• Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write the Results/Findings Section in Research

research findings by

What is the research paper Results section and what does it do?

The Results section of a scientific research paper represents the core findings of a study derived from the methods applied to gather and analyze information. It presents these findings in a logical sequence without bias or interpretation from the author, setting up the reader for later interpretation and evaluation in the Discussion section. A major purpose of the Results section is to break down the data into sentences that show its significance to the research question(s).

The Results section appears third in the section sequence in most scientific papers. It follows the presentation of the Methods and Materials and is presented before the Discussion section —although the Results and Discussion are presented together in many journals. This section answers the basic question “What did you find in your research?”

What is included in the Results section?

The Results section should include the findings of your study and ONLY the findings of your study. The findings include:

  • Data presented in tables, charts, graphs, and other figures (may be placed into the text or on separate pages at the end of the manuscript)
  • A contextual analysis of this data explaining its meaning in sentence form
  • All data that corresponds to the central research question(s)
  • All secondary findings (secondary outcomes, subgroup analyses, etc.)

If the scope of the study is broad, or if you studied a variety of variables, or if the methodology used yields a wide range of different results, the author should present only those results that are most relevant to the research question stated in the Introduction section .

As a general rule, any information that does not present the direct findings or outcome of the study should be left out of this section. Unless the journal requests that authors combine the Results and Discussion sections, explanations and interpretations should be omitted from the Results.

How are the results organized?

The best way to organize your Results section is “logically.” One logical and clear method of organizing research results is to provide them alongside the research questions—within each research question, present the type of data that addresses that research question.

Let’s look at an example. Your research question is based on a survey among patients who were treated at a hospital and received postoperative care. Let’s say your first research question is:

results section of a research paper, figures

“What do hospital patients over age 55 think about postoperative care?”

This can actually be represented as a heading within your Results section, though it might be presented as a statement rather than a question:

Attitudes towards postoperative care in patients over the age of 55

Now present the results that address this specific research question first. In this case, perhaps a table illustrating data from a survey. Likert items can be included in this example. Tables can also present standard deviations, probabilities, correlation matrices, etc.

Following this, present a content analysis, in words, of one end of the spectrum of the survey or data table. In our example case, start with the POSITIVE survey responses regarding postoperative care, using descriptive phrases. For example:

“Sixty-five percent of patients over 55 responded positively to the question “ Are you satisfied with your hospital’s postoperative care ?” (Fig. 2)

Include other results such as subcategory analyses. The amount of textual description used will depend on how much interpretation of tables and figures is necessary and how many examples the reader needs in order to understand the significance of your research findings.

Next, present a content analysis of another part of the spectrum of the same research question, perhaps the NEGATIVE or NEUTRAL responses to the survey. For instance:

  “As Figure 1 shows, 15 out of 60 patients in Group A responded negatively to Question 2.”

After you have assessed the data in one figure and explained it sufficiently, move on to your next research question. For example:

  “How does patient satisfaction correspond to in-hospital improvements made to postoperative care?”

results section of a research paper, figures

This kind of data may be presented through a figure or set of figures (for instance, a paired T-test table).

Explain the data you present, here in a table, with a concise content analysis:

“The p-value for the comparison between the before and after groups of patients was .03% (Fig. 2), indicating that the greater the dissatisfaction among patients, the more frequent the improvements that were made to postoperative care.”

Let’s examine another example of a Results section from a study on plant tolerance to heavy metal stress . In the Introduction section, the aims of the study are presented as “determining the physiological and morphological responses of Allium cepa L. towards increased cadmium toxicity” and “evaluating its potential to accumulate the metal and its associated environmental consequences.” The Results section presents data showing how these aims are achieved in tables alongside a content analysis, beginning with an overview of the findings:

“Cadmium caused inhibition of root and leave elongation, with increasing effects at higher exposure doses (Fig. 1a-c).”

The figure containing this data is cited in parentheses. Note that this author has combined three graphs into one single figure. Separating the data into separate graphs focusing on specific aspects makes it easier for the reader to assess the findings, and consolidating this information into one figure saves space and makes it easy to locate the most relevant results.

results section of a research paper, figures

Following this overall summary, the relevant data in the tables is broken down into greater detail in text form in the Results section.

  • “Results on the bio-accumulation of cadmium were found to be the highest (17.5 mg kgG1) in the bulb, when the concentration of cadmium in the solution was 1×10G2 M and lowest (0.11 mg kgG1) in the leaves when the concentration was 1×10G3 M.”

Captioning and Referencing Tables and Figures

Tables and figures are central components of your Results section and you need to carefully think about the most effective way to use graphs and tables to present your findings . Therefore, it is crucial to know how to write strong figure captions and to refer to them within the text of the Results section.

The most important advice one can give here as well as throughout the paper is to check the requirements and standards of the journal to which you are submitting your work. Every journal has its own design and layout standards, which you can find in the author instructions on the target journal’s website. Perusing a journal’s published articles will also give you an idea of the proper number, size, and complexity of your figures.

Regardless of which format you use, the figures should be placed in the order they are referenced in the Results section and be as clear and easy to understand as possible. If there are multiple variables being considered (within one or more research questions), it can be a good idea to split these up into separate figures. Subsequently, these can be referenced and analyzed under separate headings and paragraphs in the text.

To create a caption, consider the research question being asked and change it into a phrase. For instance, if one question is “Which color did participants choose?”, the caption might be “Color choice by participant group.” Or in our last research paper example, where the question was “What is the concentration of cadmium in different parts of the onion after 14 days?” the caption reads:

 “Fig. 1(a-c): Mean concentration of Cd determined in (a) bulbs, (b) leaves, and (c) roots of onions after a 14-day period.”

Steps for Composing the Results Section

Because each study is unique, there is no one-size-fits-all approach when it comes to designing a strategy for structuring and writing the section of a research paper where findings are presented. The content and layout of this section will be determined by the specific area of research, the design of the study and its particular methodologies, and the guidelines of the target journal and its editors. However, the following steps can be used to compose the results of most scientific research studies and are essential for researchers who are new to preparing a manuscript for publication or who need a reminder of how to construct the Results section.

Step 1 : Consult the guidelines or instructions that the target journal or publisher provides authors and read research papers it has published, especially those with similar topics, methods, or results to your study.

  • The guidelines will generally outline specific requirements for the results or findings section, and the published articles will provide sound examples of successful approaches.
  • Note length limitations on restrictions on content. For instance, while many journals require the Results and Discussion sections to be separate, others do not—qualitative research papers often include results and interpretations in the same section (“Results and Discussion”).
  • Reading the aims and scope in the journal’s “ guide for authors ” section and understanding the interests of its readers will be invaluable in preparing to write the Results section.

Step 2 : Consider your research results in relation to the journal’s requirements and catalogue your results.

  • Focus on experimental results and other findings that are especially relevant to your research questions and objectives and include them even if they are unexpected or do not support your ideas and hypotheses.
  • Catalogue your findings—use subheadings to streamline and clarify your report. This will help you avoid excessive and peripheral details as you write and also help your reader understand and remember your findings. Create appendices that might interest specialists but prove too long or distracting for other readers.
  • Decide how you will structure of your results. You might match the order of the research questions and hypotheses to your results, or you could arrange them according to the order presented in the Methods section. A chronological order or even a hierarchy of importance or meaningful grouping of main themes or categories might prove effective. Consider your audience, evidence, and most importantly, the objectives of your research when choosing a structure for presenting your findings.

Step 3 : Design figures and tables to present and illustrate your data.

  • Tables and figures should be numbered according to the order in which they are mentioned in the main text of the paper.
  • Information in figures should be relatively self-explanatory (with the aid of captions), and their design should include all definitions and other information necessary for readers to understand the findings without reading all of the text.
  • Use tables and figures as a focal point to tell a clear and informative story about your research and avoid repeating information. But remember that while figures clarify and enhance the text, they cannot replace it.

Step 4 : Draft your Results section using the findings and figures you have organized.

  • The goal is to communicate this complex information as clearly and precisely as possible; precise and compact phrases and sentences are most effective.
  • In the opening paragraph of this section, restate your research questions or aims to focus the reader’s attention to what the results are trying to show. It is also a good idea to summarize key findings at the end of this section to create a logical transition to the interpretation and discussion that follows.
  • Try to write in the past tense and the active voice to relay the findings since the research has already been done and the agent is usually clear. This will ensure that your explanations are also clear and logical.
  • Make sure that any specialized terminology or abbreviation you have used here has been defined and clarified in the  Introduction section .

Step 5 : Review your draft; edit and revise until it reports results exactly as you would like to have them reported to your readers.

  • Double-check the accuracy and consistency of all the data, as well as all of the visual elements included.
  • Read your draft aloud to catch language errors (grammar, spelling, and mechanics), awkward phrases, and missing transitions.
  • Ensure that your results are presented in the best order to focus on objectives and prepare readers for interpretations, valuations, and recommendations in the Discussion section . Look back over the paper’s Introduction and background while anticipating the Discussion and Conclusion sections to ensure that the presentation of your results is consistent and effective.
  • Consider seeking additional guidance on your paper. Find additional readers to look over your Results section and see if it can be improved in any way. Peers, professors, or qualified experts can provide valuable insights.

One excellent option is to use a professional English proofreading and editing service  such as Wordvice, including our paper editing service . With hundreds of qualified editors from dozens of scientific fields, Wordvice has helped thousands of authors revise their manuscripts and get accepted into their target journals. Read more about the  proofreading and editing process  before proceeding with getting academic editing services and manuscript editing services for your manuscript.

As the representation of your study’s data output, the Results section presents the core information in your research paper. By writing with clarity and conciseness and by highlighting and explaining the crucial findings of their study, authors increase the impact and effectiveness of their research manuscripts.

For more articles and videos on writing your research manuscript, visit Wordvice’s Resources page.

Wordvice Resources

  • How to Write a Research Paper Introduction 
  • Which Verb Tenses to Use in a Research Paper
  • How to Write an Abstract for a Research Paper
  • How to Write a Research Paper Title
  • Useful Phrases for Academic Writing
  • Common Transition Terms in Academic Papers
  • Active and Passive Voice in Research Papers
  • 100+ Verbs That Will Make Your Research Writing Amazing
  • Tips for Paraphrasing in Research Papers
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 9. The Conclusion
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The conclusion is intended to help the reader understand why your research should matter to them after they have finished reading the paper. A conclusion is not merely a summary of the main topics covered or a re-statement of your research problem, but a synthesis of key points derived from the findings of your study and, if applicable, where you recommend new areas for future research. For most college-level research papers, two or three well-developed paragraphs is sufficient for a conclusion, although in some cases, more paragraphs may be required in describing the key findings and their significance.

Conclusions. The Writing Center. University of North Carolina; Conclusions. The Writing Lab and The OWL. Purdue University.

Importance of a Good Conclusion

A well-written conclusion provides you with important opportunities to demonstrate to the reader your understanding of the research problem. These include:

  • Presenting the last word on the issues you raised in your paper . Just as the introduction gives a first impression to your reader, the conclusion offers a chance to leave a lasting impression. Do this, for example, by highlighting key findings in your analysis that advance new understanding about the research problem, that are unusual or unexpected, or that have important implications applied to practice.
  • Summarizing your thoughts and conveying the larger significance of your study . The conclusion is an opportunity to succinctly re-emphasize  your answer to the "So What?" question by placing the study within the context of how your research advances past research about the topic.
  • Identifying how a gap in the literature has been addressed . The conclusion can be where you describe how a previously identified gap in the literature [first identified in your literature review section] has been addressed by your research and why this contribution is significant.
  • Demonstrating the importance of your ideas . Don't be shy. The conclusion offers an opportunity to elaborate on the impact and significance of your findings. This is particularly important if your study approached examining the research problem from an unusual or innovative perspective.
  • Introducing possible new or expanded ways of thinking about the research problem . This does not refer to introducing new information [which should be avoided], but to offer new insight and creative approaches for framing or contextualizing the research problem based on the results of your study.

Bunton, David. “The Structure of PhD Conclusion Chapters.” Journal of English for Academic Purposes 4 (July 2005): 207–224; Conclusions. The Writing Center. University of North Carolina; Kretchmer, Paul. Twelve Steps to Writing an Effective Conclusion. San Francisco Edit, 2003-2008; Conclusions. The Writing Lab and The OWL. Purdue University; Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8.

Structure and Writing Style

I.  General Rules

The general function of your paper's conclusion is to restate the main argument . It reminds the reader of the strengths of your main argument(s) and reiterates the most important evidence supporting those argument(s). Do this by clearly summarizing the context, background, and necessity of pursuing the research problem you investigated in relation to an issue, controversy, or a gap found in the literature. However, make sure that your conclusion is not simply a repetitive summary of the findings. This reduces the impact of the argument(s) you have developed in your paper.

When writing the conclusion to your paper, follow these general rules:

  • Present your conclusions in clear, concise language. Re-state the purpose of your study, then describe how your findings differ or support those of other studies and why [i.e., what were the unique, new, or crucial contributions your study made to the overall research about your topic?].
  • Do not simply reiterate your findings or the discussion of your results. Provide a synthesis of arguments presented in the paper to show how these converge to address the research problem and the overall objectives of your study.
  • Indicate opportunities for future research if you haven't already done so in the discussion section of your paper. Highlighting the need for further research provides the reader with evidence that you have an in-depth awareness of the research problem but that further investigations should take place beyond the scope of your investigation.

Consider the following points to help ensure your conclusion is presented well:

  • If the argument or purpose of your paper is complex, you may need to summarize the argument for your reader.
  • If, prior to your conclusion, you have not yet explained the significance of your findings or if you are proceeding inductively, use the end of your paper to describe your main points and explain their significance.
  • Move from a detailed to a general level of consideration that returns the topic to the context provided by the introduction or within a new context that emerges from the data [this is opposite of the introduction, which begins with general discussion of the context and ends with a detailed description of the research problem]. 

The conclusion also provides a place for you to persuasively and succinctly restate the research problem, given that the reader has now been presented with all the information about the topic . Depending on the discipline you are writing in, the concluding paragraph may contain your reflections on the evidence presented. However, the nature of being introspective about the research you have conducted will depend on the topic and whether your professor wants you to express your observations in this way. If asked to think introspectively about the topics, do not delve into idle speculation. Being introspective means looking within yourself as an author to try and understand an issue more deeply, not to guess at possible outcomes or make up scenarios not supported by the evidence.

II.  Developing a Compelling Conclusion

Although an effective conclusion needs to be clear and succinct, it does not need to be written passively or lack a compelling narrative. Strategies to help you move beyond merely summarizing the key points of your research paper may include any of the following:

  • If your essay deals with a critical, contemporary problem, warn readers of the possible consequences of not attending to the problem proactively.
  • Recommend a specific course or courses of action that, if adopted, could address a specific problem in practice or in the development of new knowledge leading to positive change.
  • Cite a relevant quotation or expert opinion already noted in your paper in order to lend authority and support to the conclusion(s) you have reached [a good source would be from your literature review].
  • Explain the consequences of your research in a way that elicits action or demonstrates urgency in seeking change.
  • Restate a key statistic, fact, or visual image to emphasize the most important finding of your paper.
  • If your discipline encourages personal reflection, illustrate your concluding point by drawing from your own life experiences.
  • Return to an anecdote, an example, or a quotation that you presented in your introduction, but add further insight derived from the findings of your study; use your interpretation of results from your study to recast it in new or important ways.
  • Provide a "take-home" message in the form of a succinct, declarative statement that you want the reader to remember about your study.

III. Problems to Avoid

Failure to be concise Your conclusion section should be concise and to the point. Conclusions that are too lengthy often have unnecessary information in them. The conclusion is not the place for details about your methodology or results. Although you should give a summary of what was learned from your research, this summary should be relatively brief, since the emphasis in the conclusion is on the implications, evaluations, insights, and other forms of analysis that you make. Strategies for writing concisely can be found here .

Failure to comment on larger, more significant issues In the introduction, your task was to move from the general [the field of study] to the specific [the research problem]. However, in the conclusion, your task is to move from a specific discussion [your research problem] back to a general discussion framed around the implications and significance of your findings [i.e., how your research contributes new understanding or fills an important gap in the literature]. In short, the conclusion is where you should place your research within a larger context [visualize your paper as an hourglass--start with a broad introduction and review of the literature, move to the specific analysis and discussion, conclude with a broad summary of the study's implications and significance].

Failure to reveal problems and negative results Negative aspects of the research process should never be ignored. These are problems, deficiencies, or challenges encountered during your study. They should be summarized as a way of qualifying your overall conclusions. If you encountered negative or unintended results [i.e., findings that are validated outside the research context in which they were generated], you must report them in the results section and discuss their implications in the discussion section of your paper. In the conclusion, use negative results as an opportunity to explain their possible significance and/or how they may form the basis for future research.

Failure to provide a clear summary of what was learned In order to be able to discuss how your research fits within your field of study [and possibly the world at large], you need to summarize briefly and succinctly how it contributes to new knowledge or a new understanding about the research problem. This element of your conclusion may be only a few sentences long.

Failure to match the objectives of your research Often research objectives in the social and behavioral sciences change while the research is being carried out. This is not a problem unless you forget to go back and refine the original objectives in your introduction. As these changes emerge they must be documented so that they accurately reflect what you were trying to accomplish in your research [not what you thought you might accomplish when you began].

Resist the urge to apologize If you've immersed yourself in studying the research problem, you presumably should know a good deal about it [perhaps even more than your professor!]. Nevertheless, by the time you have finished writing, you may be having some doubts about what you have produced. Repress those doubts! Don't undermine your authority as a researcher by saying something like, "This is just one approach to examining this problem; there may be other, much better approaches that...." The overall tone of your conclusion should convey confidence to the reader about the study's validity and realiability.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8; Concluding Paragraphs. College Writing Center at Meramec. St. Louis Community College; Conclusions. The Writing Center. University of North Carolina; Conclusions. The Writing Lab and The OWL. Purdue University; Freedman, Leora  and Jerry Plotnick. Introductions and Conclusions. The Lab Report. University College Writing Centre. University of Toronto; Leibensperger, Summer. Draft Your Conclusion. Academic Center, the University of Houston-Victoria, 2003; Make Your Last Words Count. The Writer’s Handbook. Writing Center. University of Wisconsin Madison; Miquel, Fuster-Marquez and Carmen Gregori-Signes. “Chapter Six: ‘Last but Not Least:’ Writing the Conclusion of Your Paper.” In Writing an Applied Linguistics Thesis or Dissertation: A Guide to Presenting Empirical Research . John Bitchener, editor. (Basingstoke,UK: Palgrave Macmillan, 2010), pp. 93-105; Tips for Writing a Good Conclusion. Writing@CSU. Colorado State University; Kretchmer, Paul. Twelve Steps to Writing an Effective Conclusion. San Francisco Edit, 2003-2008; Writing Conclusions. Writing Tutorial Services, Center for Innovative Teaching and Learning. Indiana University; Writing: Considering Structure and Organization. Institute for Writing Rhetoric. Dartmouth College.

