Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 14 May 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Designing Research Proposal in Quantitative Approach

  • First Online: 27 October 2022

Cite this chapter

quantitative research design proposal

  • Md. Rezaul Karim 4  

2484 Accesses

This chapter provides a comprehensive guideline for writing a research proposal in quantitative approach. It starts with the definition and purpose of writing a research proposal followed by a description of essential parts of a research proposal and subjects included in each part, organization of a research proposal, and guidelines for writing different parts of a research proposal including practical considerations and aims of a proposal that facilitate the acceptance of the proposal. Finally, an example of a quantitative research proposal has been presented. It is expected that research students and other interested researchers will be able to write their research proposal(s) using the guidelines presented in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

quantitative research design proposal

Methodology

quantitative research design proposal

Writing about Research Design

quantitative research design proposal

Research Design

http://libguides.usc.edu/writingguide/researchproposal .

University of Michigan. Research and Sponsored Projects. http://orsp.umich.edu/proposal-writers-guide-research-proposals-title-page .

Pajares, F. (n.d). The Elements of a Proposal. Emory University.

Wong, P.T. P. http://www.meaning.ca/archives/archive/art_how_to_write_P_Wong.htm .

https://www.scribd.com/document/40384531/Research-Proposal-1 .

Institute of International Studies. Dissertation Proposal Workshop, UC Berkeley, http://iis.berkeley.edu/node/424 .

For details of CSC see CARE Malawi. “The Community Score Card (CSC): A generic guide for implementing CARE’s CSC process to improve quality of services.” Cooperative for Assistance and Relief Everywhere, Inc., 2013. http://www.care.org/sites/default/files/documents/FP-2013-CARE_CommunityScoreCardToolkit.pdf

Institute of International Studies . Dissertation Proposal Workshop, UC Berkeley, http://iis.berkeley.edu/node/424 .

Bangladesh Bureau of Educational Information and Statistics

https://www.dhakatribune.com/uncategorized/2015/12/31/psc-pass-rate-98-52-ebtedayee-95-13 .

https://bdnews24.com/bangladesh/2018/12/24/jsc-jdc-pass-rate-85.83-gpa-5.0-rate-drops-sharply .

Arboleda, C. R. (1981). Communication research . Communication Foundation for Asia.

Google Scholar  

Babbie, E. R. (2010). The practice of social research (12th ed.). Wadsworth Cengage.

BANBEIS (Bangladesh Bureau of Educational Information and Statistics). (2017). Bangladesh education statistics 2016. Bangladesh Bureau of Educational Information and Statistics (BANBEIS).

Borbasi, S., & Jackson, D. (2012). Navigating the maze of research . Mosby Elsevier.

Burns, N., Grove, S. K. (2009). The practice of nursing research: Appraisal, synthesis and generation of evidence. Saunders Elsevier.

Creswell, J. W. (1994). Research design: Qualitative & quantitative approaches . SAGE Publications.

Hasnat, M. A. (2017). School enrollment high but dropouts even higher. Dhaka Tribune September 8, 2017. https://www.Dhakatribune.com/Bangladesh/education/2017/09/08/school-enrollment-high-dropouts-even-higher .

Institute of International Studies. (n.d). Dissertation proposal workshop. Institute of International Studies. http://iis.berkeley.edu/node/424 .

Pajares, F. (n.d). The elements of a proposal. Emory University. Retrieved from http://www.uky.edu/~eushe2/Pajares/ElementsOfaProposal.pdf .

Przeworski, A., & Frank, S. (1995). On the art of writing proposals: some candid suggestions for applicants to social science research council competitions. Social Science Research Council. Retrieved from http://iis.berkeley.edu/sites/default/files/pdf/the_art_of_writing_proposals.pdf .

University of Michigan. (n.d). Research and sponsored projects. http://orsp.umich.edu/proposal-writers-guide-research-proposals-title-page .

Download references

Author information

Authors and affiliations.

Department of Social Work, Jagannath University, Dhaka, 1100, Bangladesh

Md. Rezaul Karim

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Md. Rezaul Karim .

Editor information

Editors and affiliations.

