the principle of complex systems, and from the perspective of interpreting the flow of the network, the complex systems logic is presented as a new alternative [ 35 ]. Recently, there have been a number of discussions on the need to explore the nature of knowledge networks using complex systems theory [ 17 ].

The study was able to identify the process of improving the academic field in medical education by analyzing keywords in separate phases. This effort can be considered as a method of knowledge formation clearly distinguished from those used in previous studies. An emergency refers to a disorderly situation that arises as a result of complex network structures and patterns, and the system of such an emergency can be referred to as a complex system [ 18 ]. Unlike the analysis of keyword emergence, the flow of the phases studied by SNA is quite similar to the changing trend in human societies or networks [ 36 ]. This implies that the research topics in medical education resemble the emergence phenomena, as used in the complex phenomena. In other words, when examining the timely flow of keywords related to medical education, it can be noted that the newly emerged keywords form a network by interacting with each other. This, like the coevolution phenomena presented by complex systems theory, shows a similar phenomenon in which keywords evolve as they interact. As such, it seems like the trend in topics by phases derived through medical education keyword analysis is a part of the change process suggested by complex systems theory. At the same time, a cycle in which new research topics emerge, interact, and evolve should be formed [ 30 , 37 ].

As the research team examined the research trends by phase, the features of each phase could be analyzed on the basis of complex systems theory: the waking phase (1963–1975), the birth phase (1976–1990), the growth phase (1991–1996), the maturity phase (1997–2005), and the expansion phase (2006–2015). And each name contained one the following meanings. The first period (1963–1975) is when keywords that served as central nodes for all the phases, such as “Education, Medical, Undergraduate” “Curriculum,” “Male,” “Female,” and “Adult,” appeared. This period forms the backbone of research in medical education, and shows the networks of basic levels. The second phase (1976–1990) is the period of the birth of medical education. The major keywords in the first phase focused on the subjects; however, the second phase is characterized by a focus on the keywords of properties, such as “Professional Competence,” “Attitudes of Health Personnel,” and “Peer Review.” In order for the subjects of medical education research to connect and be studied, it seems like the keywords representing the properties or characteristics should emerge and connect the subjects and foster the research. The third phase (1991–1996) was a period of growth for medical education, which is marked by the emergence of keywords in research methodology such as “Educational Measurement,” “Evaluation as Topic,” and “Questionnaire.” It appears that various methodologies have been tried in order to achieve qualitative improvement in subjects and properties. Ultimately, this seems to reflect the purpose of solving various problems in medical education, and it has been confirmed that suggested alternatives influenced and improved the academic field of medical education. The fourth phase (1997–2005) was a period of maturity, when keywords such as “Health Knowledge, Attitudes, and Practice,” “Ethics and Medicine,” and “Physician-Patient Relations” emerged. These keywords reflect an increasing interest in selecting physician candidates with high morality, with an emphasis on ethical responsibilities in medical education. At the same time, the trend represents the extension of research topics from analysis of general education to quality management [ 27 ]. From this perspective, various educational keywords in performance and competency are being connected in this phase. This trend could imply that the influence of general citizens’ requirements of physicians could have had effects on the education sector as well. The fifth phase (2006–2015) was a period of expansion, and major keywords such as “Computer Assisted Instruction,” “Personal Staffing and Scheduling,” “User-Computer Interface,” “Professional Competency,” “Accreditation,” and “Program Evaluation” emerged. Unlike other keywords, medical education keywords have larger network connectivity from the fifth phase, forming true network structures. While the first three phases are marked by the emergence of new keywords, the fourth phase is characterized by network formation. The fifth phase is called the period of expansion because networks are becoming highly concentrated and forming new networks.