Writing Tip

Don't Belabor the Obvious!

Avoid phrases like "in conclusion...," "in summary...," or "in closing...." These phrases can be useful, even welcome, in oral presentations. But readers can see by the tell-tale section heading and number of pages remaining that they are reaching the end of your paper. You'll irritate your readers if you belabor the obvious.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8.

Another Writing Tip

New Insight, Not New Information!

Don't surprise the reader with new information in your conclusion that was never referenced anywhere else in the paper. This why the conclusion rarely has citations to sources. If you have new information to present, add it to the discussion or other appropriate section of the paper. Note that, although no new information is introduced, the conclusion, along with the discussion section, is where you offer your most "original" contributions in the paper; the conclusion is where you describe the value of your research, demonstrate that you understand the material that you’ve presented, and position your findings within the larger context of scholarship on the topic, including describing how your research contributes new insights to that scholarship.

Assan, Joseph. "Writing the Conclusion Chapter: The Good, the Bad and the Missing." Liverpool: Development Studies Association (2009): 1-8; Conclusions. The Writing Center. University of North Carolina.

  • << Previous: Limitations of the Study
  • Next: Appendices >>
  • Last Updated: May 15, 2024 9:53 AM
  • URL: https://libguides.usc.edu/writingguide
  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Reporting Research Findings

Introduction.

  • Reference Resources
  • History and Trends
  • Guidance on Reporting Quantitative Reports, Syntheses, and Meta-analyses
  • Linguistic Analyses of Written Research Results
  • Writing Review Articles
  • Writing Qualitative Research
  • Scientific Reviewing
  • Rhetoric of Evidence-Based Management
  • Research on Graphics Perception
  • Statistical-Technological Trends

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Ethics in Research
  • Research Methods

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Cooperation-Competition (Coopetition)
  • Diversity and Firm Performance
  • Organization Design
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Reporting Research Findings by James T. Austin LAST REVIEWED: 24 June 2020 LAST MODIFIED: 24 June 2020 DOI: 10.1093/obo/9780199846740-0032

Not all research culminates in publication. This updated article surveys themes in reporting research findings for scholars and students. As context, consider that investigations of organizational phenomena require a series of choices that are cast here as craft. Choices span primary, secondary, and synthesis designs across qualitative and quantitative traditions. Primary research is the traditional design, measurement, and analysis of collected data, while secondary research involves reanalysis of existing data sets (obtained from peers or repositories), and research synthesis involves narrative or quantitative aggregation of studies. This distinction also holds for the qualitative mode. Reporting research findings is important for dissemination and for synthesis and evidence-based management (EBM). Primarily, the importance lies in dissemination across conferences, journals, books, and increasingly digital media. Understanding and replication by outside scholars depend on complete and accurate reporting; this centrality to the research craft commands a learning-development focus. Within a communications paradigm, individuals or teams create or send a persuasive message and the reader or listener receives (or may choose not to receive) the message. Persuasion is targeted via rhetoric across writing and graphics. Although oral and written forms of dissemination dominate, data repositories are emerging. Two additional reasons for importance pertain to the accumulation of knowledge. One is research synthesis. Structuring knowledge through synthesis uses the results of individual studies as data, and the audience is scientists. Narrative and quantitative reviews depend on the completeness and accuracy of reported findings. A related source of importance pertains to evidence-based management at the interface of research and practice—translation of research findings into practices and bundles of practices that can be used by managers. Given that practicing managers appear to rely on obsolete knowledge (aka “fads, fashions, and folderol” as used by Dunnette), proponents of evidence-based management advocate that firms consider the adoption of evidence-based medicine (EBM). Communicating clearly and establishing a context of implementation to assist practitioners are essential for EBM (in parallel to research synthesis, for an audience of practitioners). This article organizes a range of resources on writing and reviewing articles across the taxonomy above. For completeness, this article includes citations for scientific graphics (tables, charts, figures, etc.) organized around conceptualizations of graphics and related guidance, research on perception of scientific graphics, and recent developments in computing technology. Especially relevant are software routines for interactive graphics based on “grammars.” While this article draws on work in management studies (organizational behavior and human resources), it necessarily searches beyond traditional boundaries for relevant insights.

There are sporadic specialized sources on reporting of research findings. On scholarly writing, Cummings and Frost 1995 is an influential analysis of the publishing system in the organizational sciences. Abelson 1995 defines rhetoric as styles of writing up results in psychology. Research synthesis writing is addressed comprehensively in Cooper, et al. 2009 (cited under Guidance on Reporting Quantitative Reports, Syntheses, and Meta-analyses ). There are two major standards available for research synthesis: Meta-Analysis Reporting Standards (MARS) and Preferred Reporting Items for Systematic Reviews and Meta-Analyses ( PRISMA ).For graphics and quantitative studies, Tufte 2001 and Tukey 1977 are classics for guidance and perspective; others, including Cleveland 1985 , Kosslyn 2006 , Wainer 2000 (cited under History and Trends ), and Wilkinson 2005 , provide unique value. The work on maps in Börner 2015 is aptly named Atlas of Knowledge , while Grant 2019 provides a concise introduction to data visualization with a section on interactive graphics (a related instance is the class of data explorers used for large data sets as the Programme for International Student Assessment [PISA] and the National Assessment of Educational Progress [NAEP]—both large-scale testing programs). Sternberg and Sternberg 2010 is typical guidance offered to students and is not the only such resource. Many of these texts can be mined for dimensions to code the content and results of published organizational behavior and human resources research to facilitate critique A trio of books by Katy Börner ( Börner 2010 , Börner 2015 ) and colleagues ( Börner and Polley 2014 ) represents the newest in knowledge mapping. In addition, a rapidly emerging topic across science is the reproducibility and replicability of results—the consensus review published in 2019 by a committee of the National Academies of Science, Medicine, and Engineering provides an excellent overview.

Abelson, Robert P. Statistics as Principled Argument . Mahwah, NJ: Lawrence Erlbaum, 1995.

Describes magnitude-articulation-generality-interestingness-credibility (MAGIC) criteria to organize rhetoric in presenting research findings. Accepting statistics as an organizer of arguments using quantitative evidence allows identification of styles. Brash and stuffy are end points on a liberal-conservative style dimension. Management students and scholars could learn MAGIC for reporting quantitative findings; qualitative researchers might consider translation.

Börner, Katy. Atlas of Science: Visualizing What We Know . Cambridge, MA: Massachusetts Institute of Technology Press, 2010.

Books by Katy Börner show the potential and the practice of science and knowledge mapping. Atlas of Science (2010) presents three themes: power of maps (switching from geographic cartography to research-collaboration mapping), reference systems, and forecasts, as well as numerous examples.

Börner, Katy. Atlas of Knowledge: Anyone Can Map . Cambridge, MA: Massachusetts Institute of Technology Press, 2015.

Börner deftly gives readers principles for visualizing knowledge with more than forty large-scale and over a hundred small-scale color maps. Drives home the point that data literacy is as important as language literacy. She introduces a theoretical framework meant to guide readers through user and task analysis; data preparation, analysis, and visualization; visualization deployment; and the interpretation of science maps. Together with Börner 2010 and Börner and Polley 2014 , this trio provides levels of analysis from frameworks to workflow that support improved visualizations of science, knowledge, and interdisciplinary collaboration.

Börner, Katy, and David E. Polley. Visual Insights: A Practical Guide to Making Sense of Data . Cambridge, MA: Massachusetts Institute of Technology Press, 2014.

Along with Börner 2010 and Börner 2015 , a practical book by Börner and Polley based on the Information Visualization MOOC includes seven chapters—from a visualization framework through “when, where, what, and with whom” and dynamic visualizations—and concludes with chapters on case studies and discussion/outlook.

Cleveland, William S. The Elements of Graphing Data . Monterey, CA: Wadsworth Advanced Books and Software, 1985.

Cognitive science and statistical principles help dissect and improve graphics (a predecessor book from 1983 and articles that searched prestigious journals for common graphic errors are also useful). Based on extensive experience with AT&T data, the author distills and emphasizes procedural knowledge for constructing graphic displays.

Cummings, Larry L., and Peter J. Frost, eds. Publishing in the Organizational Sciences . 2d ed. Foundations of Organizational Science. Thousand Oaks, CA: SAGE, 1995.

This classic covers most aspects of publishing in organizational behavior and human resources (absent are emergent digital-technological issues). Organized into sections on perspectives on and realities of publishing, which are insightful for scholar and student alike. Benjamin Schneider’s ten propositions on “getting research published” end with practicing the skill of writing. This edition inaugurated the Foundations of Organizational Science series, and the 1985 edition is also useful.

Few, Stephen. Now You See It: Simple Visualization Techniques for Quantitative Analysis . Oakland, CA: Analytics, 2009.

Suggests that in a data-dense world, the human brain—and hence, visualization—is key to avoiding overload. Three sections, namely “Building Core Skills for Visual Analysis” and “Honing Skills,” each with six chapters plus a “Further Thoughts and Hopes” with eight promising trends, cover much ground. Based on quantitative preferences, the most substantive portion is contained in Part 2. The book ends with an excerpt from the poetry of T. S. Eliot.

Grant, Robert. Data Visualization: Charts, Maps and Interactive Graphics . Boca Raton, FL: CRC Press, 2019.

This author provides a vast range of examples of data visualization, mostly open source and with code available on a website . It provides a good mix of detail with sharing of tacit knowledge.

Kosslyn, Stephen M. Graph Design for the Eye and Mind . New York: Oxford University Press, 2006.

DOI: 10.1093/acprof:oso/9780195311846.001.0001

Based on sound cognitive science and ample research by the author, presents and elaborates eight principles of effective graph construction (summarized in pp. 5–20). Analyzes prominent guidance on graphics, Edward R. Tufte for example, and suggests flaws. that could lead to productive research.

Sternberg, Robert J., and Karin Sternberg The Psychologist’s Companion: A Guide to Writing Scientific Papers for Students and Researchers . 5th ed. Cambridge, UK: Cambridge University Press, 2010.

DOI: 10.1017/CBO9780511762024

Aligned to American Psychological Association (APA) style as a prototype of good practice in publishing; the author is a productive researcher and APA journal editor; thus tacit knowledge in this edition is well grounded and expressed. Represents a class of books on research communication. Some translation required to organizational behavior and human resources context. Comparable to Cooper 2010 (cited under Writing Review Articles ). Next edition will need to conform to the seventh edition of the Publication Manual of the American Psychological Association .

Tufte, Edward R. The Visual Display of Quantitative Information . 2d ed. Cheshire, CT: Graphics Press, 2001.

Revises a classic 1983 text in analytic design (Tufte’s preferred term); presents and expands on five core principles and coins numerous terms (“chartjunk” as well as “sparkline” and “data-ink ratios” are personal favorites). Critiqued for its advice, however, by other researchers on graphics ( Kosslyn 2006 ).

Tukey, John W. Exploratory Data Analysis . Reading, MA: Addison-Wesley, 1977.

A classic presenting Tukey’s data detective work rooted in his 1962 “The Future of Data Analysis” exposition ( Annals of Mathematical Statistics 33.1: 1–67). Premise is that exploratory data analysis (EDA) deserves status with confirmatory. Loaded with philosophy of EDA and tools—the stem leaf, box plot, and “five-number summary.” Graphic display and analysis are covered in the service of learning about data. A part of research craft to be honed post-schooling.

Wilkinson, Leland L. The Grammar of Graphics . 2d ed. New York: Springer-Verlag, 2005.

Cited by many, this conceptualization rooted in the work of Jacques Bertin extends work done with the Task Force on Statistical Reporting in 1999. Within an object-oriented design approach, the grammar consists of the rules and elements of graphics, for example, geoms, scales, and coordinates. Framework has been useful for deriving tools, such as Wilkinson’s GPL, Wickham’s ggplot2, and others.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Management »
  • Meet the Editorial Board »
  • Abusive Supervision
  • Adverse Impact and Equal Employment Opportunity Analytics
  • Alliance Portfolios
  • Alternative Work Arrangements
  • Applied Political Risk Analysis
  • Approaches to Social Responsibility
  • Assessment Centers: Theory, Practice and Research
  • Attributions
  • Authentic Leadership
  • Bayesian Statistics
  • Behavior, Organizational
  • Behavioral Approach to Leadership
  • Behavioral Theory of the Firm
  • Between Organizations, Social Networks in and
  • Brokerage in Networks
  • Business and Human Rights
  • Career Studies
  • Career Transitions and Job Mobility
  • Certified B Corporations and Benefit Corporations
  • Charismatic and Innovative Team Leadership By and For Mill...
  • Charismatic and Transformational Leadership
  • Compensation, Rewards, Remuneration
  • Competitive Dynamics
  • Competitive Heterogeneity
  • Competitive Intensity
  • Computational Modeling
  • Conditional Reasoning
  • Conflict Management
  • Considerate Leadership
  • Corporate Philanthropy
  • Corporate Social Performance
  • Corporate Venture Capital
  • Counterproductive Work Behavior (CWB)
  • Cross-Cultural Communication
  • Cross-Cultural Management
  • Cultural Intelligence
  • Culture, Organization
  • Data Analytic Methods
  • Decision Making
  • Dynamic Capabilities
  • Emotional Labor
  • Employee Aging
  • Employee Engagement
  • Employee Ownership
  • Employee Voice
  • Empowerment, Psychological
  • Entrepreneurial Firms
  • Entrepreneurial Orientation
  • Entrepreneurship
  • Entrepreneurship, Corporate
  • Entrepreneurship, Women’s
  • Equal Employment Opportunity
  • Faking in Personnel Selection
  • Family Business, Managing
  • Financial Markets in Organization Theory and Economic Soci...
  • Findings, Reporting Research
  • Firm Bribery
  • First-Mover Advantage
  • Fit, Person-Environment
  • Forecasting
  • Founding Teams
  • Global Leadership
  • Global Talent Management
  • Goal Setting
  • Grounded Theory
  • Hofstedes Cultural Dimensions
  • Human Capital Resource Pipelines
  • Human Resource Management
  • Human Resource Management, Strategic
  • Human Resources, Global
  • Human Rights
  • Humanitarian Work Psychology
  • Humility in Management
  • Impression Management at Work
  • Influence Strategies/Tactics in the Workplace
  • Information Economics
  • Innovative Behavior
  • Intelligence, Emotional
  • International Economic Development and SMEs
  • International Economic Systems
  • International Strategic Alliances
  • Job Analysis and Competency Modeling
  • Job Crafting
  • Job Satisfaction
  • Judgment and Decision Making in Teams
  • Knowledge Sharing and Collaboration within and across Firm...
  • Leader-Member Exchange
  • Leadership Development
  • Leadership Development and Organizational Change, Coaching...
  • Leadership, Ethical
  • Leadership, Global and Comparative
  • Leadership, Strategic
  • Learning by Doing in Organizational Activities
  • Management History
  • Management In Antiquity
  • Managerial and Organizational Cognition
  • Managerial Discretion
  • Meaningful Work
  • Multinational Corporations and Emerging Markets
  • Neo-institutional Theory
  • Neuroscience, Organizational
  • New Ventures
  • Organization Design, Global
  • Organization Development and Change
  • Organization Research, Ethnography in
  • Organization Theory
  • Organizational Adaptation
  • Organizational Ambidexterity
  • Organizational Behavior, Emotions in
  • Organizational Citizenship Behaviors (OCBs)
  • Organizational Climate
  • Organizational Control
  • Organizational Corruption
  • Organizational Hybridity
  • Organizational Identity
  • Organizational Justice
  • Organizational Legitimacy
  • Organizational Networks
  • Organizational Paradox
  • Organizational Performance, Personality Theory and
  • Organizational Responsibility
  • Organizational Surveys, Driving Change Through
  • Organizations, Big Data in
  • Organizations, Gender in
  • Organizations, Identity Work in
  • Organizations, Political Ideology in
  • Organizations, Social Identity Processes in
  • Overqualification
  • Paternalistic Leadership
  • Pay for Skills, Knowledge, and Competencies
  • People Analytics
  • Performance Appraisal
  • Performance Feedback Theory
  • Planning And Goal Setting
  • Proactive Work Behavior
  • Psychological Contracts
  • Psychological Safety
  • Real Options Theory
  • Recruitment
  • Regional Entrepreneurship
  • Reputation, Organizational Image and
  • Research, Ethics in
  • Research, Longitudinal
  • Research Methods, Qualitative
  • Resource Redeployment
  • Resource-Dependence Theory
  • Response Surface Analysis, Polynomial Regression and
  • Role of Time in Organizational Studies
  • Safety, Work Place
  • Selection, Applicant Reactions to
  • Self-Determination Theory for Work Motivation
  • Self-Efficacy
  • Self-Fulfilling Prophecy In Management
  • Self-Management and Personal Agency
  • Sensemaking in and around Organizations
  • Service Management
  • Shared Team Leadership
  • Social Cognitive Theory
  • Social Evaluation: Status and Reputation
  • Social Movement Theory
  • Social Ties and Network Structure
  • Socialization
  • Sports Settings in Management Research
  • Stakeholders
  • Status in Organizations
  • Strategic Alliances
  • Strategic Human Capital
  • Strategy and Cognition
  • Strategy Implementation
  • Structural Contingency Theory/Information Processing Theor...
  • Team Composition
  • Team Conflict
  • Team Design Characteristics
  • Team Learning
  • Team Mental Models
  • Team Newcomers
  • Team Performance
  • Team Processes
  • Teams, Global
  • Technology and Innovation Management
  • Technology, Organizational Assessment and
  • the Workplace, Millennials in
  • Theory X and Theory Y
  • Time and Motion Studies
  • Training and Development
  • Training Evaluation
  • Trust in Organizational Contexts
  • Unobtrusive Measures
  • Virtual Teams
  • Whistle-Blowing
  • Work and Family: An Organizational Science Overview
  • Work Contexts, Nonverbal Communication in
  • Work, Mindfulness at
  • Workplace Aggression and Violence
  • Workplace Coaching
  • Workplace Commitment
  • Workplace Gossip
  • Workplace Meetings
  • Workplace, Spiritual Leadership in the
  • World War II, Management Research during
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|185.80.151.41]
  • 185.80.151.41

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

20 striking findings from 2020

From left: A woman with a mask holds Black Lives Matter lawn sign in her hands during a vigil; voters cast their ballots on Election Day in Bangor, Maine; and a nurse uses a swab to test a person for COVID-19. (From left: Stephen Zenner/SOPA Images/LightRocket via Getty Images; Scott Eisen/Getty Images; David L. Ryan/The Boston Globe via Getty Images)

The global coronavirus pandemic upended life in the United States and around the world in 2020, disrupting how people work, go to school, attend religious services, socialize with friends and family, and much more. But the pandemic wasn’t the only event that shaped the year. The videotaped killing of George Floyd by police officers in Minneapolis sparked an international outcry and focused new attention on the treatment of racial and ethnic minorities in the U.S. And November’s presidential election appears to have shattered turnout records as around 160 million Americans cast ballots and elected Joe Biden the 46th president.