Centre for Family and Child Studies, Research Institute of Humanities and Social Sciences, University of Sharjah, Sharjah, United Arab Emirates

M. Rezaul Islam

Department of Development Studies, University of Dhaka, Dhaka, Bangladesh

Niaz Ahmed Khan

Department of Social Work, School of Humanities, University of Johannesburg, Johannesburg, South Africa

Rajendra Baikady

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Karim, M.R. (2022). Designing Research Proposal in Quantitative Approach. In: Islam, M.R., Khan, N.A., Baikady, R. (eds) Principles of Social Research Methodology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5441-2_10

Download citation

DOI : https://doi.org/10.1007/978-981-19-5441-2_10

Published : 27 October 2022

Publisher Name : Springer, Singapore

Print ISBN : 978-981-19-5219-7

Online ISBN : 978-981-19-5441-2

eBook Packages : Social Sciences

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Quant Writing Guide cover image

A Guide to Quantitative Research Proposals

In this essay, noted scholar Elizabeth Tipton elaborates on how to best articulate quantitative research design in grant proposals. This essay is a companion piece to our “ A Guide to Writing Successful Field Initiated Research Grant Proposals ,” which provides general information about the elements of grant writing.

A Guide to Quantitative Research Proposals

Browse Our Resources and Tools

How to Guide - A Guide to Writing Proposals that Engage Research With Youth, Families and CBO

Writing Proposals That Engage Research With Youth, Families, and CBOs

glasses

Proposal Review Process Infographic

RPP Writing Guide banner 20230911

Research-Practice Partnerships Writing Guide

Find out more about us.

School, Child, Classroom

The Spencer Foundation invests in education research that cultivates learning and transforms lives.

Board of directors.

Annie from behind

Work at Spencer

Spencer, Bright Blue

Learn about Opportunities to Join our Staff

We are committed to diversity, equity and inclusion.

Find Out More About Our Legacy

Lyle M Spencer, Note

Lyle M. Spencer established the Spencer Foundation in 1962 to investigate ways education, broadly conceived, might be improved.

Lyle M. Spencer

Lyle M Spencer

Who was Lyle M. Spencer?

Learn about our founder.

Spencer History

Ink pen writing

Our Path to the Present

Find out more about funding opportunities, what do we fund.

Spencer Non-Traditional Learning

We support high-quality, innovative research on education, broadly conceived.

Research Grants

Spencer Non-Traditional Learning

Field-Initiated Research Grant Programs

Training grants.

Keeping Teachers

Fellowships for Scholars and Journalists

Read our news.

Recent Awardees 03/25

Recently Awarded Small Grants

Recently awarded large grants, announcement.

Carter and Howard

Spencer welcomes new Directors

Find out what we're learning, white paper.

Brown at 70: Progress, Pushback, and Policies that Matter

Brown at 70: Progress, Pushback, and Policies that Matter

The Complex Braid of Brown: How Conceptualizations and Initiatives Within the African-American Community of Research, Practice and Activism Have Influenced the Advance of Knowledge and Practice in Education

The Complex Braid of Brown: How Conceptualizations and Initiatives Within the African-American Community of Research, Practice and Activism Have Influenced the Advance of Knowledge and Practice in Education

A Timeline of the African-American Struggle for Desegregation and Equity Prior to and Since the Brown v. Board of Education Decision

A Timeline of the African-American Struggle for Desegregation and Equity Prior to and Since the Brown v. Board of Education Decision

Resources and tools.

Spencer Non-Traditional Learning

Grant Archive

Hands, Keyboard, computer, typing

Explore our Library of Past Awards

For applicants.

games

Resources and Tools For Applicants

We use cookies on this site to enhance your experience

By clicking any link on this page you are giving your consent for us to set cookies.

A link to reset your password has been sent to your email.

Back to login

We need additional information from you. Please complete your profile first before placing your order.

Thank you. payment completed., you will receive an email from us to confirm your registration, please click the link in the email to activate your account., there was error during payment, orcid profile found in public registry, download history, how to design a quantitative research study.

  • Charlesworth Author Services
  • 10 December, 2021

Beginning the design of a quantitative research project can feel like stepping foot into a maze; there are lots of different potential routes you can take, and it can be hard to know which the right one is. Due to the potential complexity of designing a study like this, knowing which first step to take can be confusing. To help clarify the process and make it easier for you, we’ve split up the decision making into several distinct points that you can address separately as you plan your quantitative research project.