However, the study has some limitations. First of all, since it is a quantitative study using SNA, it focused on terms related to medical education in Medline without taking into consideration the articles published in medical education journals such as JAMA(Journal of the American Medical Association), BMJ(British Medical Journal), JAMA internal medicine, etc. Thus, compared to the studies conducted by Rotgans JI, Wolf E Hautz et al., and Tutarel O, some articles are not reflected in this study [ 4 , 11 , 12 ]. Secondly, as in many other studies, the research team could only search for articles published in English. Thirdly, co-word analysis, co-citation analysis, and bibliographic coupling are among the most commonly used content analysis methods in the field of bibliometrics [ 38 ]. Co-word analysis used in this study is a method of analyzing a pattern in which a pair of terms (phrases) used in text in a specific field are analyzed at the same time to reveal the knowledge structure of the field. In this paper, the corelation between two words is used by frequency of use of words in common by year using the approach of distribution hypothesis. However, in order to better comply with the context-based distribution hypothesis, a new method is needed to calculate semantic relations between two words in the future. Fourthly, since this is a quantitative study, there is a need for interdisciplinary research focusing on issues in sociology, economics, or ecology. At the same time, future studies could focus on the establishment of new theories from current effectiveness verification studies. Lastly, a great amount of time and manpower was required for data collection, classification, and interpretation, because of which the study could not implement additional keyword analysis within the last one year. This calls for the development of a new research methodology that can readily analyze recent trends through SNA.

As this shows, medical education research has focused not only on medical knowledge and practice (content) but also on research topics related to education theory as a social science (pedagogy) [ 31 , 39 ]. Hence, for the development of medical education, a relevant community of work in related social science fields is also needed, and this work, from all disciplines, needs to be pursued in an integrated, interdisciplinary fashion, with fields and studies reflecting each other’s requirements and assumptions. In this way, a new and unique kind of medical education will develop, which will be crucial for the future of the field.

The study reinterpreted the changes in medical education using the complex systems theory, a mechanism in which various factors influence each other and collide into an order while forming a causal relationship. This confirmed that a unique legitimacy of medical education is being formed. Research in medical education is continuously improving and keeping pace with numerous social changes. Therefore, as educational and sociological theories integrate in the field of medicine, the medical education sector is expected to achieve independent development in the future.

Abbreviations

Document Frequency

Hypertext Induced Topic Selection

Inverse Document Frequency

Journal of the American Medical Association; BMJ: British Medical Journal

Markov Cluster

medical education

Social Network Analysis

Term Frequency–Inverse Document Frequency

Rini A. Aristotle’s Modal Proofs: Prior Analytics A8-22 in Predicate Logic. Dordrecht Heidelberg London New York: Springer; 2010.

Google Scholar  

Byun KY, KA SH. Critical reflections on higher education administration research in Korea: an analysis of research topic, method, and researcher. J Educ Adm. 2012;30:135–60.

Yoo HH, Shin S. Trends of research articles in the Korean journal of medical education by social network analysis. Korean J. Med. Educ. 2015;27(4):247–54.

Article   Google Scholar  

Rotgans JI. The themes, institutions, and people of medical education research 1988-2010: content analysis of abstracts from six journals. Adv Health Sci Educ. 2012;17(4):515–27.

Regehr G. Trends in medical education research. Acad Med. 2004;79:939–47.

Obeidat AS, Alhaqwi AI, Abdulghani HM. Reprioritizing current research trends in medical education: a reflection on research activities in Saudi Arabia. Med Teach. 2015;37(Suppl I):S5–8.

Kim S. Current trends in medical education by analysis of journals of medical education. Korean J Med Educ. 2004;16:109–17.

Lee YH, Lee YM, Kwon H. Trends analysis on research articles in the Korean journal of medical education. Korean J Med Educ. 2012;24:287–99.

Lee K, Whelan JS, Tannery NH, Kanter SL, Peters AS. 50 years of publication in the field of medical education. Med. Teach. 2013;35(7):591–8.

Azer SA. The top-cited articles in medical education: a bibliometric analysis. Acad Med. 2015;90(8):1147–61.

Hautz WE, Krummrey G, Exadaktylos A, Hautz SC. Six degrees of separation: the small world of medical education. J Med Educ. 2016;50:1274–9.

Tutarel O. Geographical distribution of publications in the field of medical education. BMC Med Educ. 2002;2(1):3.

Isba R, Woolf K, Hanneman R. Social network analysis in medical education. Med Educ. 2017;51(1):81–8.

Son YJ, Jeong S, Kang BG, Kim SH, Lee SK. Visualization of e-health research topics and current trends using social network analysis. Telemed J E Health. 2015;21(5):436–42.