As 2020 draws to a close, here are 20 striking findings from Pew Research Center’s studies this year, covering the pandemic, race-related tensions, the presidential election and other notable trends that emerged during the year.

Democrats nearly twice as likely as Republicans to view COVID-19 as a major threat to public health

Since the very beginning of the U.S. coronavirus outbreak, Democrats have been far more likely than Republicans to see COVID-19 as a “major threat” to public health. In November, Democrats and Democratic-leaning independents were nearly twice as likely as Republicans and GOP leaners (84% vs. 43%) to see the outbreak as a major threat to the health of the U.S. population, even as both sides agreed on the threat it poses to the national economy.

Partisan divisions over the public health threat posed by the virus were far from the only ones when it came to COVID-19: Democrats and Republicans also differed widely on public health strategies ranging from contact tracing to mask wearing .

The pandemic had a dramatic effect on international travel: By April, around nine-tenths of the world’s population (91%) was living in a country with partially or fully closed borders . More than 7 billion people were living in a country with at least some entry restrictions for noncitizens and nonresidents. And that included about 3 billion people, or 39% of the global population, who lived in countries with borders that were completely closed to noncitizens and nonresidents.

Most countries in the world have imposed partial or complete border closures to foreign nationals due to coronavirus outbreak

For the first time since at least the Great Depression, a majority of young adults in the U.S. were living with their parents this year. Millions of Americans, especially young adults, moved in with family members as the coronavirus spread. In July, 52% of adults ages 18 to 29 were living with one or both parents, up from 47% in February, before the pandemic. The share of young adults living with their parents rose among men and women, in all major racial and ethnic groups and among metropolitan as well as rural residents. Growth was sharpest among the youngest adults – those ages 18 to 24 – as well as among White young adults.

British views of the EU reached a historic high

Following the UK’s exit from the European Union, the share of British adults with a favorable view of the EU rose to its highest level on record . The UK formally left the EU in January, concluding a withdrawal process that lasted more than three years. But in Pew Research Center’s first survey in the UK after Brexit, 60% of British adults said they had a positive view of the EU, up from 54% the year before and the highest percentage in surveys dating to 2004. Britons’ views of the EU remained divided along demographic and partisan lines, with younger people, those with a postsecondary education or more and those on the ideological left more likely to express a positive opinion.

International views of China turned much more negative in 2020 , with many people criticizing its handling of COVID-19. The share of adults with an unfavorable opinion of China rose 24 percentage points in Australia, 19 points in the UK and 15 points in Germany, the Netherlands and Sweden, with sizable increases in other countries as well. In all 14 countries surveyed, a majority of adults expressed a negative view of China. And a median of 61% of adults across these nations said China had done a bad job dealing with the coronavirus outbreak.

Increasingly negative evaluations of China across advanced economies

Around eight-in-ten registered voters in the U.S. (83%) said in the summer that it “ really mattered ” who won this year’s presidential election, the highest share in any presidential election year since at least 2000. Two decades ago, by comparison, just half of registered voters said it “really mattered” who won the contest between George W. Bush and Al Gore.

The election itself underscored voters’ engagement this year: President-elect Joe Biden received more than 81 million votes , while Donald Trump got more than 74 million – the highest and second-highest totals in American history

Trump’s approval rating has been more sharply divided along partisan lines than that of any president in the modern era of polling. Over the course of his presidency through August, an average of 87% of Republicans approved of Trump’s handling of the job, compared with an average of just 6% of Democrats. That 81-point gap between Republicans and Democrats was far larger than the average partisan gaps in approval of Barack Obama (67 points) and George W. Bush (58 points).

Members of the out-of-power party – that is, the party that does not control the White House – have become increasingly critical of U.S. presidents in recent years. The 6% average of Democrats who approved of Trump’s job performance through August was down from an average of 14% of Republicans who approved of Obama and an average of 23% of Democrats who approved of Bush.

Trump approval more polarized than for any other president since Eisenhower

Amid widespread economic hardship caused by COVID-19, around four-in-ten U.S. adults said in August that they or someone in their household had been laid off, lost their job or taken a pay cut. The economic shocks of the pandemic affected a broad range of American workers and their families. In the August survey, a quarter of U.S. adults said they or someone in their household had been laid off or lost their job, while around a third (32%) said they or someone in their household had taken a pay cut. All told, 42% of adults reported at least one of these things happening to them or someone in their household. Job losses and pay cuts were especially common among younger adults, Hispanics and those in lower-income families.

Roughly four-in-ten adults say they or someone in their household lost a job or wages because of COVID-19

More than half of Americans personally know someone who has been hospitalized or died due to COVID-19. In a reflection of the mounting toll the virus has taken, 54% of U.S. adults said in November that they know someone who has been hospitalized or died, up from 39% in August and 15% in April. Around seven-in-ten Black Americans (71%) know someone who has been hospitalized or died from COVID-19, compared with 61% of those who are Hispanic, 49% of those who are White and 48% of those who are Asian.

A large majority of U.S. adults (86%) say there is some kind of lesson or set of lessons for mankind to learn from the coronavirus outbreak, and about a third (35%) say these lessons were sent by God. In open-ended survey responses collected by the Center in the summer, Americans pointed to practical lessons, such as wearing a mask; personal lessons, such as remembering the importance of spending time with family and loved ones; and societal lessons, such as the need for universal health care. Other responses were political in nature, including criticisms of both major parties and concerns about the politicization of the pandemic.

Vast majority of U.S. adults think pandemic provides lesson for humanity

In several countries, the share of people with a favorable view of the U.S. fell in 2020 to its lowest point on record . America’s image abroad declined considerably after Trump took office in 2017, but there was further erosion in 2020 amid widespread criticism of the country’s handling of the coronavirus outbreak. Just 41% of adults in the UK expressed a favorable opinion of the U.S. this year, the lowest percentage on record. And in France and Germany, the share of adults with a positive view of the U.S. fell to levels last seen in March 2003, at the height of tensions over the Iraq War.

Across 13 countries surveyed this summer, a median of just 15% of adults said the U.S. had done a good job responding to the COVID-19 outbreak. That was much lower than the share who gave positive marks to their own country (median of 74%), the World Health Organization (median of 64%), the EU (median of 57%) and China (median of 37%).

In some countries, ratings for U.S. are at record low

Biden and Trump supporters say they fundamentally disagree with each other not just on political priorities, but on core American values . In an October survey, eight-in-ten registered voters who supported Biden (80%) – and a similar share of those who supported Trump (77%) – said they fundamentally disagree with the other side on “core American values and goals.” Only around one-in-five in each group said their differences are limited to politics and policies. In the same survey, 90% of Biden supporters and 89% of Trump supporters said there would be “lasting harm” to the nation if the other candidate won the election.

Across a range of measures, Republicans are far more negative than Democrats in their assessments of the news media. In a February survey, more than half of Republicans and Republican-leaning independents said news organizations don’t care about the people they report on (69%), are not professional (60%), are too critical of America (58%), hurt democracy (56%) and don’t care about how good of a job they do (54%). Democrats and Democratic leaners were far more positive than Republicans on all of these questions. The partisan divide in views of the news media extends to views of specific outlets, too, as a separate Center study found in January .

Republicans far more negative than Democrats in their evaluations of the media

A small share of highly active Twitter users – most of whom are Democrats – produce the vast majority of tweets from U.S. adults. The most active 10% of users were responsible for 92% of tweets sent between November 2019 and September 2020 by U.S. adults with public-facing accounts. Democrats and Democratic-leaning independents accounted for 69% of these highly active Twitter users, while Republicans and GOP leaners accounted for 26%. 

Most Latino adults have not heard of the term Latinx; few use it

Only around a quarter of U.S. Hispanics (23%) have heard of the term “Latinx,” and just 3% say they use it to describe themselves. The gender-neutral, pan-ethnic term, which is used to describe the nation’s Hispanic population, has gained traction in recent years among some corporations, local governments, universities and news and entertainment outlets. But relatively few Hispanics are aware of the term and only a small fraction use it to describe themselves. Among Hispanics aware of the term, 65% say “Latinx” should not be used to describe the nation’s Hispanic or Latino population, while 33% say it should.

Around half of Americans (49%) say the Bible should have a great deal or some influence on the laws of the U.S. , including 28% who say it should take precedence when it conflicts with the will of the people. White evangelical Christians are especially likely to hold this view. In a February survey, around nine-in-ten White evangelicals (89%) said the Bible should have a great deal or some influence on America’s laws, and around two-thirds (68%) said they favored the Bible over the will of the people when there is a conflict between the two.

The U.S. Constitution does not mention the Bible, God, Jesus or Christianity, and the First Amendment clarifies that “Congress shall make no law respecting an establishment of religion.” Still, some scholars have argued that the Bible heavily influenced America’s founders.

About seven-in-ten white evangelicals say the Bible should have more influence on U.S. laws than will of the people

The Black Lives Matter movement drew widespread public support and online engagement following the police killing of George Floyd in May. In a survey in early June , two-thirds of Americans – including majorities across all major racial and ethnic groups – expressed support for the movement (though support slipped to 55% by September).

Meanwhile, use of the #BlackLivesMatter hashtag surged to record levels on Twitter , with an average of just under 3.7 million daily uses between May 26 – the day after Floyd’s death at the hands of Minneapolis police – and June 7. On May 28, nearly 8.8 million tweets included the hashtag #BlackLivesMatter, making it the busiest single day for the hashtag since Pew Research Center began tracking its use in 2013.

Use of the #BlackLivesMatter hashtag hits record levels amid global protests over George Floyd's death while in police custody

Amid calls to “defund the police,” only a quarter of Americans said in June that they favor a reduction in spending on policing in their area. The largest share of Americans (42%) preferred spending on policing in their area to stay about the same, while 31% said spending on police should be increased. Support for police spending cuts was higher – but still short of a majority – among adults under 30, Black adults and those who identify as Democratic or lean to the Democratic Party.

Far more Americans favor keeping spending on policing at current levels – or increasing it – than cutting spending

A growing share of Americans have heard of the group of conspiracy theories known as QAnon, and a substantial portion of Republicans who are aware of it say it is a good thing for the country. The share of U.S. adults who have heard or read at least a little about QAnon rose from 23% in February to 47% in September. Democrats and Democratic-leaning independents who are aware of QAnon overwhelmingly see it as a very or somewhat bad thing for the country (90% say this), but Republicans and GOP leaners are more divided. Half of Republicans who are aware of QAnon say it is a very or somewhat bad thing for the nation, while 41% say it is a very or somewhat good thing.

90% of Republicans say it is likely that social media sites censor political viewpoints – a slight uptick since 2018

In a year in which big tech companies faced growing scrutiny, nine-in-ten Republicans – and around six-in-ten Democrats (59%) – said it’s likely that social media sites intentionally censor political viewpoints . Overall, around three-quarters of U.S. adults (73%) said in June that it’s very or somewhat likely that social media sites censor political viewpoints they find objectionable. In late May, Twitter began labeling tweets by Trump as misleading, prompting the president and some of his supporters to accuse social media platforms of censoring conservative voices.

Read the other posts in our striking findings series:

  • 19 striking findings from 2019
  • 18 striking findings from 2018
  • 17 striking findings from 2017
  • 16 striking findings from 2016
  • 15 striking findings from 2015

Download John Gramlich's photo

John Gramlich is an associate director at Pew Research Center .

Most Popular

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

  • Privacy Policy

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Research Methods In Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

research methods3

Hypotheses are statements about the prediction of the results, that can be verified or disproved by some investigation.

There are four types of hypotheses :
  • Null Hypotheses (H0 ) – these predict that no difference will be found in the results between the conditions. Typically these are written ‘There will be no difference…’
  • Alternative Hypotheses (Ha or H1) – these predict that there will be a significant difference in the results between the two conditions. This is also known as the experimental hypothesis.
  • One-tailed (directional) hypotheses – these state the specific direction the researcher expects the results to move in, e.g. higher, lower, more, less. In a correlation study, the predicted direction of the correlation can be either positive or negative.
  • Two-tailed (non-directional) hypotheses – these state that a difference will be found between the conditions of the independent variable but does not state the direction of a difference or relationship. Typically these are always written ‘There will be a difference ….’

All research has an alternative hypothesis (either a one-tailed or two-tailed) and a corresponding null hypothesis.

Once the research is conducted and results are found, psychologists must accept one hypothesis and reject the other. 

So, if a difference is found, the Psychologist would accept the alternative hypothesis and reject the null.  The opposite applies if no difference is found.

Sampling techniques

Sampling is the process of selecting a representative group from the population under study.

Sample Target Population

A sample is the participants you select from a target population (the group you are interested in) to make generalizations about.

Representative means the extent to which a sample mirrors a researcher’s target population and reflects its characteristics.

Generalisability means the extent to which their findings can be applied to the larger population of which their sample was a part.

  • Volunteer sample : where participants pick themselves through newspaper adverts, noticeboards or online.
  • Opportunity sampling : also known as convenience sampling , uses people who are available at the time the study is carried out and willing to take part. It is based on convenience.
  • Random sampling : when every person in the target population has an equal chance of being selected. An example of random sampling would be picking names out of a hat.
  • Systematic sampling : when a system is used to select participants. Picking every Nth person from all possible participants. N = the number of people in the research population / the number of people needed for the sample.
  • Stratified sampling : when you identify the subgroups and select participants in proportion to their occurrences.
  • Snowball sampling : when researchers find a few participants, and then ask them to find participants themselves and so on.
  • Quota sampling : when researchers will be told to ensure the sample fits certain quotas, for example they might be told to find 90 participants, with 30 of them being unemployed.

Experiments always have an independent and dependent variable .

  • The independent variable is the one the experimenter manipulates (the thing that changes between the conditions the participants are placed into). It is assumed to have a direct effect on the dependent variable.
  • The dependent variable is the thing being measured, or the results of the experiment.

variables

Operationalization of variables means making them measurable/quantifiable. We must use operationalization to ensure that variables are in a form that can be easily tested.

For instance, we can’t really measure ‘happiness’, but we can measure how many times a person smiles within a two-hour period. 

By operationalizing variables, we make it easy for someone else to replicate our research. Remember, this is important because we can check if our findings are reliable.

Extraneous variables are all variables which are not independent variable but could affect the results of the experiment.

It can be a natural characteristic of the participant, such as intelligence levels, gender, or age for example, or it could be a situational feature of the environment such as lighting or noise.

Demand characteristics are a type of extraneous variable that occurs if the participants work out the aims of the research study, they may begin to behave in a certain way.

For example, in Milgram’s research , critics argued that participants worked out that the shocks were not real and they administered them as they thought this was what was required of them. 

Extraneous variables must be controlled so that they do not affect (confound) the results.

Randomly allocating participants to their conditions or using a matched pairs experimental design can help to reduce participant variables. 

Situational variables are controlled by using standardized procedures, ensuring every participant in a given condition is treated in the same way

Experimental Design

Experimental design refers to how participants are allocated to each condition of the independent variable, such as a control or experimental group.
  • Independent design ( between-groups design ): each participant is selected for only one group. With the independent design, the most common way of deciding which participants go into which group is by means of randomization. 
  • Matched participants design : each participant is selected for only one group, but the participants in the two groups are matched for some relevant factor or factors (e.g. ability; sex; age).
  • Repeated measures design ( within groups) : each participant appears in both groups, so that there are exactly the same participants in each group.
  • The main problem with the repeated measures design is that there may well be order effects. Their experiences during the experiment may change the participants in various ways.
  • They may perform better when they appear in the second group because they have gained useful information about the experiment or about the task. On the other hand, they may perform less well on the second occasion because of tiredness or boredom.
  • Counterbalancing is the best way of preventing order effects from disrupting the findings of an experiment, and involves ensuring that each condition is equally likely to be used first and second by the participants.

If we wish to compare two groups with respect to a given independent variable, it is essential to make sure that the two groups do not differ in any other important way. 

Experimental Methods

All experimental methods involve an iv (independent variable) and dv (dependent variable)..

  • Field experiments are conducted in the everyday (natural) environment of the participants. The experimenter still manipulates the IV, but in a real-life setting. It may be possible to control extraneous variables, though such control is more difficult than in a lab experiment.
  • Natural experiments are when a naturally occurring IV is investigated that isn’t deliberately manipulated, it exists anyway. Participants are not randomly allocated, and the natural event may only occur rarely.

Case studies are in-depth investigations of a person, group, event, or community. It uses information from a range of sources, such as from the person concerned and also from their family and friends.

Many techniques may be used such as interviews, psychological tests, observations and experiments. Case studies are generally longitudinal: in other words, they follow the individual or group over an extended period of time. 

Case studies are widely used in psychology and among the best-known ones carried out were by Sigmund Freud . He conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

Case studies provide rich qualitative data and have high levels of ecological validity. However, it is difficult to generalize from individual cases as each one has unique characteristics.

Correlational Studies

Correlation means association; it is a measure of the extent to which two variables are related. One of the variables can be regarded as the predictor variable with the other one as the outcome variable.

Correlational studies typically involve obtaining two different measures from a group of participants, and then assessing the degree of association between the measures. 

The predictor variable can be seen as occurring before the outcome variable in some sense. It is called the predictor variable, because it forms the basis for predicting the value of the outcome variable.

Relationships between variables can be displayed on a graph or as a numerical score called a correlation coefficient.

types of correlation. Scatter plot. Positive negative and no correlation

  • If an increase in one variable tends to be associated with an increase in the other, then this is known as a positive correlation .
  • If an increase in one variable tends to be associated with a decrease in the other, then this is known as a negative correlation .
  • A zero correlation occurs when there is no relationship between variables.

After looking at the scattergraph, if we want to be sure that a significant relationship does exist between the two variables, a statistical test of correlation can be conducted, such as Spearman’s rho.

The test will give us a score, called a correlation coefficient . This is a value between 0 and 1, and the closer to 1 the score is, the stronger the relationship between the variables. This value can be both positive e.g. 0.63, or negative -0.63.

Types of correlation. Strong, weak, and perfect positive correlation, strong, weak, and perfect negative correlation, no correlation. Graphs or charts ...

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

Correlation does not always prove causation, as a third variable may be involved. 

causation correlation

Interview Methods

Interviews are commonly divided into two types: structured and unstructured.

A fixed, predetermined set of questions is put to every participant in the same order and in the same way. 

Responses are recorded on a questionnaire, and the researcher presets the order and wording of questions, and sometimes the range of alternative answers.

The interviewer stays within their role and maintains social distance from the interviewee.