1. Decide what your key question(s) is/are

First, the most important thing to do is to work out why you’re designing and conducting this experiment in the first place; in other words…

What is the key question that you’re trying to answer? 

Focus on what interests you and use this to guide some of your reading in the area. Read relevant articles and concentrate on the other experiments that they reference. This will help you work out what gaps in knowledge there are in the field and how your own project can make a novel contribution. 

2. Identify the methods you will use

Once you know what the question is that you’re trying to answer, your next step is to work out how you will answer it. In other words…

What will your methodology be?

Reading other papers in the area will be helpful at this stage too. You might find that you can adapt a paradigm from another experiment, or that there are commonly used measures in your area. 

3. Narrow in on your variables

A good thing to do after identifying the method that you will use is to decide exactly what the independent and dependent variables will be in your experiment(s). 

  • Independent variable (IV) is the factor that you will manipulate in your experiment. For example, this might be which stimuli a participant is shown or which treatment they are given.
  • Dependent variable (DV) is what you are measuring. This could be reaction time, score on a particular measure or ratings that the participants give.

4. Formulate your hypothesis

Now that you’ve identified your question, methodology and variables, you can begin to formulate the hypothesis for your experiment(s). In other words…

What do you expect to happen? 

A hypothesis should be clear and directional, for example:

In this experiment, we expect that participants who see the colourful stimuli will give higher ratings than those who see the black and white stimuli.

Your hypothesis should always be based in evidence, using findings from other previous studies and research to guide what you expect to see. Again, reading relevant papers will help you to arrive at better hypotheses.

Now that you have more clarity on designing your research project, you can proceed to actually put those plans into action. Start preparing for and conducting your experiments to collect the data, then analyse those results to find out if your hypothesis is correct.

Read next (third/ final ) in series: How to design a qualitative research study

Read previous (first) in series: Deciding between a quantitative design and a qualitative design for your study

Maximise your publication success with Charlesworth Author Services.

Charlesworth Author Services, a trusted brand supporting the world’s leading academic publishers, institutions and authors since 1928. 

To know more about our services, visit: Our Services

Share with your colleagues

Related articles.

quantitative research design proposal

Deciding between a quantitative design and a qualitative design for your study

Charlesworth Author Services 10/12/2021 00:00:00

quantitative research design proposal

Choosing an Appropriate Quantitative Research Design

Charlesworth Author Services 18/01/2021 00:00:00

quantitative research design proposal

Developing a competitive research design

Charlesworth Author Services 11/03/2021 00:00:00

Related webinars

quantitative research design proposal

Bitesize Webinar: How to write and structure your academic article for publication- Module 3: Understand the structure of an academic paper

Charlesworth Author Services 04/03/2021 00:00:00

quantitative research design proposal

Bitesize Webinar: How to write and structure your academic article for publication: Module 5: Conduct a Literature Review

quantitative research design proposal

Bitesize Webinar: How to write and structure your academic article for publication: Module 8: Write a strong methods section

Charlesworth Author Services 05/03/2021 00:00:00

quantitative research design proposal

Bitesize Webinar: How to write and structure your academic article for publication: Module 9:Write a strong results and discussion section

quantitative research design proposal

Tips for designing your Research Question

Charlesworth Author Services 01/08/2017 00:00:00

quantitative research design proposal

How to write the Statement of a Problem

Charlesworth Author Services 19/11/2021 00:00:00

quantitative research design proposal

How to write the Rationale for your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

How to write a research proposal?

Department of Anaesthesiology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India

Devika Rani Duggappa

Writing the proposal of a research work in the present era is a challenging task due to the constantly evolving trends in the qualitative research design and the need to incorporate medical advances into the methodology. The proposal is a detailed plan or ‘blueprint’ for the intended study, and once it is completed, the research project should flow smoothly. Even today, many of the proposals at post-graduate evaluation committees and application proposals for funding are substandard. A search was conducted with keywords such as research proposal, writing proposal and qualitative using search engines, namely, PubMed and Google Scholar, and an attempt has been made to provide broad guidelines for writing a scientifically appropriate research proposal.