Cambrosio A, Keating P, Mercier S, Lewison G, Mogoutov A. Mapping the emergence and development of translational cancer research. Eur J Cancer. 2006;42(18):3140–8.

Yang SD. Semantic network analysis of research trend related to private security. J Korean Contents Assoc. 2013;13:894–901.

Por G. Nurturing systemic wisdom through knowledge ecology. Syst Thinker. 2000;2(8):1–5.

Krugman P. Increasing returns and economic geography. J Polit Econ. 1991;99(3):483–99.

Amati G, Van Rijsbergen CJ. Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Trans Inf Syst. 2002;20(4):1046–8188.

Chowdhury GG. Introduction to modern information retrieval. Korea: Facet publishing; 2010.

Harris Z. Distributional structure. Word. 1954;10(23):146–62.

Noyons E. Bibliometric mapping of science in a policy context. Scientometrics. 2001;50:83–98.

Van Dongen S. A new cluster algorithm for graphs. Report( No. INS-R0010). Amsterdam: Center for Mathematics and Computer Science (CWI); 2000.

Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM. 1999;46(5):604–11.

Norman G. Fifty years of medical education research: waves of migration. Med Educ. 2011;45(8):785–91.

Eva KW. Broadening the debate about quality in medical education research. Med Educ. 2009;43(4):294–6.

Singer PA. Strengthening the role of ethics in medical education. Can Med Assoc J. 2003;168(7):854–5.

Leape LL. Error in medicine. JAMA. 1994;272(23):1851–7.

Mann KV. Theoretical perspectives in medical education: past experience and future possibilities. Med Educ. 2011;45(1):60–8.

Cook DA, West CP. Perspective: reconsidering the focus on “outcomes research” in medical education: A cautionary note. Acad Med. 2013;88(2):162–7.

Historical Timeline. JAMA. 2015. https://www.acgme.org/About-Us/Overview/History-of-Medical-Education . Accessed 17 Aug 2016.

Newble DI, Jaeger K. The effect of assessments and examinations on the learning of medical students. Med Educ. 1983;17(3):165–71.

WFME Global Standards for Quality Improvement. Education World Federation for Medical Education; 2015. http://wfme.org/publications/wfme-global-standards-for-quality-improvement-bme/ . Accessed 3 Oct 2016.

Education Committee of the General Medical Council. Tomorrow's Doctors. Recommendations on Undergraduate Medical Education. London: GMC; 1993.

Hiroshi K. Structuring Knowledge. Tokyo: Senshu University Press; 2004.

Monrouxe LV, Rees CE. Picking up the gauntlet: constructing medical education as a social science. Med Educ. 2009;43(3):196–8.

Anderson P. Perspective: complexity theory and organization science. Organ Sci. 1999;10(3):216–32.

He Q. Knowledge discovery through co-word analysis. Libr Trends. 1999;48(1):133–59.

Capra F, March R. The turning point: Science, society, and the rising culture. Physics Today. 1982;35:76.

Download references

This research was supported by the Office of Research Affairs of the Seoul National University Fundation (No. 860–20140058) and by a National Research Foundation of Korea (NRF) grant funded by the Korean Ministry of Science, ICT and Future Planning (No. NRF-2015R1C1A1A01055753).

Availability of data and materials

The datasets used in this study are stored at the College of Nursing, Keimyung University and the Center for Innovative Dental Education Korea. They are available from the corresponding author on reasonable request.

Author information

Authors and affiliations.

Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul, Republic of Korea

Young A Ji & Hong Gee Kim

National Center of Excellence in Software, Chungnam National University, Daejeon, Republic of Korea

Center for Innovative in Dental Education, Seoul National University, Seoul, Republic of Korea

College of Nursing, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu, 42601, Republic of Korea

Soo-Kyoung Lee

You can also search for this author in PubMed   Google Scholar

Contributions

YJ substantial contributed to the conception or design of the work or the acquisition, analysis, or interpretation of data for the work. SN contributed to the design of the work and analze big data for the work. HK contributed to the approval of the version to be published. JL contributed to the interpretation of data and drafting the work or revising it critically for importatnt intellectual content. SL contributed to the agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soo-Kyoung Lee .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Additional files

Additional file 1:.