There are no set questions, and the participant can raise whatever topics he/she feels are relevant and ask them in their own way. Questions are posed about participants’ answers to the subject

Unstructured interviews are most useful in qualitative research to analyze attitudes and values.

Though they rarely provide a valid basis for generalization, their main advantage is that they enable the researcher to probe social actors’ subjective point of view. 

Questionnaire Method

Questionnaires can be thought of as a kind of written interview. They can be carried out face to face, by telephone, or post.

The choice of questions is important because of the need to avoid bias or ambiguity in the questions, ‘leading’ the respondent or causing offense.

  • Open questions are designed to encourage a full, meaningful answer using the subject’s own knowledge and feelings. They provide insights into feelings, opinions, and understanding. Example: “How do you feel about that situation?”
  • Closed questions can be answered with a simple “yes” or “no” or specific information, limiting the depth of response. They are useful for gathering specific facts or confirming details. Example: “Do you feel anxious in crowds?”

Its other practical advantages are that it is cheaper than face-to-face interviews and can be used to contact many respondents scattered over a wide area relatively quickly.

Observations

There are different types of observation methods :
  • Covert observation is where the researcher doesn’t tell the participants they are being observed until after the study is complete. There could be ethical problems or deception and consent with this particular observation method.
  • Overt observation is where a researcher tells the participants they are being observed and what they are being observed for.
  • Controlled : behavior is observed under controlled laboratory conditions (e.g., Bandura’s Bobo doll study).
  • Natural : Here, spontaneous behavior is recorded in a natural setting.
  • Participant : Here, the observer has direct contact with the group of people they are observing. The researcher becomes a member of the group they are researching.  
  • Non-participant (aka “fly on the wall): The researcher does not have direct contact with the people being observed. The observation of participants’ behavior is from a distance

Pilot Study

A pilot  study is a small scale preliminary study conducted in order to evaluate the feasibility of the key s teps in a future, full-scale project.

A pilot study is an initial run-through of the procedures to be used in an investigation; it involves selecting a few people and trying out the study on them. It is possible to save time, and in some cases, money, by identifying any flaws in the procedures designed by the researcher.

A pilot study can help the researcher spot any ambiguities (i.e. unusual things) or confusion in the information given to participants or problems with the task devised.

Sometimes the task is too hard, and the researcher may get a floor effect, because none of the participants can score at all or can complete the task – all performances are low.

The opposite effect is a ceiling effect, when the task is so easy that all achieve virtually full marks or top performances and are “hitting the ceiling”.

Research Design

In cross-sectional research , a researcher compares multiple segments of the population at the same time

Sometimes, we want to see how people change over time, as in studies of human development and lifespan. Longitudinal research is a research design in which data-gathering is administered repeatedly over an extended period of time.

In cohort studies , the participants must share a common factor or characteristic such as age, demographic, or occupation. A cohort study is a type of longitudinal study in which researchers monitor and observe a chosen population over an extended period.

Triangulation means using more than one research method to improve the study’s validity.

Reliability

Reliability is a measure of consistency, if a particular measurement is repeated and the same result is obtained then it is described as being reliable.

  • Test-retest reliability :  assessing the same person on two different occasions which shows the extent to which the test produces the same answers.
  • Inter-observer reliability : the extent to which there is an agreement between two or more observers.

Meta-Analysis

A meta-analysis is a systematic review that involves identifying an aim and then searching for research studies that have addressed similar aims/hypotheses.

This is done by looking through various databases, and then decisions are made about what studies are to be included/excluded.

Strengths: Increases the conclusions’ validity as they’re based on a wider range.

Weaknesses: Research designs in studies can vary, so they are not truly comparable.

Peer Review

A researcher submits an article to a journal. The choice of the journal may be determined by the journal’s audience or prestige.

The journal selects two or more appropriate experts (psychologists working in a similar field) to peer review the article without payment. The peer reviewers assess: the methods and designs used, originality of the findings, the validity of the original research findings and its content, structure and language.

Feedback from the reviewer determines whether the article is accepted. The article may be: Accepted as it is, accepted with revisions, sent back to the author to revise and re-submit or rejected without the possibility of submission.

The editor makes the final decision whether to accept or reject the research report based on the reviewers comments/ recommendations.

Peer review is important because it prevent faulty data from entering the public domain, it provides a way of checking the validity of findings and the quality of the methodology and is used to assess the research rating of university departments.

Peer reviews may be an ideal, whereas in practice there are lots of problems. For example, it slows publication down and may prevent unusual, new work being published. Some reviewers might use it as an opportunity to prevent competing researchers from publishing work.

Some people doubt whether peer review can really prevent the publication of fraudulent research.

The advent of the internet means that a lot of research and academic comment is being published without official peer reviews than before, though systems are evolving on the internet where everyone really has a chance to offer their opinions and police the quality of research.

Types of Data

  • Quantitative data is numerical data e.g. reaction time or number of mistakes. It represents how much or how long, how many there are of something. A tally of behavioral categories and closed questions in a questionnaire collect quantitative data.
  • Qualitative data is virtually any type of information that can be observed and recorded that is not numerical in nature and can be in the form of written or verbal communication. Open questions in questionnaires and accounts from observational studies collect qualitative data.
  • Primary data is first-hand data collected for the purpose of the investigation.
  • Secondary data is information that has been collected by someone other than the person who is conducting the research e.g. taken from journals, books or articles.

Validity means how well a piece of research actually measures what it sets out to, or how well it reflects the reality it claims to represent.

Validity is whether the observed effect is genuine and represents what is actually out there in the world.

  • Concurrent validity is the extent to which a psychological measure relates to an existing similar measure and obtains close results. For example, a new intelligence test compared to an established test.
  • Face validity : does the test measure what it’s supposed to measure ‘on the face of it’. This is done by ‘eyeballing’ the measuring or by passing it to an expert to check.
  • Ecological validit y is the extent to which findings from a research study can be generalized to other settings / real life.
  • Temporal validity is the extent to which findings from a research study can be generalized to other historical times.

Features of Science

  • Paradigm – A set of shared assumptions and agreed methods within a scientific discipline.
  • Paradigm shift – The result of the scientific revolution: a significant change in the dominant unifying theory within a scientific discipline.
  • Objectivity – When all sources of personal bias are minimised so not to distort or influence the research process.
  • Empirical method – Scientific approaches that are based on the gathering of evidence through direct observation and experience.
  • Replicability – The extent to which scientific procedures and findings can be repeated by other researchers.
  • Falsifiability – The principle that a theory cannot be considered scientific unless it admits the possibility of being proved untrue.

Statistical Testing

A significant result is one where there is a low probability that chance factors were responsible for any observed difference, correlation, or association in the variables tested.

If our test is significant, we can reject our null hypothesis and accept our alternative hypothesis.

If our test is not significant, we can accept our null hypothesis and reject our alternative hypothesis. A null hypothesis is a statement of no effect.

In Psychology, we use p < 0.05 (as it strikes a balance between making a type I and II error) but p < 0.01 is used in tests that could cause harm like introducing a new drug.

A type I error is when the null hypothesis is rejected when it should have been accepted (happens when a lenient significance level is used, an error of optimism).

A type II error is when the null hypothesis is accepted when it should have been rejected (happens when a stringent significance level is used, an error of pessimism).

Ethical Issues

  • Informed consent is when participants are able to make an informed judgment about whether to take part. It causes them to guess the aims of the study and change their behavior.
  • To deal with it, we can gain presumptive consent or ask them to formally indicate their agreement to participate but it may invalidate the purpose of the study and it is not guaranteed that the participants would understand.
  • Deception should only be used when it is approved by an ethics committee, as it involves deliberately misleading or withholding information. Participants should be fully debriefed after the study but debriefing can’t turn the clock back.
  • All participants should be informed at the beginning that they have the right to withdraw if they ever feel distressed or uncomfortable.
  • It causes bias as the ones that stayed are obedient and some may not withdraw as they may have been given incentives or feel like they’re spoiling the study. Researchers can offer the right to withdraw data after participation.
  • Participants should all have protection from harm . The researcher should avoid risks greater than those experienced in everyday life and they should stop the study if any harm is suspected. However, the harm may not be apparent at the time of the study.
  • Confidentiality concerns the communication of personal information. The researchers should not record any names but use numbers or false names though it may not be possible as it is sometimes possible to work out who the researchers were.

Print Friendly, PDF & Email

Related Articles

What Is a Focus Group?

Research Methodology

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

A-level Psychology AQA Revision Notes

A-Level Psychology

A-level Psychology AQA Revision Notes

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Am J Pharm Educ
  • v.74(8); 2010 Oct 11

Presenting and Evaluating Qualitative Research

The purpose of this paper is to help authors to think about ways to present qualitative research papers in the American Journal of Pharmaceutical Education . It also discusses methods for reviewers to assess the rigour, quality, and usefulness of qualitative research. Examples of different ways to present data from interviews, observations, and focus groups are included. The paper concludes with guidance for publishing qualitative research and a checklist for authors and reviewers.

INTRODUCTION

Policy and practice decisions, including those in education, increasingly are informed by findings from qualitative as well as quantitative research. Qualitative research is useful to policymakers because it often describes the settings in which policies will be implemented. Qualitative research is also useful to both pharmacy practitioners and pharmacy academics who are involved in researching educational issues in both universities and practice and in developing teaching and learning.

Qualitative research involves the collection, analysis, and interpretation of data that are not easily reduced to numbers. These data relate to the social world and the concepts and behaviors of people within it. Qualitative research can be found in all social sciences and in the applied fields that derive from them, for example, research in health services, nursing, and pharmacy. 1 It looks at X in terms of how X varies in different circumstances rather than how big is X or how many Xs are there? 2 Textbooks often subdivide research into qualitative and quantitative approaches, furthering the common assumption that there are fundamental differences between the 2 approaches. With pharmacy educators who have been trained in the natural and clinical sciences, there is often a tendency to embrace quantitative research, perhaps due to familiarity. A growing consensus is emerging that sees both qualitative and quantitative approaches as useful to answering research questions and understanding the world. Increasingly mixed methods research is being carried out where the researcher explicitly combines the quantitative and qualitative aspects of the study. 3 , 4

Like healthcare, education involves complex human interactions that can rarely be studied or explained in simple terms. Complex educational situations demand complex understanding; thus, the scope of educational research can be extended by the use of qualitative methods. Qualitative research can sometimes provide a better understanding of the nature of educational problems and thus add to insights into teaching and learning in a number of contexts. For example, at the University of Nottingham, we conducted in-depth interviews with pharmacists to determine their perceptions of continuing professional development and who had influenced their learning. We also have used a case study approach using observation of practice and in-depth interviews to explore physiotherapists' views of influences on their leaning in practice. We have conducted in-depth interviews with a variety of stakeholders in Malawi, Africa, to explore the issues surrounding pharmacy academic capacity building. A colleague has interviewed and conducted focus groups with students to explore cultural issues as part of a joint Nottingham-Malaysia pharmacy degree program. Another colleague has interviewed pharmacists and patients regarding their expectations before and after clinic appointments and then observed pharmacist-patient communication in clinics and assessed it using the Calgary Cambridge model in order to develop recommendations for communication skills training. 5 We have also performed documentary analysis on curriculum data to compare pharmacist and nurse supplementary prescribing courses in the United Kingdom.

It is important to choose the most appropriate methods for what is being investigated. Qualitative research is not appropriate to answer every research question and researchers need to think carefully about their objectives. Do they wish to study a particular phenomenon in depth (eg, students' perceptions of studying in a different culture)? Or are they more interested in making standardized comparisons and accounting for variance (eg, examining differences in examination grades after changing the way the content of a module is taught). Clearly a quantitative approach would be more appropriate in the last example. As with any research project, a clear research objective has to be identified to know which methods should be applied.

Types of qualitative data include:

  • Audio recordings and transcripts from in-depth or semi-structured interviews
  • Structured interview questionnaires containing substantial open comments including a substantial number of responses to open comment items.
  • Audio recordings and transcripts from focus group sessions.
  • Field notes (notes taken by the researcher while in the field [setting] being studied)
  • Video recordings (eg, lecture delivery, class assignments, laboratory performance)
  • Case study notes
  • Documents (reports, meeting minutes, e-mails)
  • Diaries, video diaries
  • Observation notes
  • Press clippings
  • Photographs

RIGOUR IN QUALITATIVE RESEARCH

Qualitative research is often criticized as biased, small scale, anecdotal, and/or lacking rigor; however, when it is carried out properly it is unbiased, in depth, valid, reliable, credible and rigorous. In qualitative research, there needs to be a way of assessing the “extent to which claims are supported by convincing evidence.” 1 Although the terms reliability and validity traditionally have been associated with quantitative research, increasingly they are being seen as important concepts in qualitative research as well. Examining the data for reliability and validity assesses both the objectivity and credibility of the research. Validity relates to the honesty and genuineness of the research data, while reliability relates to the reproducibility and stability of the data.

The validity of research findings refers to the extent to which the findings are an accurate representation of the phenomena they are intended to represent. The reliability of a study refers to the reproducibility of the findings. Validity can be substantiated by a number of techniques including triangulation use of contradictory evidence, respondent validation, and constant comparison. Triangulation is using 2 or more methods to study the same phenomenon. Contradictory evidence, often known as deviant cases, must be sought out, examined, and accounted for in the analysis to ensure that researcher bias does not interfere with or alter their perception of the data and any insights offered. Respondent validation, which is allowing participants to read through the data and analyses and provide feedback on the researchers' interpretations of their responses, provides researchers with a method of checking for inconsistencies, challenges the researchers' assumptions, and provides them with an opportunity to re-analyze their data. The use of constant comparison means that one piece of data (for example, an interview) is compared with previous data and not considered on its own, enabling researchers to treat the data as a whole rather than fragmenting it. Constant comparison also enables the researcher to identify emerging/unanticipated themes within the research project.

STRENGTHS AND LIMITATIONS OF QUALITATIVE RESEARCH

Qualitative researchers have been criticized for overusing interviews and focus groups at the expense of other methods such as ethnography, observation, documentary analysis, case studies, and conversational analysis. Qualitative research has numerous strengths when properly conducted.

Strengths of Qualitative Research

  • Issues can be examined in detail and in depth.
  • Interviews are not restricted to specific questions and can be guided/redirected by the researcher in real time.
  • The research framework and direction can be quickly revised as new information emerges.
  • The data based on human experience that is obtained is powerful and sometimes more compelling than quantitative data.
  • Subtleties and complexities about the research subjects and/or topic are discovered that are often missed by more positivistic enquiries.
  • Data usually are collected from a few cases or individuals so findings cannot be generalized to a larger population. Findings can however be transferable to another setting.

Limitations of Qualitative Research

  • Research quality is heavily dependent on the individual skills of the researcher and more easily influenced by the researcher's personal biases and idiosyncrasies.
  • Rigor is more difficult to maintain, assess, and demonstrate.
  • The volume of data makes analysis and interpretation time consuming.
  • It is sometimes not as well understood and accepted as quantitative research within the scientific community
  • The researcher's presence during data gathering, which is often unavoidable in qualitative research, can affect the subjects' responses.
  • Issues of anonymity and confidentiality can present problems when presenting findings
  • Findings can be more difficult and time consuming to characterize in a visual way.

PRESENTATION OF QUALITATIVE RESEARCH FINDINGS

The following extracts are examples of how qualitative data might be presented:

Data From an Interview.

The following is an example of how to present and discuss a quote from an interview.

The researcher should select quotes that are poignant and/or most representative of the research findings. Including large portions of an interview in a research paper is not necessary and often tedious for the reader. The setting and speakers should be established in the text at the end of the quote.

The student describes how he had used deep learning in a dispensing module. He was able to draw on learning from a previous module, “I found that while using the e learning programme I was able to apply the knowledge and skills that I had gained in last year's diseases and goals of treatment module.” (interviewee 22, male)

This is an excerpt from an article on curriculum reform that used interviews 5 :

The first question was, “Without the accreditation mandate, how much of this curriculum reform would have been attempted?” According to respondents, accreditation played a significant role in prompting the broad-based curricular change, and their comments revealed a nuanced view. Most indicated that the change would likely have occurred even without the mandate from the accreditation process: “It reflects where the profession wants to be … training a professional who wants to take on more responsibility.” However, they also commented that “if it were not mandated, it could have been a very difficult road.” Or it “would have happened, but much later.” The change would more likely have been incremental, “evolutionary,” or far more limited in its scope. “Accreditation tipped the balance” was the way one person phrased it. “Nobody got serious until the accrediting body said it would no longer accredit programs that did not change.”

Data From Observations

The following example is some data taken from observation of pharmacist patient consultations using the Calgary Cambridge guide. 6 , 7 The data are first presented and a discussion follows:

Pharmacist: We will soon be starting a stop smoking clinic. Patient: Is the interview over now? Pharmacist: No this is part of it. (Laughs) You can't tell me to bog off (sic) yet. (pause) We will be starting a stop smoking service here, Patient: Yes. Pharmacist: with one-to-one and we will be able to help you or try to help you. If you want it. In this example, the pharmacist has picked up from the patient's reaction to the stop smoking clinic that she is not receptive to advice about giving up smoking at this time; in fact she would rather end the consultation. The pharmacist draws on his prior relationship with the patient and makes use of a joke to lighten the tone. He feels his message is important enough to persevere but he presents the information in a succinct and non-pressurised way. His final comment of “If you want it” is important as this makes it clear that he is not putting any pressure on the patient to take up this offer. This extract shows that some patient cues were picked up, and appropriately dealt with, but this was not the case in all examples.

Data From Focus Groups

This excerpt from a study involving 11 focus groups illustrates how findings are presented using representative quotes from focus group participants. 8

Those pharmacists who were initially familiar with CPD endorsed the model for their peers, and suggested it had made a meaningful difference in the way they viewed their own practice. In virtually all focus groups sessions, pharmacists familiar with and supportive of the CPD paradigm had worked in collaborative practice environments such as hospital pharmacy practice. For these pharmacists, the major advantage of CPD was the linking of workplace learning with continuous education. One pharmacist stated, “It's amazing how much I have to learn every day, when I work as a pharmacist. With [the learning portfolio] it helps to show how much learning we all do, every day. It's kind of satisfying to look it over and see how much you accomplish.” Within many of the learning portfolio-sharing sessions, debates emerged regarding the true value of traditional continuing education and its outcome in changing an individual's practice. While participants appreciated the opportunity for social and professional networking inherent in some forms of traditional CE, most eventually conceded that the academic value of most CE programming was limited by the lack of a systematic process for following-up and implementing new learning in the workplace. “Well it's nice to go to these [continuing education] events, but really, I don't know how useful they are. You go, you sit, you listen, but then, well I at least forget.”

The following is an extract from a focus group (conducted by the author) with first-year pharmacy students about community placements. It illustrates how focus groups provide a chance for participants to discuss issues on which they might disagree.