INTRODUCTION

A clean, well-thought-out proposal forms the backbone for the research itself and hence becomes the most important step in the process of conduct of research.[ 1 ] The objective of preparing a research proposal would be to obtain approvals from various committees including ethics committee [details under ‘Research methodology II’ section [ Table 1 ] in this issue of IJA) and to request for grants. However, there are very few universally accepted guidelines for preparation of a good quality research proposal. A search was performed with keywords such as research proposal, funding, qualitative and writing proposals using search engines, namely, PubMed, Google Scholar and Scopus.

Five ‘C’s while writing a literature review

An external file that holds a picture, illustration, etc.
Object name is IJA-60-631-g001.jpg

BASIC REQUIREMENTS OF A RESEARCH PROPOSAL

A proposal needs to show how your work fits into what is already known about the topic and what new paradigm will it add to the literature, while specifying the question that the research will answer, establishing its significance, and the implications of the answer.[ 2 ] The proposal must be capable of convincing the evaluation committee about the credibility, achievability, practicality and reproducibility (repeatability) of the research design.[ 3 ] Four categories of audience with different expectations may be present in the evaluation committees, namely academic colleagues, policy-makers, practitioners and lay audiences who evaluate the research proposal. Tips for preparation of a good research proposal include; ‘be practical, be persuasive, make broader links, aim for crystal clarity and plan before you write’. A researcher must be balanced, with a realistic understanding of what can be achieved. Being persuasive implies that researcher must be able to convince other researchers, research funding agencies, educational institutions and supervisors that the research is worth getting approval. The aim of the researcher should be clearly stated in simple language that describes the research in a way that non-specialists can comprehend, without use of jargons. The proposal must not only demonstrate that it is based on an intelligent understanding of the existing literature but also show that the writer has thought about the time needed to conduct each stage of the research.[ 4 , 5 ]

CONTENTS OF A RESEARCH PROPOSAL

The contents or formats of a research proposal vary depending on the requirements of evaluation committee and are generally provided by the evaluation committee or the institution.

In general, a cover page should contain the (i) title of the proposal, (ii) name and affiliation of the researcher (principal investigator) and co-investigators, (iii) institutional affiliation (degree of the investigator and the name of institution where the study will be performed), details of contact such as phone numbers, E-mail id's and lines for signatures of investigators.

The main contents of the proposal may be presented under the following headings: (i) introduction, (ii) review of literature, (iii) aims and objectives, (iv) research design and methods, (v) ethical considerations, (vi) budget, (vii) appendices and (viii) citations.[ 4 ]

Introduction

It is also sometimes termed as ‘need for study’ or ‘abstract’. Introduction is an initial pitch of an idea; it sets the scene and puts the research in context.[ 6 ] The introduction should be designed to create interest in the reader about the topic and proposal. It should convey to the reader, what you want to do, what necessitates the study and your passion for the topic.[ 7 ] Some questions that can be used to assess the significance of the study are: (i) Who has an interest in the domain of inquiry? (ii) What do we already know about the topic? (iii) What has not been answered adequately in previous research and practice? (iv) How will this research add to knowledge, practice and policy in this area? Some of the evaluation committees, expect the last two questions, elaborated under a separate heading of ‘background and significance’.[ 8 ] Introduction should also contain the hypothesis behind the research design. If hypothesis cannot be constructed, the line of inquiry to be used in the research must be indicated.

Review of literature

It refers to all sources of scientific evidence pertaining to the topic in interest. In the present era of digitalisation and easy accessibility, there is an enormous amount of relevant data available, making it a challenge for the researcher to include all of it in his/her review.[ 9 ] It is crucial to structure this section intelligently so that the reader can grasp the argument related to your study in relation to that of other researchers, while still demonstrating to your readers that your work is original and innovative. It is preferable to summarise each article in a paragraph, highlighting the details pertinent to the topic of interest. The progression of review can move from the more general to the more focused studies, or a historical progression can be used to develop the story, without making it exhaustive.[ 1 ] Literature should include supporting data, disagreements and controversies. Five ‘C's may be kept in mind while writing a literature review[ 10 ] [ Table 1 ].

Aims and objectives

The research purpose (or goal or aim) gives a broad indication of what the researcher wishes to achieve in the research. The hypothesis to be tested can be the aim of the study. The objectives related to parameters or tools used to achieve the aim are generally categorised as primary and secondary objectives.