Figure S1. SNA of each historical phase1(1963–1975) of medical education (TIF 1645 kb)

Additional file 2:

Figure S2. SNA of each historical phase2(1976–1990) of medical education (TIF 2932 kb)

Additional file 3:

Figure S3. SNA of each historical phase3(1991–1996) of medical education. (TIF 3844 kb)

Additional file 4:

Figure S4. SNA of each historical phase4(1997–2005) of medical education. (TIF 3575 kb)

Additional file 5:

Figure S5. SNA of each historical phase5(2006–2015) of medical education. (TIF 2378 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Cite this article.

Ji, Y.A., Nam, S.J., Kim, H.G. et al. Research topics and trends in medical education by social network analysis. BMC Med Educ 18 , 222 (2018). https://doi.org/10.1186/s12909-018-1323-y

Download citation

Received : 18 January 2017

Accepted : 07 September 2018

Published : 24 September 2018

DOI : https://doi.org/10.1186/s12909-018-1323-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Research trends
  • Research topics
  • Medical education
  • Social network analysis
  • Complex systems theory

BMC Medical Education

ISSN: 1472-6920

medicine research topics quantitative

VIDEO

  1. Types of Research Questions

  2. Quantitative and qualitative Research,Health education medical surgical nursing!

  3. Translational Justice & Health Disparities Research in Genomics

  4. Multidisciplinary Research in Nursing Research

  5. The qualitative and the quantitative

  6. Quantitative CMR Stress Perfusion Imaging: Applications in Ischemic Heart Disease and Heart Failure

COMMENTS

  1. 500+ Quantitative Research Titles and Topics

    Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology, economics, and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas ...

  2. 77 Exciting Medical Research Topics (2024)

    Since 2020, COVID-19 has been a hot-button topic in medicine, along with the long-term symptoms in those with a history of COVID-19. Examples of COVID-19-related research topics worth exploring include: The long-term impact of COVID-19 on cardiac and respiratory health. COVID-19 vaccination rates.

  3. 100+ Interesting Medical Research Topics

    22 Paramedic Research Paper Topics. 23 Surgery Research Topics. 24 Radiology Research Paper Topics. 25 Anatomy and Physiology Research Paper Topics. 26 Healthcare Management Research Paper Topics. 27 Medical Ethics Research Paper Topics. 28 Conclusion. In such a complex and broad field as medicine, writing an original and compelling research ...

  4. 100+ Healthcare Research Topics (+ Free Webinar)

    Here, we'll explore a variety of healthcare-related research ideas and topic thought-starters across a range of healthcare fields, including allopathic and alternative medicine, dentistry, physical therapy, optometry, pharmacology and public health. NB - This is just the start….

  5. Recent quantitative research on determinants of health in high ...

    Background Identifying determinants of health and understanding their role in health production constitutes an important research theme. We aimed to document the state of recent multi-country research on this theme in the literature. Methods We followed the PRISMA-ScR guidelines to systematically identify, triage and review literature (January 2013—July 2019). We searched for studies that ...

  6. Quantitative Research Methods in Medical Education

    This problem statement articulates the research topic (identifying resident performance gaps), why it is important (to intervene for the sake of learning and patient safety), and current gaps in the literature (few tools are available to assess resident performance). ... This article provides an overview of quantitative research in medical ...

  7. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  8. Quantitative medicine: Tracing the transition from holistic to

    The rise of quantitative medicine. Quantitative medicine is a paradigm shift in the practice of medicine that emphasizes the use of quantitative data and mathematical models to understand and treat disease. 20 This approach is based on the idea that the human body can be studied as a complex system, with many interconnected parts that can be modeled and simulated using mathematical and ...

  9. 2021 Research Highlights

    The findings suggest that people can learn to reduce the brain activity causing some types of chronic pain that occur in the absence of injury or persist after healing. 2021 Research Highlights — Basic Research Insights >>. NIH findings with potential for enhancing human health include new drugs and vaccines in development for COVID-19 ...

  10. 23 Questions to Guide the Writing of a Quantitative Medical ...