Interviewer: So you are saying that you would prefer health related placements? Student 1: Not exactly so long as I could be developing my communication skill. Student 2: Yes but I still think the more health related the placement is the more I'll gain from it. Student 3: I disagree because other people related skills are useful and you may learn those from taking part in a community project like building a garden. Interviewer: So would you prefer a mixture of health and non health related community placements?

GUIDANCE FOR PUBLISHING QUALITATIVE RESEARCH

Qualitative research is becoming increasingly accepted and published in pharmacy and medical journals. Some journals and publishers have guidelines for presenting qualitative research, for example, the British Medical Journal 9 and Biomedcentral . 10 Medical Education published a useful series of articles on qualitative research. 11 Some of the important issues that should be considered by authors, reviewers and editors when publishing qualitative research are discussed below.

Introduction.

A good introduction provides a brief overview of the manuscript, including the research question and a statement justifying the research question and the reasons for using qualitative research methods. This section also should provide background information, including relevant literature from pharmacy, medicine, and other health professions, as well as literature from the field of education that addresses similar issues. Any specific educational or research terminology used in the manuscript should be defined in the introduction.

The methods section should clearly state and justify why the particular method, for example, face to face semistructured interviews, was chosen. The method should be outlined and illustrated with examples such as the interview questions, focusing exercises, observation criteria, etc. The criteria for selecting the study participants should then be explained and justified. The way in which the participants were recruited and by whom also must be stated. A brief explanation/description should be included of those who were invited to participate but chose not to. It is important to consider “fair dealing,” ie, whether the research design explicitly incorporates a wide range of different perspectives so that the viewpoint of 1 group is never presented as if it represents the sole truth about any situation. The process by which ethical and or research/institutional governance approval was obtained should be described and cited.

The study sample and the research setting should be described. Sampling differs between qualitative and quantitative studies. In quantitative survey studies, it is important to select probability samples so that statistics can be used to provide generalizations to the population from which the sample was drawn. Qualitative research necessitates having a small sample because of the detailed and intensive work required for the study. So sample sizes are not calculated using mathematical rules and probability statistics are not applied. Instead qualitative researchers should describe their sample in terms of characteristics and relevance to the wider population. Purposive sampling is common in qualitative research. Particular individuals are chosen with characteristics relevant to the study who are thought will be most informative. Purposive sampling also may be used to produce maximum variation within a sample. Participants being chosen based for example, on year of study, gender, place of work, etc. Representative samples also may be used, for example, 20 students from each of 6 schools of pharmacy. Convenience samples involve the researcher choosing those who are either most accessible or most willing to take part. This may be fine for exploratory studies; however, this form of sampling may be biased and unrepresentative of the population in question. Theoretical sampling uses insights gained from previous research to inform sample selection for a new study. The method for gaining informed consent from the participants should be described, as well as how anonymity and confidentiality of subjects were guaranteed. The method of recording, eg, audio or video recording, should be noted, along with procedures used for transcribing the data.

Data Analysis.

A description of how the data were analyzed also should be included. Was computer-aided qualitative data analysis software such as NVivo (QSR International, Cambridge, MA) used? Arrival at “data saturation” or the end of data collection should then be described and justified. A good rule when considering how much information to include is that readers should have been given enough information to be able to carry out similar research themselves.

One of the strengths of qualitative research is the recognition that data must always be understood in relation to the context of their production. 1 The analytical approach taken should be described in detail and theoretically justified in light of the research question. If the analysis was repeated by more than 1 researcher to ensure reliability or trustworthiness, this should be stated and methods of resolving any disagreements clearly described. Some researchers ask participants to check the data. If this was done, it should be fully discussed in the paper.

An adequate account of how the findings were produced should be included A description of how the themes and concepts were derived from the data also should be included. Was an inductive or deductive process used? The analysis should not be limited to just those issues that the researcher thinks are important, anticipated themes, but also consider issues that participants raised, ie, emergent themes. Qualitative researchers must be open regarding the data analysis and provide evidence of their thinking, for example, were alternative explanations for the data considered and dismissed, and if so, why were they dismissed? It also is important to present outlying or negative/deviant cases that did not fit with the central interpretation.

The interpretation should usually be grounded in interviewees or respondents' contributions and may be semi-quantified, if this is possible or appropriate, for example, “Half of the respondents said …” “The majority said …” “Three said…” Readers should be presented with data that enable them to “see what the researcher is talking about.” 1 Sufficient data should be presented to allow the reader to clearly see the relationship between the data and the interpretation of the data. Qualitative data conventionally are presented by using illustrative quotes. Quotes are “raw data” and should be compiled and analyzed, not just listed. There should be an explanation of how the quotes were chosen and how they are labeled. For example, have pseudonyms been given to each respondent or are the respondents identified using codes, and if so, how? It is important for the reader to be able to see that a range of participants have contributed to the data and that not all the quotes are drawn from 1 or 2 individuals. There is a tendency for authors to overuse quotes and for papers to be dominated by a series of long quotes with little analysis or discussion. This should be avoided.

Participants do not always state the truth and may say what they think the interviewer wishes to hear. A good qualitative researcher should not only examine what people say but also consider how they structured their responses and how they talked about the subject being discussed, for example, the person's emotions, tone, nonverbal communication, etc. If the research was triangulated with other qualitative or quantitative data, this should be discussed.

Discussion.

The findings should be presented in the context of any similar previous research and or theories. A discussion of the existing literature and how this present research contributes to the area should be included. A consideration must also be made about how transferrable the research would be to other settings. Any particular strengths and limitations of the research also should be discussed. It is common practice to include some discussion within the results section of qualitative research and follow with a concluding discussion.

The author also should reflect on their own influence on the data, including a consideration of how the researcher(s) may have introduced bias to the results. The researcher should critically examine their own influence on the design and development of the research, as well as on data collection and interpretation of the data, eg, were they an experienced teacher who researched teaching methods? If so, they should discuss how this might have influenced their interpretation of the results.

Conclusion.

The conclusion should summarize the main findings from the study and emphasize what the study adds to knowledge in the area being studied. Mays and Pope suggest the researcher ask the following 3 questions to determine whether the conclusions of a qualitative study are valid 12 : How well does this analysis explain why people behave in the way they do? How comprehensible would this explanation be to a thoughtful participant in the setting? How well does the explanation cohere with what we already know?

CHECKLIST FOR QUALITATIVE PAPERS

This paper establishes criteria for judging the quality of qualitative research. It provides guidance for authors and reviewers to prepare and review qualitative research papers for the American Journal of Pharmaceutical Education . A checklist is provided in Appendix 1 to assist both authors and reviewers of qualitative data.

ACKNOWLEDGEMENTS

Thank you to the 3 reviewers whose ideas helped me to shape this paper.

Appendix 1. Checklist for authors and reviewers of qualitative research.

Introduction

  • □ Research question is clearly stated.
  • □ Research question is justified and related to the existing knowledge base (empirical research, theory, policy).
  • □ Any specific research or educational terminology used later in manuscript is defined.
  • □ The process by which ethical and or research/institutional governance approval was obtained is described and cited.
  • □ Reason for choosing particular research method is stated.
  • □ Criteria for selecting study participants are explained and justified.
  • □ Recruitment methods are explicitly stated.
  • □ Details of who chose not to participate and why are given.
  • □ Study sample and research setting used are described.
  • □ Method for gaining informed consent from the participants is described.
  • □ Maintenance/Preservation of subject anonymity and confidentiality is described.
  • □ Method of recording data (eg, audio or video recording) and procedures for transcribing data are described.
  • □ Methods are outlined and examples given (eg, interview guide).
  • □ Decision to stop data collection is described and justified.
  • □ Data analysis and verification are described, including by whom they were performed.
  • □ Methods for identifying/extrapolating themes and concepts from the data are discussed.
  • □ Sufficient data are presented to allow a reader to assess whether or not the interpretation is supported by the data.
  • □ Outlying or negative/deviant cases that do not fit with the central interpretation are presented.
  • □ Transferability of research findings to other settings is discussed.
  • □ Findings are presented in the context of any similar previous research and social theories.
  • □ Discussion often is incorporated into the results in qualitative papers.
  • □ A discussion of the existing literature and how this present research contributes to the area is included.
  • □ Any particular strengths and limitations of the research are discussed.
  • □ Reflection of the influence of the researcher(s) on the data, including a consideration of how the researcher(s) may have introduced bias to the results is included.

Conclusions

  • □ The conclusion states the main finings of the study and emphasizes what the study adds to knowledge in the subject area.

What Is Research, and Why Do People Do It?

  • Open Access
  • First Online: 03 December 2022

Cite this chapter

You have full access to this open access chapter

research findings by

  • James Hiebert 6 ,
  • Jinfa Cai 7 ,
  • Stephen Hwang 7 ,
  • Anne K Morris 6 &
  • Charles Hohensee 6  

Part of the book series: Research in Mathematics Education ((RME))

17k Accesses

Abstractspiepr Abs1

Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain, and by its commitment to learn from everyone else seriously engaged in research. We call this kind of research scientific inquiry and define it as “formulating, testing, and revising hypotheses.” By “hypotheses” we do not mean the hypotheses you encounter in statistics courses. We mean predictions about what you expect to find and rationales for why you made these predictions. Throughout this and the remaining chapters we make clear that the process of scientific inquiry applies to all kinds of research studies and data, both qualitative and quantitative.

You have full access to this open access chapter,  Download chapter PDF

Part I. What Is Research?

Have you ever studied something carefully because you wanted to know more about it? Maybe you wanted to know more about your grandmother’s life when she was younger so you asked her to tell you stories from her childhood, or maybe you wanted to know more about a fertilizer you were about to use in your garden so you read the ingredients on the package and looked them up online. According to the dictionary definition, you were doing research.

Recall your high school assignments asking you to “research” a topic. The assignment likely included consulting a variety of sources that discussed the topic, perhaps including some “original” sources. Often, the teacher referred to your product as a “research paper.”

Were you conducting research when you interviewed your grandmother or wrote high school papers reviewing a particular topic? Our view is that you were engaged in part of the research process, but only a small part. In this book, we reserve the word “research” for what it means in the scientific world, that is, for scientific research or, more pointedly, for scientific inquiry .

Exercise 1.1

Before you read any further, write a definition of what you think scientific inquiry is. Keep it short—Two to three sentences. You will periodically update this definition as you read this chapter and the remainder of the book.

This book is about scientific inquiry—what it is and how to do it. For starters, scientific inquiry is a process, a particular way of finding out about something that involves a number of phases. Each phase of the process constitutes one aspect of scientific inquiry. You are doing scientific inquiry as you engage in each phase, but you have not done scientific inquiry until you complete the full process. Each phase is necessary but not sufficient.

In this chapter, we set the stage by defining scientific inquiry—describing what it is and what it is not—and by discussing what it is good for and why people do it. The remaining chapters build directly on the ideas presented in this chapter.

A first thing to know is that scientific inquiry is not all or nothing. “Scientificness” is a continuum. Inquiries can be more scientific or less scientific. What makes an inquiry more scientific? You might be surprised there is no universally agreed upon answer to this question. None of the descriptors we know of are sufficient by themselves to define scientific inquiry. But all of them give you a way of thinking about some aspects of the process of scientific inquiry. Each one gives you different insights.

An image of the book's description with the words like research, science, and inquiry and what the word research meant in the scientific world.

Exercise 1.2

As you read about each descriptor below, think about what would make an inquiry more or less scientific. If you think a descriptor is important, use it to revise your definition of scientific inquiry.

Creating an Image of Scientific Inquiry

We will present three descriptors of scientific inquiry. Each provides a different perspective and emphasizes a different aspect of scientific inquiry. We will draw on all three descriptors to compose our definition of scientific inquiry.

Descriptor 1. Experience Carefully Planned in Advance

Sir Ronald Fisher, often called the father of modern statistical design, once referred to research as “experience carefully planned in advance” (1935, p. 8). He said that humans are always learning from experience, from interacting with the world around them. Usually, this learning is haphazard rather than the result of a deliberate process carried out over an extended period of time. Research, Fisher said, was learning from experience, but experience carefully planned in advance.

This phrase can be fully appreciated by looking at each word. The fact that scientific inquiry is based on experience means that it is based on interacting with the world. These interactions could be thought of as the stuff of scientific inquiry. In addition, it is not just any experience that counts. The experience must be carefully planned . The interactions with the world must be conducted with an explicit, describable purpose, and steps must be taken to make the intended learning as likely as possible. This planning is an integral part of scientific inquiry; it is not just a preparation phase. It is one of the things that distinguishes scientific inquiry from many everyday learning experiences. Finally, these steps must be taken beforehand and the purpose of the inquiry must be articulated in advance of the experience. Clearly, scientific inquiry does not happen by accident, by just stumbling into something. Stumbling into something unexpected and interesting can happen while engaged in scientific inquiry, but learning does not depend on it and serendipity does not make the inquiry scientific.

Descriptor 2. Observing Something and Trying to Explain Why It Is the Way It Is

When we were writing this chapter and googled “scientific inquiry,” the first entry was: “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work.” The emphasis is on studying, or observing, and then explaining . This descriptor takes the image of scientific inquiry beyond carefully planned experience and includes explaining what was experienced.

According to the Merriam-Webster dictionary, “explain” means “(a) to make known, (b) to make plain or understandable, (c) to give the reason or cause of, and (d) to show the logical development or relations of” (Merriam-Webster, n.d. ). We will use all these definitions. Taken together, they suggest that to explain an observation means to understand it by finding reasons (or causes) for why it is as it is. In this sense of scientific inquiry, the following are synonyms: explaining why, understanding why, and reasoning about causes and effects. Our image of scientific inquiry now includes planning, observing, and explaining why.

An image represents the observation required in the scientific inquiry including planning and explaining.

We need to add a final note about this descriptor. We have phrased it in a way that suggests “observing something” means you are observing something in real time—observing the way things are or the way things are changing. This is often true. But, observing could mean observing data that already have been collected, maybe by someone else making the original observations (e.g., secondary analysis of NAEP data or analysis of existing video recordings of classroom instruction). We will address secondary analyses more fully in Chap. 4 . For now, what is important is that the process requires explaining why the data look like they do.

We must note that for us, the term “data” is not limited to numerical or quantitative data such as test scores. Data can also take many nonquantitative forms, including written survey responses, interview transcripts, journal entries, video recordings of students, teachers, and classrooms, text messages, and so forth.

An image represents the data explanation as it is not limited and takes numerous non-quantitative forms including an interview, journal entries, etc.

Exercise 1.3

What are the implications of the statement that just “observing” is not enough to count as scientific inquiry? Does this mean that a detailed description of a phenomenon is not scientific inquiry?

Find sources that define research in education that differ with our position, that say description alone, without explanation, counts as scientific research. Identify the precise points where the opinions differ. What are the best arguments for each of the positions? Which do you prefer? Why?

Descriptor 3. Updating Everyone’s Thinking in Response to More and Better Information

This descriptor focuses on a third aspect of scientific inquiry: updating and advancing the field’s understanding of phenomena that are investigated. This descriptor foregrounds a powerful characteristic of scientific inquiry: the reliability (or trustworthiness) of what is learned and the ultimate inevitability of this learning to advance human understanding of phenomena. Humans might choose not to learn from scientific inquiry, but history suggests that scientific inquiry always has the potential to advance understanding and that, eventually, humans take advantage of these new understandings.

Before exploring these bold claims a bit further, note that this descriptor uses “information” in the same way the previous two descriptors used “experience” and “observations.” These are the stuff of scientific inquiry and we will use them often, sometimes interchangeably. Frequently, we will use the term “data” to stand for all these terms.

An overriding goal of scientific inquiry is for everyone to learn from what one scientist does. Much of this book is about the methods you need to use so others have faith in what you report and can learn the same things you learned. This aspect of scientific inquiry has many implications.

One implication is that scientific inquiry is not a private practice. It is a public practice available for others to see and learn from. Notice how different this is from everyday learning. When you happen to learn something from your everyday experience, often only you gain from the experience. The fact that research is a public practice means it is also a social one. It is best conducted by interacting with others along the way: soliciting feedback at each phase, taking opportunities to present work-in-progress, and benefitting from the advice of others.

A second implication is that you, as the researcher, must be committed to sharing what you are doing and what you are learning in an open and transparent way. This allows all phases of your work to be scrutinized and critiqued. This is what gives your work credibility. The reliability or trustworthiness of your findings depends on your colleagues recognizing that you have used all appropriate methods to maximize the chances that your claims are justified by the data.

A third implication of viewing scientific inquiry as a collective enterprise is the reverse of the second—you must be committed to receiving comments from others. You must treat your colleagues as fair and honest critics even though it might sometimes feel otherwise. You must appreciate their job, which is to remain skeptical while scrutinizing what you have done in considerable detail. To provide the best help to you, they must remain skeptical about your conclusions (when, for example, the data are difficult for them to interpret) until you offer a convincing logical argument based on the information you share. A rather harsh but good-to-remember statement of the role of your friendly critics was voiced by Karl Popper, a well-known twentieth century philosopher of science: “. . . if you are interested in the problem which I tried to solve by my tentative assertion, you may help me by criticizing it as severely as you can” (Popper, 1968, p. 27).

A final implication of this third descriptor is that, as someone engaged in scientific inquiry, you have no choice but to update your thinking when the data support a different conclusion. This applies to your own data as well as to those of others. When data clearly point to a specific claim, even one that is quite different than you expected, you must reconsider your position. If the outcome is replicated multiple times, you need to adjust your thinking accordingly. Scientific inquiry does not let you pick and choose which data to believe; it mandates that everyone update their thinking when the data warrant an update.

Doing Scientific Inquiry

We define scientific inquiry in an operational sense—what does it mean to do scientific inquiry? What kind of process would satisfy all three descriptors: carefully planning an experience in advance; observing and trying to explain what you see; and, contributing to updating everyone’s thinking about an important phenomenon?

We define scientific inquiry as formulating , testing , and revising hypotheses about phenomena of interest.

Of course, we are not the only ones who define it in this way. The definition for the scientific method posted by the editors of Britannica is: “a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments” (Britannica, n.d. ).

An image represents the scientific inquiry definition given by the editors of Britannica and also defines the hypothesis on the basis of the experiments.

Notice how defining scientific inquiry this way satisfies each of the descriptors. “Carefully planning an experience in advance” is exactly what happens when formulating a hypothesis about a phenomenon of interest and thinking about how to test it. “ Observing a phenomenon” occurs when testing a hypothesis, and “ explaining ” what is found is required when revising a hypothesis based on the data. Finally, “updating everyone’s thinking” comes from comparing publicly the original with the revised hypothesis.