Research design and method

The objective here is to convince the reader that the overall research design and methods of analysis will correctly address the research problem and to impress upon the reader that the methodology/sources chosen are appropriate for the specific topic. It should be unmistakably tied to the specific aims of your study.

In this section, the methods and sources used to conduct the research must be discussed, including specific references to sites, databases, key texts or authors that will be indispensable to the project. There should be specific mention about the methodological approaches to be undertaken to gather information, about the techniques to be used to analyse it and about the tests of external validity to which researcher is committed.[ 10 , 11 ]

The components of this section include the following:[ 4 ]

Population and sample

Population refers to all the elements (individuals, objects or substances) that meet certain criteria for inclusion in a given universe,[ 12 ] and sample refers to subset of population which meets the inclusion criteria for enrolment into the study. The inclusion and exclusion criteria should be clearly defined. The details pertaining to sample size are discussed in the article “Sample size calculation: Basic priniciples” published in this issue of IJA.

Data collection

The researcher is expected to give a detailed account of the methodology adopted for collection of data, which include the time frame required for the research. The methodology should be tested for its validity and ensure that, in pursuit of achieving the results, the participant's life is not jeopardised. The author should anticipate and acknowledge any potential barrier and pitfall in carrying out the research design and explain plans to address them, thereby avoiding lacunae due to incomplete data collection. If the researcher is planning to acquire data through interviews or questionnaires, copy of the questions used for the same should be attached as an annexure with the proposal.

Rigor (soundness of the research)

This addresses the strength of the research with respect to its neutrality, consistency and applicability. Rigor must be reflected throughout the proposal.

It refers to the robustness of a research method against bias. The author should convey the measures taken to avoid bias, viz. blinding and randomisation, in an elaborate way, thus ensuring that the result obtained from the adopted method is purely as chance and not influenced by other confounding variables.

Consistency

Consistency considers whether the findings will be consistent if the inquiry was replicated with the same participants and in a similar context. This can be achieved by adopting standard and universally accepted methods and scales.

Applicability

Applicability refers to the degree to which the findings can be applied to different contexts and groups.[ 13 ]

Data analysis

This section deals with the reduction and reconstruction of data and its analysis including sample size calculation. The researcher is expected to explain the steps adopted for coding and sorting the data obtained. Various tests to be used to analyse the data for its robustness, significance should be clearly stated. Author should also mention the names of statistician and suitable software which will be used in due course of data analysis and their contribution to data analysis and sample calculation.[ 9 ]

Ethical considerations

Medical research introduces special moral and ethical problems that are not usually encountered by other researchers during data collection, and hence, the researcher should take special care in ensuring that ethical standards are met. Ethical considerations refer to the protection of the participants' rights (right to self-determination, right to privacy, right to autonomy and confidentiality, right to fair treatment and right to protection from discomfort and harm), obtaining informed consent and the institutional review process (ethical approval). The researcher needs to provide adequate information on each of these aspects.

Informed consent needs to be obtained from the participants (details discussed in further chapters), as well as the research site and the relevant authorities.

When the researcher prepares a research budget, he/she should predict and cost all aspects of the research and then add an additional allowance for unpredictable disasters, delays and rising costs. All items in the budget should be justified.

Appendices are documents that support the proposal and application. The appendices will be specific for each proposal but documents that are usually required include informed consent form, supporting documents, questionnaires, measurement tools and patient information of the study in layman's language.

As with any scholarly research paper, you must cite the sources you used in composing your proposal. Although the words ‘references and bibliography’ are different, they are used interchangeably. It refers to all references cited in the research proposal.

Successful, qualitative research proposals should communicate the researcher's knowledge of the field and method and convey the emergent nature of the qualitative design. The proposal should follow a discernible logic from the introduction to presentation of the appendices.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Key Elements of a Research Proposal Quantitative Design

Profile image of Gull Naz

Related Papers

Rachel Irish Kozicki

quantitative research design proposal

mark vince agacite

stephenson Nkurikiyimana

ResearchGate

Joyzy P Egunjobi

Research Method Vs Research Design Students are usually confused about research methods and research designs. These may appear the same, but they are different. Research Methods Research methods can be conceived as various processes, procedures, and tools employed to collect and analyze research data. They are approaches used to execute research plans. A research method is a research paradigm or philosophical framework that research is based. There are three commonest methods in research namely, quantitative, qualitative, and mixed methods. These methods are an umbrella for various research designs. Research Designs Research designs are the overall research structure of a study which help to ensure that the data collected effectively answers the research question(s). Research designs can be Descriptive (e.g., case-study, naturalistic observation, survey), Correlational (e.g., case-control study, observational study), Experimental (e.g., field experiment, controlled experiment, quasiexperiment), Review (literature review, systematic review), and Meta-analytic (meta-analysis) in nature. They can, however, be grouped under research methods. Note that the nature of the research will determine the research method as well as the appropriate research design.