    2 director, Master of Medical Sciences in Medical Education, and associate professor of pediatrics, Harvard Medical School Academic Medicine: January 2022 - Volume 97 - Issue 1 - p 164 doi: 10.1097/ACM.0000000000003660

  11. A Quantitative Observational Study of Physician Influence on Hospital

    The average cost of hospital inpatient visits was $9172 for all visits, $9492 for visits to teaching hospitals, and $8679 for visits to nonteaching hospitals (see Appendix Table A1 for visit characteristics). There were 7993 physicians who worked only at teaching hospitals, 4249 physicians who worked only at nonteaching hospitals, and 2995 ...

  12. Laboratory on Quantitative Medical Imaging Research Topics

    Biomarkers1 are of fundamental importance for any research endeavor aimed at improving human health. The main objective of the Laboratory on Quantitative Medical Imaging is to research quantitative markers obtained with non-invasive imaging techniques, primarily MRI, and encompassing methods development, biologic validation, and clinical application.

  13. 201 Impressive Medical Researches Topics For Students

    Researchable Medical Research Topics Examples. Discuss the medical implications of male circumcision. The impact of political action on the effectiveness of health care systems. The role of international collaborations in improving medical care. Evaluate the challenges faced in the regulation of biomedical research.

  14. Living with a chronic disease: A quantitative study of the views of

    Chronic diseases have an impact on and change patients' lives, and the way they experience their bodies alters. Patients may struggle with identity and self-esteem, a shrinking lifeworld and a challenging reality. 1 The chronic diseases become part of the patients' lives, whether they affect their physical health and functions, autonomy, freedom and identity, or threaten their life. 2 The ...

  15. Quantitative research methods in medical education

    Quantitative research in medical education tends to be predominantly observational research based on survey or correlational studies. As researchers strive towards making inferences about the impact of education interventions, a shift towards experimental research designs may enhance the quality and conclusions made in medical education. ...

  16. 100+ Best Quantitative Research Topics For Students In 2023

    An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones: The link between global warming and climate change. What is the greenhouse gas impact on biodiversity and the atmosphere.

  17. Research Topics

    Research Topics. The links below will take you to the Research pages for all of the Department of Medicine's different Section and Centers. You can explore more specific research topics within those pages. Addiction Medicine. Amyloid. Biomedical Genetics. Cancer Center. Cardiovascular Medicine.

  18. Research Topics

    Arrhythmia, cardiomyopathy, heart failure, preventative cardiology and vascular topics research. Heart Institute. Biomechanics research, gait and mobility disorders, swallowing dysfunction research. Department of Physical Medicine and Rehabilitation. Brain tumor, MS, pediatric neurosurgery and transverse myelitis research.

  19. 399+ Amazing Medtech Research Topics

    Top 20 MedTech Research Topics On Artificial Intelligence Applications in Healthcare. AI-Driven Diagnostics: Impact on Disease Detection. Predictive Analytics in Personalized Medicine. Natural Language Processing in Healthcare Data Management. Clinical Decision Support Systems: Enhancing Patient Care.

  20. Frontiers in Medical Technology

    Nanomaterials and Small Molecule-Enabled Precision Therapeutics, Biosensor and Diagnostics. Bijayananda Panigrahi. Dindyal Mandal. Dr. Nidhi Verma. ROHIT KUMAR SINGH. 669 views. An innovative journal that explores technologies which can maintain healthy lives and contribute to the global bioeconomy by addressing key medical and healthcare needs.

  21. Research topics and trends in medical education by social network

    There are studies taking quantitative approaches such as those analyzing the frequency of medical training in medical education [4,5,6,7,8]. Other examples include studies that a) focused on the main subjects studied in medical education by analyzing common research topics in medical education from six journals , b) ...

  22. CDER Establishes New Quantitative Medicine Center of Excellence

    Linkedin. [03/25/2024] FDA's Center for Drug Evaluation and Research (CDER) is pleased to announce the new CDER Quantitative Medicine (QM) Center of Excellence (CoE). QM involves the development ...

  23. FDA Workshop Streamlining Drug Development and Improving Public Health

    public-health-through-quantitative-medicine-introduction Other inquiries - [email protected]. Opening Remarks. Patrizia Cavazzoni, MD, ... Regulatory science research - internal and ...