Doing scientific inquiry, as we have defined it, underscores the value of accumulating knowledge rather than generating random bits of knowledge. Formulating, testing, and revising hypotheses is an ongoing process, with each revised hypothesis begging for another test, whether by the same researcher or by new researchers. The editors of Britannica signaled this cyclic process by adding the following phrase to their definition of the scientific method: “The modified hypothesis is then retested, further modified, and tested again.” Scientific inquiry creates a process that encourages each study to build on the studies that have gone before. Through collective engagement in this process of building study on top of study, the scientific community works together to update its thinking.

Before exploring more fully the meaning of “formulating, testing, and revising hypotheses,” we need to acknowledge that this is not the only way researchers define research. Some researchers prefer a less formal definition, one that includes more serendipity, less planning, less explanation. You might have come across more open definitions such as “research is finding out about something.” We prefer the tighter hypothesis formulation, testing, and revision definition because we believe it provides a single, coherent map for conducting research that addresses many of the thorny problems educational researchers encounter. We believe it is the most useful orientation toward research and the most helpful to learn as a beginning researcher.

A final clarification of our definition is that it applies equally to qualitative and quantitative research. This is a familiar distinction in education that has generated much discussion. You might think our definition favors quantitative methods over qualitative methods because the language of hypothesis formulation and testing is often associated with quantitative methods. In fact, we do not favor one method over another. In Chap. 4 , we will illustrate how our definition fits research using a range of quantitative and qualitative methods.

Exercise 1.4

Look for ways to extend what the field knows in an area that has already received attention by other researchers. Specifically, you can search for a program of research carried out by more experienced researchers that has some revised hypotheses that remain untested. Identify a revised hypothesis that you might like to test.

Unpacking the Terms Formulating, Testing, and Revising Hypotheses

To get a full sense of the definition of scientific inquiry we will use throughout this book, it is helpful to spend a little time with each of the key terms.

We first want to make clear that we use the term “hypothesis” as it is defined in most dictionaries and as it used in many scientific fields rather than as it is usually defined in educational statistics courses. By “hypothesis,” we do not mean a null hypothesis that is accepted or rejected by statistical analysis. Rather, we use “hypothesis” in the sense conveyed by the following definitions: “An idea or explanation for something that is based on known facts but has not yet been proved” (Cambridge University Press, n.d. ), and “An unproved theory, proposition, or supposition, tentatively accepted to explain certain facts and to provide a basis for further investigation or argument” (Agnes & Guralnik, 2008 ).

We distinguish two parts to “hypotheses.” Hypotheses consist of predictions and rationales . Predictions are statements about what you expect to find when you inquire about something. Rationales are explanations for why you made the predictions you did, why you believe your predictions are correct. So, for us “formulating hypotheses” means making explicit predictions and developing rationales for the predictions.

“Testing hypotheses” means making observations that allow you to assess in what ways your predictions were correct and in what ways they were incorrect. In education research, it is rarely useful to think of your predictions as either right or wrong. Because of the complexity of most issues you will investigate, most predictions will be right in some ways and wrong in others.

By studying the observations you make (data you collect) to test your hypotheses, you can revise your hypotheses to better align with the observations. This means revising your predictions plus revising your rationales to justify your adjusted predictions. Even though you might not run another test, formulating revised hypotheses is an essential part of conducting a research study. Comparing your original and revised hypotheses informs everyone of what you learned by conducting your study. In addition, a revised hypothesis sets the stage for you or someone else to extend your study and accumulate more knowledge of the phenomenon.

We should note that not everyone makes a clear distinction between predictions and rationales as two aspects of hypotheses. In fact, common, non-scientific uses of the word “hypothesis” may limit it to only a prediction or only an explanation (or rationale). We choose to explicitly include both prediction and rationale in our definition of hypothesis, not because we assert this should be the universal definition, but because we want to foreground the importance of both parts acting in concert. Using “hypothesis” to represent both prediction and rationale could hide the two aspects, but we make them explicit because they provide different kinds of information. It is usually easier to make predictions than develop rationales because predictions can be guesses, hunches, or gut feelings about which you have little confidence. Developing a compelling rationale requires careful thought plus reading what other researchers have found plus talking with your colleagues. Often, while you are developing your rationale you will find good reasons to change your predictions. Developing good rationales is the engine that drives scientific inquiry. Rationales are essentially descriptions of how much you know about the phenomenon you are studying. Throughout this guide, we will elaborate on how developing good rationales drives scientific inquiry. For now, we simply note that it can sharpen your predictions and help you to interpret your data as you test your hypotheses.

An image represents the rationale and the prediction for the scientific inquiry and different types of information provided by the terms.

Hypotheses in education research take a variety of forms or types. This is because there are a variety of phenomena that can be investigated. Investigating educational phenomena is sometimes best done using qualitative methods, sometimes using quantitative methods, and most often using mixed methods (e.g., Hay, 2016 ; Weis et al. 2019a ; Weisner, 2005 ). This means that, given our definition, hypotheses are equally applicable to qualitative and quantitative investigations.

Hypotheses take different forms when they are used to investigate different kinds of phenomena. Two very different activities in education could be labeled conducting experiments and descriptions. In an experiment, a hypothesis makes a prediction about anticipated changes, say the changes that occur when a treatment or intervention is applied. You might investigate how students’ thinking changes during a particular kind of instruction.

A second type of hypothesis, relevant for descriptive research, makes a prediction about what you will find when you investigate and describe the nature of a situation. The goal is to understand a situation as it exists rather than to understand a change from one situation to another. In this case, your prediction is what you expect to observe. Your rationale is the set of reasons for making this prediction; it is your current explanation for why the situation will look like it does.

You will probably read, if you have not already, that some researchers say you do not need a prediction to conduct a descriptive study. We will discuss this point of view in Chap. 2 . For now, we simply claim that scientific inquiry, as we have defined it, applies to all kinds of research studies. Descriptive studies, like others, not only benefit from formulating, testing, and revising hypotheses, but also need hypothesis formulating, testing, and revising.

One reason we define research as formulating, testing, and revising hypotheses is that if you think of research in this way you are less likely to go wrong. It is a useful guide for the entire process, as we will describe in detail in the chapters ahead. For example, as you build the rationale for your predictions, you are constructing the theoretical framework for your study (Chap. 3 ). As you work out the methods you will use to test your hypothesis, every decision you make will be based on asking, “Will this help me formulate or test or revise my hypothesis?” (Chap. 4 ). As you interpret the results of testing your predictions, you will compare them to what you predicted and examine the differences, focusing on how you must revise your hypotheses (Chap. 5 ). By anchoring the process to formulating, testing, and revising hypotheses, you will make smart decisions that yield a coherent and well-designed study.

Exercise 1.5

Compare the concept of formulating, testing, and revising hypotheses with the descriptions of scientific inquiry contained in Scientific Research in Education (NRC, 2002 ). How are they similar or different?

Exercise 1.6

Provide an example to illustrate and emphasize the differences between everyday learning/thinking and scientific inquiry.

Learning from Doing Scientific Inquiry

We noted earlier that a measure of what you have learned by conducting a research study is found in the differences between your original hypothesis and your revised hypothesis based on the data you collected to test your hypothesis. We will elaborate this statement in later chapters, but we preview our argument here.

Even before collecting data, scientific inquiry requires cycles of making a prediction, developing a rationale, refining your predictions, reading and studying more to strengthen your rationale, refining your predictions again, and so forth. And, even if you have run through several such cycles, you still will likely find that when you test your prediction you will be partly right and partly wrong. The results will support some parts of your predictions but not others, or the results will “kind of” support your predictions. A critical part of scientific inquiry is making sense of your results by interpreting them against your predictions. Carefully describing what aspects of your data supported your predictions, what aspects did not, and what data fell outside of any predictions is not an easy task, but you cannot learn from your study without doing this analysis.

An image represents the cycle of events that take place before making predictions, developing the rationale, and studying the prediction and rationale multiple times.

Analyzing the matches and mismatches between your predictions and your data allows you to formulate different rationales that would have accounted for more of the data. The best revised rationale is the one that accounts for the most data. Once you have revised your rationales, you can think about the predictions they best justify or explain. It is by comparing your original rationales to your new rationales that you can sort out what you learned from your study.

Suppose your study was an experiment. Maybe you were investigating the effects of a new instructional intervention on students’ learning. Your original rationale was your explanation for why the intervention would change the learning outcomes in a particular way. Your revised rationale explained why the changes that you observed occurred like they did and why your revised predictions are better. Maybe your original rationale focused on the potential of the activities if they were implemented in ideal ways and your revised rationale included the factors that are likely to affect how teachers implement them. By comparing the before and after rationales, you are describing what you learned—what you can explain now that you could not before. Another way of saying this is that you are describing how much more you understand now than before you conducted your study.

Revised predictions based on carefully planned and collected data usually exhibit some of the following features compared with the originals: more precision, more completeness, and broader scope. Revised rationales have more explanatory power and become more complete, more aligned with the new predictions, sharper, and overall more convincing.

Part II. Why Do Educators Do Research?

Doing scientific inquiry is a lot of work. Each phase of the process takes time, and you will often cycle back to improve earlier phases as you engage in later phases. Because of the significant effort required, you should make sure your study is worth it. So, from the beginning, you should think about the purpose of your study. Why do you want to do it? And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community.

If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand , not just to describe or evaluate or report. As we noted earlier, when you formulate hypotheses, you are developing rationales that explain why things might be like they are. In our view, trying to understand and explain is what separates research from other kinds of activities, like evaluating or describing.

One reason understanding is so important is that it allows researchers to see how or why something works like it does. When you see how something works, you are better able to predict how it might work in other contexts, under other conditions. And, because conditions, or contextual factors, matter a lot in education, gaining insights into applying your findings to other contexts increases the contributions of your work and its importance to the broader education community.

Consequently, the purposes of research studies in education often include the more specific aim of identifying and understanding the conditions under which the phenomena being studied work like the observations suggest. A classic example of this kind of study in mathematics education was reported by William Brownell and Harold Moser in 1949 . They were trying to establish which method of subtracting whole numbers could be taught most effectively—the regrouping method or the equal additions method. However, they realized that effectiveness might depend on the conditions under which the methods were taught—“meaningfully” versus “mechanically.” So, they designed a study that crossed the two instructional approaches with the two different methods (regrouping and equal additions). Among other results, they found that these conditions did matter. The regrouping method was more effective under the meaningful condition than the mechanical condition, but the same was not true for the equal additions algorithm.

What do education researchers want to understand? In our view, the ultimate goal of education is to offer all students the best possible learning opportunities. So, we believe the ultimate purpose of scientific inquiry in education is to develop understanding that supports the improvement of learning opportunities for all students. We say “ultimate” because there are lots of issues that must be understood to improve learning opportunities for all students. Hypotheses about many aspects of education are connected, ultimately, to students’ learning. For example, formulating and testing a hypothesis that preservice teachers need to engage in particular kinds of activities in their coursework in order to teach particular topics well is, ultimately, connected to improving students’ learning opportunities. So is hypothesizing that school districts often devote relatively few resources to instructional leadership training or hypothesizing that positioning mathematics as a tool students can use to combat social injustice can help students see the relevance of mathematics to their lives.

We do not exclude the importance of research on educational issues more removed from improving students’ learning opportunities, but we do think the argument for their importance will be more difficult to make. If there is no way to imagine a connection between your hypothesis and improving learning opportunities for students, even a distant connection, we recommend you reconsider whether it is an important hypothesis within the education community.

Notice that we said the ultimate goal of education is to offer all students the best possible learning opportunities. For too long, educators have been satisfied with a goal of offering rich learning opportunities for lots of students, sometimes even for just the majority of students, but not necessarily for all students. Evaluations of success often are based on outcomes that show high averages. In other words, if many students have learned something, or even a smaller number have learned a lot, educators may have been satisfied. The problem is that there is usually a pattern in the groups of students who receive lower quality opportunities—students of color and students who live in poor areas, urban and rural. This is not acceptable. Consequently, we emphasize the premise that the purpose of education research is to offer rich learning opportunities to all students.

One way to make sure you will be able to convince others of the importance of your study is to consider investigating some aspect of teachers’ shared instructional problems. Historically, researchers in education have set their own research agendas, regardless of the problems teachers are facing in schools. It is increasingly recognized that teachers have had trouble applying to their own classrooms what researchers find. To address this problem, a researcher could partner with a teacher—better yet, a small group of teachers—and talk with them about instructional problems they all share. These discussions can create a rich pool of problems researchers can consider. If researchers pursued one of these problems (preferably alongside teachers), the connection to improving learning opportunities for all students could be direct and immediate. “Grounding a research question in instructional problems that are experienced across multiple teachers’ classrooms helps to ensure that the answer to the question will be of sufficient scope to be relevant and significant beyond the local context” (Cai et al., 2019b , p. 115).

As a beginning researcher, determining the relevance and importance of a research problem is especially challenging. We recommend talking with advisors, other experienced researchers, and peers to test the educational importance of possible research problems and topics of study. You will also learn much more about the issue of research importance when you read Chap. 5 .

Exercise 1.7

Identify a problem in education that is closely connected to improving learning opportunities and a problem that has a less close connection. For each problem, write a brief argument (like a logical sequence of if-then statements) that connects the problem to all students’ learning opportunities.

Part III. Conducting Research as a Practice of Failing Productively

Scientific inquiry involves formulating hypotheses about phenomena that are not fully understood—by you or anyone else. Even if you are able to inform your hypotheses with lots of knowledge that has already been accumulated, you are likely to find that your prediction is not entirely accurate. This is normal. Remember, scientific inquiry is a process of constantly updating your thinking. More and better information means revising your thinking, again, and again, and again. Because you never fully understand a complicated phenomenon and your hypotheses never produce completely accurate predictions, it is easy to believe you are somehow failing.

The trick is to fail upward, to fail to predict accurately in ways that inform your next hypothesis so you can make a better prediction. Some of the best-known researchers in education have been open and honest about the many times their predictions were wrong and, based on the results of their studies and those of others, they continuously updated their thinking and changed their hypotheses.

A striking example of publicly revising (actually reversing) hypotheses due to incorrect predictions is found in the work of Lee J. Cronbach, one of the most distinguished educational psychologists of the twentieth century. In 1955, Cronbach delivered his presidential address to the American Psychological Association. Titling it “Two Disciplines of Scientific Psychology,” Cronbach proposed a rapprochement between two research approaches—correlational studies that focused on individual differences and experimental studies that focused on instructional treatments controlling for individual differences. (We will examine different research approaches in Chap. 4 ). If these approaches could be brought together, reasoned Cronbach ( 1957 ), researchers could find interactions between individual characteristics and treatments (aptitude-treatment interactions or ATIs), fitting the best treatments to different individuals.

In 1975, after years of research by many researchers looking for ATIs, Cronbach acknowledged the evidence for simple, useful ATIs had not been found. Even when trying to find interactions between a few variables that could provide instructional guidance, the analysis, said Cronbach, creates “a hall of mirrors that extends to infinity, tormenting even the boldest investigators and defeating even ambitious designs” (Cronbach, 1975 , p. 119).

As he was reflecting back on his work, Cronbach ( 1986 ) recommended moving away from documenting instructional effects through statistical inference (an approach he had championed for much of his career) and toward approaches that probe the reasons for these effects, approaches that provide a “full account of events in a time, place, and context” (Cronbach, 1986 , p. 104). This is a remarkable change in hypotheses, a change based on data and made fully transparent. Cronbach understood the value of failing productively.

Closer to home, in a less dramatic example, one of us began a line of scientific inquiry into how to prepare elementary preservice teachers to teach early algebra. Teaching early algebra meant engaging elementary students in early forms of algebraic reasoning. Such reasoning should help them transition from arithmetic to algebra. To begin this line of inquiry, a set of activities for preservice teachers were developed. Even though the activities were based on well-supported hypotheses, they largely failed to engage preservice teachers as predicted because of unanticipated challenges the preservice teachers faced. To capitalize on this failure, follow-up studies were conducted, first to better understand elementary preservice teachers’ challenges with preparing to teach early algebra, and then to better support preservice teachers in navigating these challenges. In this example, the initial failure was a necessary step in the researchers’ scientific inquiry and furthered the researchers’ understanding of this issue.

We present another example of failing productively in Chap. 2 . That example emerges from recounting the history of a well-known research program in mathematics education.

Making mistakes is an inherent part of doing scientific research. Conducting a study is rarely a smooth path from beginning to end. We recommend that you keep the following things in mind as you begin a career of conducting research in education.

First, do not get discouraged when you make mistakes; do not fall into the trap of feeling like you are not capable of doing research because you make too many errors.

Second, learn from your mistakes. Do not ignore your mistakes or treat them as errors that you simply need to forget and move past. Mistakes are rich sites for learning—in research just as in other fields of study.

Third, by reflecting on your mistakes, you can learn to make better mistakes, mistakes that inform you about a productive next step. You will not be able to eliminate your mistakes, but you can set a goal of making better and better mistakes.

Exercise 1.8

How does scientific inquiry differ from everyday learning in giving you the tools to fail upward? You may find helpful perspectives on this question in other resources on science and scientific inquiry (e.g., Failure: Why Science is So Successful by Firestein, 2015).

Exercise 1.9

Use what you have learned in this chapter to write a new definition of scientific inquiry. Compare this definition with the one you wrote before reading this chapter. If you are reading this book as part of a course, compare your definition with your colleagues’ definitions. Develop a consensus definition with everyone in the course.

Part IV. Preview of Chap. 2

Now that you have a good idea of what research is, at least of what we believe research is, the next step is to think about how to actually begin doing research. This means how to begin formulating, testing, and revising hypotheses. As for all phases of scientific inquiry, there are lots of things to think about. Because it is critical to start well, we devote Chap. 2 to getting started with formulating hypotheses.

Agnes, M., & Guralnik, D. B. (Eds.). (2008). Hypothesis. In Webster’s new world college dictionary (4th ed.). Wiley.

Google Scholar  

Britannica. (n.d.). Scientific method. In Encyclopaedia Britannica . Retrieved July 15, 2022 from https://www.britannica.com/science/scientific-method

Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in grade III subtraction . Duke University Press..

Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S. L., & Hiebert, J. (2019b). Posing significant research questions. Journal for Research in Mathematics Education, 50 (2), 114–120. https://doi.org/10.5951/jresematheduc.50.2.0114

Article   Google Scholar  

Cambridge University Press. (n.d.). Hypothesis. In Cambridge dictionary . Retrieved July 15, 2022 from https://dictionary.cambridge.org/us/dictionary/english/hypothesis

Cronbach, J. L. (1957). The two disciplines of scientific psychology. American Psychologist, 12 , 671–684.

Cronbach, L. J. (1975). Beyond the two disciplines of scientific psychology. American Psychologist, 30 , 116–127.

Cronbach, L. J. (1986). Social inquiry by and for earthlings. In D. W. Fiske & R. A. Shweder (Eds.), Metatheory in social science: Pluralisms and subjectivities (pp. 83–107). University of Chicago Press.

Hay, C. M. (Ed.). (2016). Methods that matter: Integrating mixed methods for more effective social science research . University of Chicago Press.