Lova Rakotoarison

madukairo joshua

Before examining types of research designs it is important to be clear about the role and purpose of research design. We need to understand what research design is and what it is not. We need to know where design ®ts into the whole research process from framing a question to ®nally analysing and reporting data. This is the purpose of this chapter.

Hour Vannak

Qualitative research is a design used to study a particular group of people in order to find out about their beliefs, values, attitudes, behaviours, perceptions, experiences, and how they make meanings in their lives. In short, it is used by the researcher to look deeply inside individuals, to observe the meaning of their lives, and to observe how they create those meanings. For this reason, qualitative research has become very popular among other research methods and it keeps gaining attention from researchers around world in many different fields. Educational organizations have widely employed qualitative research for different purposes.

Gerardo Munck

Buthaina Ruyyashi

The purpose of this study is to compare and contrast two quantitative scholarly articles, identify and analyze the designs in each one, summarize the rationale of the design for each, briefly state the results of each article, and also critique both of them. The goal is also to show that even though two articles use the same research design they can produce different perspective of their results.

Razieh Tadayon Nabavi

RELATED PAPERS

Giordano Bottecchia

Etic Encontro De Iniciacao Cientifica Issn 21 76 8498

Adriano Duarte de Sousa Filho

Mundo agrario

Ricardo Aguero

Carlos Escamilla-Alvarado

Patrick Hugh Lynch

REPOSITORIO INSTITUTO SUPERIOR TECNOLOGICO CEMLAD

Thorsten Gerald Schneiders

The Literacy Trek

Brain Research

Albert Gjedde

Littera Turca Journal of Turkish Language and Literature

Hasan Akgül

Vittorio Fortino

Ana Pérez Escoda

Osmotically Driven Membrane Processes - Approach, Development and Current Status

Audie Thompson

Mindfulness

Physical review

Daniel Dantchev

Mubiito Godfrey

Sustainability

Miles Richardson

hjhjgfg freghrf

Journal of Oral and Maxillofacial Surgery

ralph holloway

bioRxiv (Cold Spring Harbor Laboratory)

Chase Westra

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

IMAGES

  1. FREE 18+ Sample Research Proposals in PDF

    quantitative research design proposal

  2. 🌷 Sample research proposal paper apa format. 5+ Apa Research Proposal

    quantitative research design proposal

  3. 4 Types of Quantitative Research Design

    quantitative research design proposal

  4. PPT

    quantitative research design proposal

  5. FREE 9+ Quantitative Research Templates in PDF

    quantitative research design proposal

  6. 7+ Apa Research Proposal Templates

    quantitative research design proposal

VIDEO

  1. QUANTITATIVE RESEARCH DESIGN

  2. Quantitative Design Proposal Green

  3. Group 1 Quantitative Research Design Part 2 (Hypothesis and Data Analysis)

  4. Creating a research proposal

  5. RESEARCH INSTRUMENTS FOR QUANTITATIVE AND QUALITATIVE RESEARCH

  6. Qualitative vs Quantitative Research Design

COMMENTS

  1. PDF A Sample Quantitative Thesis Proposal

    NOTE: This proposal is included in the ancillary materials of Research Design with permission of the author. Hayes, M. M. (2007). Design and analysis of the student strengths index (SSI) for nontraditional graduate students. Unpublished master's thesis. University of Nebraska, Lincoln, NE. with the task of deciding who to admit into graduate ...

  2. PDF Quantitative Research Proposal Sample

    A Sample Quantitative Research Proposal Written in the APA 6th Style. [Note: This sample proposal is based on a composite of past proposals, simulated information and references, and material I've included for illustration purposes - it is based roughly on a fairly standard research proposal; I say roughly because there is no one set way of ...