Merriam-Webster. (n.d.). Explain. In Merriam-Webster.com dictionary . Retrieved July 15, 2022, from https://www.merriam-webster.com/dictionary/explain

National Research Council. (2002). Scientific research in education . National Academy Press.

Weis, L., Eisenhart, M., Duncan, G. J., Albro, E., Bueschel, A. C., Cobb, P., Eccles, J., Mendenhall, R., Moss, P., Penuel, W., Ream, R. K., Rumbaut, R. G., Sloane, F., Weisner, T. S., & Wilson, J. (2019a). Mixed methods for studies that address broad and enduring issues in education research. Teachers College Record, 121 , 100307.

Weisner, T. S. (Ed.). (2005). Discovering successful pathways in children’s development: Mixed methods in the study of childhood and family life . University of Chicago Press.

Download references

Author information

Authors and affiliations.

School of Education, University of Delaware, Newark, DE, USA

James Hiebert, Anne K Morris & Charles Hohensee

Department of Mathematical Sciences, University of Delaware, Newark, DE, USA

Jinfa Cai & Stephen Hwang

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Hiebert, J., Cai, J., Hwang, S., Morris, A.K., Hohensee, C. (2023). What Is Research, and Why Do People Do It?. In: Doing Research: A New Researcher’s Guide. Research in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-031-19078-0_1

Download citation

DOI : https://doi.org/10.1007/978-3-031-19078-0_1

Published : 03 December 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-19077-3

Online ISBN : 978-3-031-19078-0

eBook Packages : Education Education (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 16 May 2024

The Egyptian pyramid chain was built along the now abandoned Ahramat Nile Branch

  • Eman Ghoneim   ORCID: orcid.org/0000-0003-3988-0335 1 ,
  • Timothy J. Ralph   ORCID: orcid.org/0000-0002-4956-606X 2 ,
  • Suzanne Onstine 3 ,
  • Raghda El-Behaedi 4 ,
  • Gad El-Qady 5 ,
  • Amr S. Fahil 6 ,
  • Mahfooz Hafez 5 ,
  • Magdy Atya 5 ,
  • Mohamed Ebrahim   ORCID: orcid.org/0000-0002-4068-5628 5 ,
  • Ashraf Khozym 5 &
  • Mohamed S. Fathy 6  

Communications Earth & Environment volume  5 , Article number:  233 ( 2024 ) Cite this article

Metrics details

  • Archaeology
  • Geomorphology
  • Hydrogeology
  • Sedimentology

The largest pyramid field in Egypt is clustered along a narrow desert strip, yet no convincing explanation as to why these pyramids are concentrated in this specific locality has been given so far. Here we use radar satellite imagery, in conjunction with geophysical data and deep soil coring, to investigate the subsurface structure and sedimentology in the Nile Valley next to these pyramids. We identify segments of a major extinct Nile branch, which we name The Ahramat Branch, running at the foothills of the Western Desert Plateau, where the majority of the pyramids lie. Many of the pyramids, dating to the Old and Middle Kingdoms, have causeways that lead to the branch and terminate with Valley Temples which may have acted as river harbors along it in the past. We suggest that The Ahramat Branch played a role in the monuments’ construction and that it was simultaneously active and used as a transportation waterway for workmen and building materials to the pyramids’ sites.

Similar content being viewed by others

research findings by

Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon

research findings by

Medieval demise of a Himalayan giant summit induced by mega-landslide

research findings by

Quantitative assessment of the erosion and deposition effects of landslide-dam outburst flood, Eastern Himalaya

Introduction.

The landscape of the northern Nile Valley in Egypt, between Lisht in the south and the Giza Plateau in the north, was subject to a number of environmental and hydrological changes during the past few millennia 1 , 2 . In the Early Holocene (~12,000 years before present), the Sahara of North Africa transformed from a hyper-arid desert to a savannah-like environment, with large river systems and lake basins 3 , 4 due to an increase in global sea level at the end of the Last Glacial Maximum (LGM). The wet conditions of the Sahara provided a suitable habitat for people and wildlife, unlike in the Nile Valley, which was virtually inhospitable to humans because of the constantly higher river levels and swampy environment 5 . At this time, Nile River discharge was high, which is evident from the extensive deposition of organic-rich fluvial sediment in the Eastern Mediterranean basin 6 . Based on the interpretation of archeological material and pollen records, this period, known as the African Humid Period (AHP) (ca. 14,500–5000 years ago), was the most significant and persistent wet period from the early to mid-Holocene in the eastern Sahara region 7 , with an annual rainfall rate of 300–920 mm yr −1   8 . During this time the Nile would have had several secondary channels branching across the floodplain, similar to those described by early historians (e.g., Herodotus).

During the mid-Holocene (~10,000–6000 years ago), freshwater marshes were common within the Nile floodplain causing habitation to be more nucleated along the desert margins of the Nile Valley 9 . The desert margins provided a haven from the high Nile water. With the ending of the AHP and the beginning of the Late Holocene (~5500 years ago to present), rainfall greatly declined, and the region’s humid phase gradually came to an end with punctuated short wet episodes 10 . Due to increased aridity in the Sahara, more people moved out of the desert towards the Nile Valley and settled along the edge of the Nile floodplain. With the reduced precipitation, sedimentation increased in and around the Nile River channels causing the proximal floodplain to rise in height and adjacent marshland to decrease in the area 11 , 12 estimated the Nile flood levels to have ranged from 1 to 4 m above the baseline (~5000 BP). Inhabitants moved downhill to the Nile Valley and settled in the elevated areas on the floodplain, including the raised natural levees of the river and jeziras (islands). This was the beginning of the Old Kingdom Period (ca. 2686 BCE) and the time when early pyramid complexes, including the Step Pyramid of Djoser, were constructed at the margins of the floodplain. During this time the Nile discharge was still considerably higher than its present level. The high flow of the river, particularly during the short-wet intervals, enabled the Nile to maintain multiple branches, which meandered through its floodplain. Although the landscape of the Nile floodplain has greatly transformed due to river regulation associated with the construction of the Aswan High Dam in the 1960s, this region still retains some clear hydro-geomorphological traces of the abandoned river channels.

Since the beginning of the Pharaonic era, the Nile River has played a fundamental role in the rapid growth and expansion of the Egyptian civilization. Serving as their lifeline in a largely arid landscape, the Nile provided sustenance and functioned as the main water corridor that allowed for the transportation of goods and building materials. For this reason, most of the key cities and monuments were in close proximity to the banks of the Nile and its peripheral branches. Over time, however, the main course of the Nile River laterally migrated, and its peripheral branches silted up, leaving behind many ancient Egyptian sites distant from the present-day river course 9 , 13 , 14 , 15 . Yet, it is still unclear as to where exactly the ancient Nile courses were situated 16 , and whether different reaches of the Nile had single or multiple branches that were simultaneously active in the past. Given the lack of consensus amongst scholars regarding this subject, it is imperative to develop a comprehensive understanding of the Nile during the time of the ancient Egyptian civilization. Such a poor understanding of Nile River morphodynamics, particularly in the region that hosts the largest pyramid fields of Egypt, from Lisht to Giza, limits our understanding of how changes in the landscape influenced human activities and settlement patterns in this region, and significantly restricts our ability to understand the daily lives and stories of the ancient Egyptians.

Currently, much of the original surface of the ancient Nile floodplain is masked by either anthropogenic activity or broad silt and sand sheets. For this reason, singular approaches such as on-ground searches for the remains of hidden former Nile branches are both increasingly difficult and inauspicious. A number of studies have already been carried out in Egypt to locate segments of the ancient Nile course. For instance 9 , proposed that the axis of the Nile River ran far west of its modern course past ancient cities such as el-Ashmunein (Hermopolis) 13 . mapped the ancient hydrological landscape in the Luxor area and estimated both an eastward and westward Nile migration rate of 2–3 km per 1000 years. In the Nile Delta region 17 , detected several segments of buried Nile distributaries and elevated mounds using geoelectrical resistivity surveys. Similarly, a study by Bunbury and Lutley 14 identified a segment of an ancient Nile channel, about 5000 years old, near the ancient town of Memphis ( men-nefer ). More recently 15 , used cores taken around Memphis to reveal a section of a lateral ancient Nile branch that was dated to the Neolithic and Predynastic times (ca. 7000–5000 BCE). On the bank of this branch, Memphis, the first capital of unified Egypt, was founded in early Pharaonic times. Over the Dynastic period, this lateral branch then significantly migrated eastwards 15 . A study by Toonen et al. 18 , using borehole data and electrical resistivity tomography, further revealed a segment of an ancient Nile branch, dating to the New Kingdom Period, situated near the desert edge west of Luxor. This river branch would have connected important localities and thus played a significant role in the cultural landscape of this area. More recent research conducted further north by Sheisha et al. 2 , near the Giza Plateau, indicated the presence of a former river and marsh-like environment in the floodplain east of the three great Pyramids of Giza.

Even though the largest concentration of pyramids in Egypt are located along a narrow desert strip from south Lisht to Giza, no explanation has been offered as to why these pyramid fields were condensed in this particular area. Monumental structures, such as pyramids and temples, would logically be built near major waterways to facilitate the transportation of their construction materials and workers. Yet, no waterway has been found near the largest pyramid field in Egypt, with the Nile River lying several kilometers away. Even though many efforts to reconstruct the ancient Nile waterways have been conducted, they have largely been confined to small sites, which has led to the mapping of only fragmented sections of the ancient Nile channel systems.

In this work, we present remote sensing, geomorphological, soil coring and geophysical evidence to support the existence of a long-lost ancient river branch, the Ahramat Branch, and provide the first map of the paleohydrological setting in the Lisht-Giza area. The finding of the Ahramat Branch is not only crucial to our understanding of why the pyramids were built in these specific geographical areas, but also for understanding how the pyramids were accessed and constructed by the ancient population. It has been speculated by many scholars that the ancient Egyptians used the Nile River for help transporting construction materials to pyramid building sites, but until now, this ancient Nile branch was not fully uncovered or mapped. This work can help us better understand the former hydrological setting of this region, which would in turn help us learn more about the environmental parameters that may have influenced the decision to build these pyramids in their current locations during the time of Pharaonic Egypt.

Position and morphology of the Ahramat Branch

Synthetic Aperture Radar (SAR) imagery and radar high-resolution elevation data for the Nile floodplain and its desert margins, between south Lisht and the Giza Plateau area, provide evidence for the existence of segments of a major ancient river branch bordering 31 pyramids dating from the Old Kingdom to Second Intermediate Period (2686−1649 BCE) and spanning between Dynasties 3–13 (Fig.  1a ). This extinct branch is referred to hereafter as the Ahramat Branch, meaning the “Pyramids Branch” in Arabic. Although masked by the cultivated fields of the Nile floodplain, subtle topographic expressions of this former branch, now invisible in optical satellite data, can be traced on the ground surface by TanDEM-X (TDX) radar data and the Topographic Position Index (TPI). Data analysis indicates that this lateral distributary channel lies between 2.5 and 10.25 km west from the modern Nile River. The branch appears to have a surface channel depth between 2 and 8 m, a channel length of about 64 km and a channel width of 200–700 m, which is similar to the width of the contemporary neighboring Nile course. The size and longitudinal continuity of the Ahramat Branch and its proximity to all the pyramids in the study area implies a functional waterway of great significance.

figure 1

a Shows the Ahramat Branch borders a large number of pyramids dating from the Old Kingdom to the 2 nd Intermediate Period and spanning between Dynasties 3 and 13. b Shows Bahr el-Libeini canal and remnant of abandoned channel visible in the 1911 historical map (Egyptian Survey Department scale 1:50,000). c Bahr el-Libeini canal and the abandoned channel are overlain on satellite basemap. Bahr el-Libeini is possibly the last remnant of the Ahramat Branch before it migrated eastward. d A visible segment of the Ahramat Branch in TDX is now partially occupied by the modern Bahr el-Libeini canal. e A major segment of the Ahramat Branch, approximately 20 km long and 0.5 km wide, can be traced in the floodplain along the Western Desert Plateau south of the town of Jirza. Location of e is marked in white a box in a . (ESRI World Image Basemap, source: Esri, Maxar, Earthstar Geographics).

A trace of a 3 km river segment of the Ahramat Branch, with a width of about 260 m, is observable in the floodplain west of the Abu Sir pyramids field (Fig.  1b–d ). Another major segment of the Ahramat Branch, approximately 20 km long and 0.5 km wide can be traced in the floodplain along the Western Desert Plateau south of the town of Jirza (Fig.  1e ). The visible segments of the Ahramat Branch in TDX are now partially occupied by the modern Bahr el-Libeini canal. Such partial overlap between the courses of this canal, traced in the1911 historical maps (Egyptian Survey Department scale 1:50,000), and the Ahramat Branch is clear in areas where the Nile floodplain is narrower (Fig.  1b–d ), while in areas where the floodplain gets wider, the two water courses are about 2 km apart. In light of that, Bahr el-Libeini canal is possibly the last remnant of the Ahramat Branch before it migrated eastward, silted up, and vanished. In the course of the eastward migration over the Nile floodplain, the meandering Ahramat Branch would have left behind traces of abandoned channels (narrow oxbow lakes) which formed as a result of the river erosion through the neck of its meanders. A number of these abandoned channels can be traced in the 1911 historical maps near the foothill of the Western Desert plateau proving the eastward shifting of the branch at this locality (Fig.  1b–d ). The Dahshur Lake, southwest of the city of Dahshur, is most likely the last existing trace of the course of the Ahramat Branch.

Subsurface structure and sedimentology of the Ahramat Branch

Geophysical surveys using Ground Penetrating Radar (GPR) and Electromagnetic Tomography (EMT) along a 1.2 km long profile revealed a hidden river channel lying 1–1.5 m below the cultivated Nile floodplain (Fig.  2 ). The position and shape of this river channel is in an excellent match with those derived from radar satellite imagery for the Ahramat Branch. The EMT profile shows a distinct unconformity in the middle, which in this case indicates sediments that have a different texture than the overlying recent floodplain silt deposits and the sandy sediments that are adjacent to this former branch (Fig.  2 ). GPR overlapping the EMT profile from 600–1100 m on the transect confirms this. Here, we see evidence of an abandoned riverbed approximately 400 m wide and at least 25 m deep (width:depth ratio ~16) at this location. This branch has a symmetrical channel shape and has been infilled with sandy Neonile sediment different to other surrounding Neonile deposits and the underlying Eocene bedrock. The geophysical profile interpretation for the Ahramat Branch at this locality was validated using two sediment cores of depths 20 m (Core A) and 13 m (Core B) (Fig.  3 ). In Core A between the center and left bank of the former branch we found brown sandy mud at the floodplain surface and down to ~2.7 m with some limestone and chert fragments, a reddish sandy mud layer with gravel and handmade material inclusions at ~2.8 m, a gray sandy mud layer from ~3–5.8 m, another reddish sandy mud layer with gravel and freshwater mussel shells at ~6 m, black sandy mud from ~6–8 m, and sandy silt grading into clean, well-sorted medium sand dominated the profile from ~8 to >13 m. In Core B on the right bank of the former branch we found recently deposited brown sandy mud at the floodplain surface and down to ~1.5 m, alternating brown and gray layers of silty and sandy mud down to ~4 m (some reddish layers with gravel and handmade material inclusions), a black sandy mud layer from ~4–4.9 m, and another reddish sandy mud layer with gravel and freshwater mussel shells at ~5 m, before clean, well-sorted medium sand dominated the profile from 5 to >20 m. Shallow groundwater was encountered in both cores concurrently with the sand layers, indicating that the buried sedimentary structure of the abandoned Ahramat Branch acts as a conduit for subsurface water flow beneath the distal floodplain of the modern Nile River.

figure 2

a Locations of geophysical profile and soil drilling (ESRI World Image Basemap, source: Esri, Maxar, Earthstar Geographics). Photos taken from the field while using the b Electromagnetic Tomography (EMT) and c Ground Penetrating Radar (GPR). d Showing the apparent conductivity profile, e showing EMT profile, and f showing GPR profiles with overlain sketch of the channel boundary on the GPR graph. g Simplified interpretation of the buried channel with the location of the two-soil coring of A and B.

figure 3

It shows two-soil cores, A and core B, with soil profile descriptions, graphic core logs, sediment grain size charts, and example photographs.

Alignment of old and middle kingdom pyramids to the Ahramat Branch

The royal pyramids in ancient Egypt are not isolated monuments, but rather joined with several other structures to form complexes. Besides the pyramid itself, the pyramid complex includes the mortuary temple next to the pyramid, a valley temple farther away from the pyramid on the edge of a waterbody, and a long sloping causeway that connects the two temples. A causeway is a ceremonial raised walkway, which provides access to the pyramid site and was part of the religious aspects of the pyramid itself 19 . In the study area, it was found that many of the causeways of the pyramids run perpendicular to the course of the Ahramat Branch and terminate directly on its riverbank.

In Egyptian pyramid complexes, the valley temples at the end of causeways acted as river harbors. These harbors served as an entry point for the river borne visitors and ceremonial roads to the pyramid. Countless valley temples in Egypt have not yet been found and, therefore, might still be buried beneath the agricultural fields and desert sands along the riverbank of the Ahramat Branch. Five of these valley temples, however, partially survived and still exist in the study area. These temples include the valley temples of the Bent Pyramid, the Pyramid of Khafre, and the Pyramid of Menkaure from Dynasty 4; the valley temple of the Pyramid of Sahure from Dynasty 5, and the valley temple of the Pyramid of Pepi II from Dynasty 6. All the aforementioned temples are dated to the Old Kingdom. These five surviving temples were found to be positioned adjacent to the riverbank of the Ahramat Branch, which strongly implies that this river branch was contemporaneously functioning during the Old Kingdom, at the time of pyramid construction.