  3. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  4. PDF Research Proposal Format Example

    1. Research Proposal Format Example. Following is a general outline of the material that should be included in your project proposal. I. Title Page II. Introduction and Literature Review (Chapters 2 and 3) A. Identification of specific problem area (e.g., what is it, why it is important). B. Prevalence, scope of problem.

  5. Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions.

  6. Designing Research Proposal in Quantitative Approach

    This chapter provides a comprehensive guideline for writing a research proposal in quantitative approach. It starts with the definition and purpose of writing a research proposal followed by a description of essential parts of a research proposal and subjects included in each part, organization of a research proposal, and guidelines for writing different parts of a research proposal including ...

  7. How to Write a Research Proposal

    Research proposal examples. Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We've included a few for you below. Example research proposal #1: "A Conceptual Framework for Scheduling Constraint Management" Example research proposal #2: "Medical Students as Mediators of ...

  8. PDF Key Elements of a Research Proposal

    The basic procedure of a quantitative design is: 1. Make your observations about something that is unknown, unexplained, or new. Investigate current theory surrounding your problem or issue. 2. Hypothesize an explanation for those observations. 3. Make a prediction of outcomes based on your hypotheses.

  9. A Guide to Quantitative Research Proposals

    A Guide to Quantitative Research Proposals. Resources. In this essay, noted scholar Elizabeth Tipton elaborates on how to best articulate quantitative research design in grant proposals. This essay is a companion piece to our "A Guide to Writing Successful Field Initiated Research Grant Proposals," which provides general information about ...

  10. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  11. PDF November 2020 A Guide to Quantitative Research Proposals: Aligning

    best articulate research design in grant proposals. This essay is a companion piece to our "A Guide to Writing Successful Field-Initiated Research Grant Proposals," which provides general information about the elements of grant writing. We also have guides for proposals focused on qualitative methods and research practice partnerships.

  12. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  13. Designing Research Proposal in Quantitative Approach

    Designing Research Proposal in Quantitative Approach. October 2022. DOI: 10.1007/978-981-19-5441-2_10. In book: Principles of Social Research Methodology (pp.131-156) Authors: Md. Rezaul Karim ...

  14. Study designs: Part 1

    The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on "study designs," we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

  15. (PDF) Writing A Quantitative Research Proposal / Thesis

    1. Introduce the overall methodological approach. 2. Indicate how the approach fits the overall research design. 3. Describe the specific methods of data collection. 4. Explain how you intend to ...

  16. How to design a quantitative research project

    Focus on what interests you and use this to guide some of your reading in the area. Read relevant articles and concentrate on the other experiments that they reference. This will help you work out what gaps in knowledge there are in the field and how your own project can make a novel contribution. 2. Identify the methods you will use.

  17. Quantitative research design for a proposal

    Overview of the problem discovery step. Choose a research approach. Design the research instrument or questionnaire. Conduct sampling. Choose the relevant statistical analyses. Align the research questions with the analyses and questionnaire. Create an online questionnaire on Survey Monkey.

  18. How to write a research proposal?

    Writing the proposal of a research work in the present era is a challenging task due to the constantly evolving trends in the qualitative research design and the need to incorporate medical advances into the methodology. The proposal is a detailed plan or 'blueprint' for the intended study, and once it is completed, the research project ...

  19. PDF QUANTITATIVE RESEARCH PROPOSAL 1 Sample of the Quantitative ...

    A concise paragraph describing the research method used to investigate the problem. This can later be expanded into the preamble of your research methods chapter. Cite the textbooks and research articles, which inform you. Creswell's Research Design, 3rd or 4th ed.

  20. (PDF) Quantitative Research Designs

    The designs. in this chapter are survey design, descriptive design, correlational design, ex-. perimental design, and causal-comparative design. As we address each research. design, we will learn ...

  21. Key Elements of a Research Proposal Quantitative Design

    The basic procedure of a fquantitative design is: 1. Make your observations about something that is unknown, unexplained, or new. Investigate current theory surrounding your problem or issue. 2. Hypothesize an explanation for those observations. 3. Make a prediction of outcomes based on your hypotheses.

  22. Quantitative Research

    Here are some key characteristics of quantitative research: Numerical data: Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.