Analysis of the ground elevation of the 31 pyramids and their proximity to the floodplain, within the study area, helped explain the position and relative water level of the Ahramat Branch during the time between the Old Kingdom and Second Intermediate Period (ca. 2649–1540 BCE). Based on Fig. ( 4) , the Ahramat Branch had a high-water level during the first part of the Old Kingdom, especially during Dynasty 4. This is evident from the high ground elevation and long distance from the floodplain of the pyramids dated to that period. For instance, the remote position of the Bent and Red Pyramids in the desert, very far from the Nile floodplain, is a testament to the branch’s high-water level. On the contrary, during the Old Kingdom, our data demonstrated that the Ahramat Branch would have reached its lowest level during Dynasty 5. This is evident from the low altitudes and close proximity to the floodplain of most Dynasty 5 pyramids. The orientation of the Sahure Pyramid’s causeway (Dynasty 5) and the location of its valley temple in the low-lying floodplain provide compelling evidence for the relatively low water level proposition of the Ahramat Branch during this stage. The water level of the Ahramat Branch would have been slightly raised by the end of Dynasty 5 (the last 15–30 years), during the reign of King Unas and continued to rise during Dynasty 6. The position of Pepi II and Merenre Pyramids (Dynasty 6) deep in the desert, west of the Djedkare Isesi Pyramid (Dynasty 5), supports this notion.

figure 4

It explains the position and relative water level of the Ahramat Branch during the time between the Old Kingdom and Second Intermediate Period. a Shows positive correlation between the ground elevation of the pyramids and their proximity to the floodplain. b Shows positive correlation between the average ground elevation of the pyramids and their average proximity to the floodplain in each Dynasty. c Illustrates the water level interpretation by Hassan (1986) in Faiyum Lake in correlation to the average pyramids ground elevation and average distances to the floodplain in each Dynasty. d The data indicates that the Ahramat Branch had a high-water level during the first period of the Old Kingdom, especially during Dynasty 4. The water level reduced afterwards but was raised slightly in Dynasty 6. The position of the Middle Kingdom’s pyramids, which was at lower altitudes and in close proximity to the floodplain as compared to those of the Old Kingdom might be explained by the slight eastward migration of the Ahramat Branch.

In addition, our analysis in Fig. ( 4) , shows that the Qakare Ibi Pyramid of Dynasty 8 was constructed very close to the floodplain on very low elevation, which implies that the Nile water levels were very low at this time of the First Intermediate Period (2181–2055 BCE). This finding is in agreement with previous work conducted by Kitchen 20 which implies that the sudden collapse of the Old Kingdom in Egypt (after 4160 BCE) was largely caused by catastrophic failure of the annual flood of the Nile River for a period of 30–40 years. Data from soil cores near Memphis indicated that the Old Kingdom settlement is covered by about 3 m of sand 11 . Accordingly, the Ahramat Branch was initially positioned further west during the Old Kingdom and then shifted east during the Middle Kingdom due to the drought-induced sand encroachments of the First Intermediate Period, “a period of decentralization and weak pharaonic rule” in ancient Egypt, spanning about 125 years (2181–2055 BCE) post Old Kingdom era. Soil cores from the drilling program at Memphis show dominant dry conditions during the First Intermediate Period with massive eolian sand sheets extended over a distance of at least 0.5 km from the edge of the western desert escarpment 21 . The Ahramat Branch continued to move east during the Second Intermediate Period until it had gradually lost most of its water supply by the New Kingdom.

The western tributaries of the Ahramat Branch

Sentinal-1 radar data unveiled several wide channels (inlets) in the Western Desert Plateau connected to the Ahramat Branch. These inlets are currently covered by a layer of sand, thus partially invisible in multispectral satellite imagery. In Sentinal-1 radar imagery, the valley floors of these inlets appear darker than the surrounding surfaces, indicating subsurface fluvial deposits. These smooth deposits appear dark owing to the specular reflection of the radar signals away from the receiving antenna (Fig.  5a, b ) 22 . Considering that Sentinel-1’s C-Band has a penetration capability of approximately 50 cm in dry sand surface 23 , this would suggest that the riverbed of these channels is covered by at least half a meter of desert sand. Unlike these former inlets, the course of the Ahramat Branch is invisible in SAR data due in large part to the presence of dense farmlands in the floodplain, which limits radar penetration and the detection of underlying fluvial deposition. Moreover, the radar topographic data from TDX revealed the areal extent of these inlets. Their river courses were extracted from TDX data using the Topographic Position Index (TPI), an algorithm which is used to compute the topographic slope positions and to automate landform classifications (Fig.  5c, d ). Negative TPI values show the former riverbeds of the inlets, while positive TPI signify the riverbanks bordering them.

figure 5

a Conceptual sketch of the dependence of surface roughness on the sensor wavelength λ (modified after 48 ). b Expected backscatter characteristics in sandy desert areas with buried dry riverbeds. c Dry channels/inlets masked by desert sand in the Dahshur area. d The channels’ courses were extracted using TPI. Negative TPI values highlight the courses of the channels while positive TPI signify their banks.

Analysis indicated that several of the pyramid’s causeways, from Dynasties 4 and 6, lead to the inlet’s riverbanks (Fig.  6 ). Among these pyramids, are the Bent Pyramid, the first pyramid built by King Snefru in Dynasty 4 and among the oldest, largest, and best preserved ancient Egyptian pyramids that predates the Giza Pyramids. This pyramid is situated at the royal necropolis of Dahshur. The position of the Bent Pyramid, deep in the desert, far from the modern Nile floodplain, remained unexplained by researchers. This pyramid has a long causeway (~700 m) that is paved in the desert with limestone blocks and is attached to a large valley temple. Although all the pyramids’ valley temples in Egypt are connected to a water body and served as the landing point of all the river-borne visitors, the valley temple of the Bent Pyramid is oddly located deep in the desert, very distant from any waterways and more than 1 km away from the western edge of the modern Nile floodplain. Radar data revealed that this temple overlooked the bank of one of these extinct channels (called Wadi al-Taflah in historical maps). This extinct channel (referred to hereafter as the Dahshur Inlet due to its geographical location) is more than 200 m wide on average (Fig.  6 ). In light of this finding, the Dahshur Inlet, and the Ahramat Branch, are thus strongly argued to have been active during Dynasty 4 and must have played an important role in transporting building materials to the Bent Pyramid site. The Dahshur Inlet could have also served the adjacent Red Pyramid, the second pyramid built by the same king (King Snefru) in the Dahshur area. Yet, no traces of a causeway nor of a valley temple has been found thus far for the Red Pyramid. Interestingly, pyramids in this site dated to the Middle Kingdom, including the Amenemhat III pyramid, also known as the Black Pyramid, White Pyramid, and Pyramid of Senusret III, are all located at least 1 km far to the east of the Dynasty 4 pyramids (Bent and Red) near the floodplain (Fig.  6 ), which once again supports the notion of the eastward shift of the Ahramat Branch after the Old Kingdom.

figure 6

a The two inlets are presently covered by sand, thus invisible in optical satellite imagery. b Radar data, and c TDX topographic data reveal the riverbed of the Sakkara Inlet due to radar signals penetration capability in dry sand. b and c show the causeways of Pepi II and Merenre Pyramids, from Dynasty 6, leading to the Saqqara Inlet. The Valley Temple of Pepi II Pyramid overlooks the inlet riverbank, which indicates that the inlet, and thus Ahramat Branch, were active during Dynasty 6. d Radar data, and e TDX topographic data, reveal the riverbed of the Dahshur Inlet with the Bent Pyramid’s causeway of Dynasty 4 leading to the Inlet. The Valley Temple of the Bent Pyramid overlooks the riverbank of the Dahshur Inlet, which indicates that the inlet and the Ahramat Branch were active during Dynasty 4 of the Old Kingdom.

Radar satellite data revealed yet another sandy buried channel (tributary), about 6 km north of the Dahshur Inlet, to the west of the ancient city of Memphis. This former fluvial channel (referred to hereafter as the Saqqara Inlet due to its geographical location) connects to the Ahramat Branch with a broad river course of more than 600 m wide. Data shows that the causeways of the two pyramids of Pepi II and Merenre, situated at the royal necropolis of Saqqara and dated to Dynasty 6, lead directly to the banks of the Saqqara Inlet (see Fig.  6 ). The 400 m long causeway of Pepi II pyramid runs northeast over the southern Saqqara plateau and connects to the riverbank of the Saqqara Inlet from the south. The causeway terminates with a valley temple that lies on the inlet’s riverbank. The 250 long causeway of the Pyramid of Merenre runs southeast over the northern Saqqara plateau and connects to the riverbank of the Saqqara Inlet from the north. Since both pyramids dated to Dynasty 6, it can be argued that the water level of the Ahramat Branch was higher during this period, which would have flooded at least the entrance of its western inlets. This indicates that the downstream segment of the Saqqara Inlet was active during Dynasty 6 and played a vital role in transporting construction materials and workers to the two pyramids sites. The fact that none of the Dynasty 5 pyramids in this area (e.g., the Djedkare Isesi Pyramid) were positioned on the Saqqara Inlet suggests that the water level in the Ahramat Branch was not high enough to enter and submerge its inlets during this period.

In addition, our data analysis clearly shows that the causeways of the Khafre, Menkaure, and Khentkaus pyramids, in the Giza Plateau, lead to a smaller but equally important river bay associated with the Ahramat Branch. This lagoon-like river arm is referred to here as the Giza Inlet (Fig.  7 ). The Khufu Pyramid, the largest pyramid in Egypt, seems to be connected directly to the river course of the Ahramat Branch (Fig.  7 ). This finding proves once again that the Ahramat Branch and its western inlets were hydrologically active during Dynasty 4 of the Old Kingdom. Our ancient river inlet hypothesis is also in accordance with earlier research, conducted on the Giza Plateau, which indicates the presence of a river and marsh-like environment in the floodplain east of the Giza pyramids 2 .

figure 7

The causeways of the four Pyramids lead to an inlet, which we named the Giza Inlet, that connects from the west with the Ahramat Branch. These causeways connect the pyramids with valley temples which acted as river harbors in antiquity. These river segments are invisible in optical satellite imagery since they are masked by the cultivated lands of the Nile floodplain. The photo shows the valley temple of Khafre Pyramid (Photo source: Author Eman Ghoneim).

During the Old Kingdom Period, our analysis suggests that the Ahramat Branch had a high-water level during the first part, especially during Dynasty 4 whereas this water level was significantly decreased during Dynasty 5. This finding is in agreement with previous studies which indicate a high Nile discharge during Dynasty 4 (e.g., ref. 24 ). Sediment isotopic analysis of the Nile Delta indicated that Nile flows decrease more rapidly by the end of Dynasty 4 25 , in addition 26 reported that during Dynasties 5 and 6 the Nile flows were the lowest of the entire Dynastic period. This long-lost Ahramat Branch (possibly a former Yazoo tributary to the Nile) was large enough to carry a large volume of the Nile discharge in the past. The ancient channel segment uncovered by 1 , 15 west of the city of Memphis through borehole logs is most likely a small section of the large Ahramat Branch detected in this study. In the Middle Kingdom, although previous studies implied that the Nile witnessed abundant flood with occasional failures (e.g., ref. 27 ), our analysis shows that all the pyramids from the Middle Kingdom were built far east of their Old Kingdom counterparts, on lower altitudes and in close proximity to the floodplain as compared to those of the Old Kingdom. This paradox might be explained by the fact that the Ahramat Branch migrated eastward, slightly away from the Western Desert escarpment, prior to the construction of the Middle Kingdom pyramids, resulting in the pyramids being built eastward so that they could be near the waterway.

The eastward migration and abandonment of the Ahramat Branch could be attributed to gradual tilting of the Nile delta and floodplain in lower Egypt towards the northeast due to tectonic activity 28 . A topographic tilt such as this would have accelerated river movement eastward due to the river being located in the west at a relatively higher elevation of the floodplain. While near-channel floodplain deposition would naturally lead to alluvial ridge development around the active Ahramat Branch, and therefore to lower-lying tracts of adjacent floodplain to the east, regional tilting may explain the wholesale lateral migration of the river in that direction. The eastward migration and abandonment of the branch could also be ascribed to sand incursion due to the branch’s proximity to the Western Desert Plateau, where windblown sand is abundant. This would have increased sand deposition along the riverbanks and caused the river to silt up, particularly during periods of low flow. The region experienced drought during the First Intermediate Period, prior to the Middle Kingdom. In the area of Abu Rawash north 29 and Dahshur site 11 , settlements from the Early Dynastic and Old Kingdom were found to be covered by more than 3 m of desert sands. During this time, windblown sand engulfed the Old Kingdom settlements and desert sands extended eastward downhill over a distance of at least 0.5 km 21 . The abandonment of sites at Abusir (5 th Dynasty), where the early pottery-rich deposits are covered by wind-blown sand and then mud without sherds, can be used as evidence that the Ahramat Branch migrated eastward after the Old Kingdom. The increased sand deposition activity, during the end of the Old Kingdom, and throughout the First Intermediate Period, was most likely linked to the period of drought and desertification of the Sahara 30 . In addition, the reduced river discharge caused by decreased rainfall and increased aridity in the region would have gradually reduced the river course’s capacity, leading to silting and abandonment of the Ahramat Branch as the river migrated to the east.

The Dahshur, Saqqara, and Giza inlets, which were connected to the Ahramat Branch from the west, were remnants of past active drainage systems dated to the late Tertiary or the Pleistocene when rainwater was plentiful 31 . It is proposed that the downstream reaches of these former channels (wadis) were submerged during times of high-water levels of the Ahramat Branch, forming long narrow water arms (inlets) that gave a wedge-like shape to the western flank of the Ahramat Branch. During the Old Kingdom, the waters of these inlets would have flowed westward from the Ahramat Branch rather than from their headwaters. As the drought intensified during the First Intermediate Period, the water level of the Ahramat Branch was lowered and withdrew from its western inlets, causing them to silt up and eventually dry out. The Dahshur, Saqqara, and Giza inlets would have provided a bay environment where the water would have been calm enough for vessels and boats to dock far from the busy, open water of the Ahramat Branch.

Sediments from the Ahramat Branch riverbed, which were collected from the two deep soil cores (cores A and B), show an abrupt shift from well-sorted medium sands at depth to overlying finer materials with layers including gravel, shell, and handmade materials. This indicates a step-change from a relatively consistent higher-energy depositional regime to a generally lower-energy depositional regime with periodic flash floods at these sites. So, the Ahramat Branch in this region carried and deposited well-sorted medium sand during its last active phase, and over time became inactive, infilling with sand and mud until an abrupt change led the (by then) shallow depression fill with finer distal floodplain sediment (possibly in a wetland) that was utilized by people and experienced periodic flash flooding. Validation of the paleo-channel position and sediment type using these cores shows that the Ahramat Branch has similar morphological features and an upward-fining depositional sequence as that reported near Giza, where two cores were previously used to reconstruct late Holocene Nile floodplain paleo-environments 2 . Further deep soil coring could determine how consistent the geomorphological features are along the length of the Ahramat branch, and to help explain anomalies in areas where the branch has less surface expression and where remote sensing and geophysical techniques have limitations. Considering more core logs can give a better understanding of the floodplain and the buried paleo-channels.

The position of the Ahramat Branch along the western edge of the Nile floodplain suggests it to be the downstream extension of Bahr Yusef. In fact, Bahr Yusef’s course may have initially flowed north following the natural surface gradient of the floodplain before being forced to turn west to flow into the Fayum Depression. This assumption could be supported by the sharp westward bend of Bahr Yusef’s course at the entrance to the Fayum Depression, which could be a man-made attempt to change the waterflow direction of this branch. According to Römer 32 , during the Middle Kingdom, the Gadallah Dam located at the entrance of the Fayum, and a possible continuation running eastwards, blocked the flow of Bahr Yusef towards the north. However, a sluice, probably located near the village of el-Lahun, was created in order to better control the flow of water into the Fayum. When the sluice was locked, the water from Bahr Yusef was directed to the west and into the depression, and when the sluice was open, the water would flow towards the north via the course of the Ahramat Branch. Today, the abandoned Ahramat Branch north of Fayum appears to support subsurface water flow in the buried coarse sand bed layers, however these shallow groundwater levels are likely to be quite variable due to proximity of the bed layers to canals and other waterways that artificially maintain shallow groundwater. Groundwater levels in the region are known to be variable 33 , but data on shallow groundwater could be used to further validate the delineated paleo-channel of the Ahramat Branch.

The present work enabled the detection of segments of a major former Nile branch running at the foothills of the Western Desert Plateau, where the vast majority of the Ancient Egyptian pyramids lie. The enormity of this branch and its proximity to the pyramid complexes, in addition to the fact that the pyramids’ causeways terminate at its riverbank, all imply that this branch was active and operational during the construction phase of these pyramids. This waterway would have connected important locations in ancient Egypt, including cities and towns, and therefore, played an important role in the cultural landscape of the region. The eastward migration and abandonment of the Ahramat Branch could be attributed to gradual movement of the river to the lower-lying adjacent floodplain or tilting of the Nile floodplain toward the northeast as a result of tectonic activity, as well as windblown sand incursion due to the branch’s proximity to the Western Desert Plateau. The increased sand deposition was most likely related to periods of desertification of the Great Sahara in North Africa. In addition, the branch eastward movement and diminishing could be explained by the reduction of the river discharge and channel capacity caused by the decreased precipitation and increased aridity in the region, particularly during the end of the Old Kingdom.

The integration of radar satellite data with geophysical surveying and soil coring, which we utilized in this study, is a highly adaptable approach in locating similar former buried river systems in arid regions worldwide. Mapping the hidden course of the Ahramat Branch, allowed us to piece together a more complete picture of ancient Egypt’s former landscape and a possible water transportation route in Lower Egypt, in the area between Lisht and the Giza Plateau.

Revealing this extinct Nile branch can provide a more refined idea of where ancient settlements were possibly located in relation to it and prevent them from being lost to rapid urbanization. This could improve the protection measures of Egyptian cultural heritage. It is the hope that our findings can improve conservation measures and raise awareness of these sites for modern development planning. By understanding the landscape of the Nile floodplain and its environmental history, archeologists will be better equipped to prioritize locations for fieldwork investigation and, consequently, raise awareness of these sites for conservation purposes and modern development planning. Our finding has filled a much-needed knowledge gap related to the dominant waterscape in ancient Egypt, which could help inform and educate a wide array of global audiences about how earlier inhabitants were living and in what ways shifts in their landscape drove human activity in such an iconic region.

Materials and methods

The work comprised of two main elements: satellite remote sensing and historical maps and geophysical survey and sediment coring, complemented by archeological resources. Using this suite of investigative techniques provided insights into the nature and relationship of the former Ahramat Branch with the geographical location of the pyramid complexes in Egypt.

Satellite remote sensing and historical maps

Unlike optical sensors that image the land surface, radar sensors image the subsurface due to their unique ability to penetrate the ground and produce images of hidden paleo-rivers and structures. In this context, radar waves strip away the surface sand layer and expose previously unidentified buried channels. The penetration capability of radar waves in the hyper-arid regions of North Africa is well documented 4 , 34 , 35 , 36 , 37 . The penetration depth varies according to the radar wavelength used at the time of imaging. Radar signal penetration becomes possible without significant attenuation if the surface cover material is extremely dry (<1% moisture content), fine grained (<1/5 of the imaging wavelength) and physically homogeneous 23 . When penetrating desert sand, radar signals have the ability to detect subsurface soil roughness, texture, compactness, and dielectric properties 38 . We used the European Space Agency (ESA) Sentinel-1 data, a radar satellite constellation consisting of a C-Band synthetic aperture radar (SAR) sensor, operating at 5.405 GHz. The Sentinel-1 SAR image used here was acquired in a descending orbit with an interferometric wide swath mode (IW) at ground resolutions of 5 m × 20 m, and dual polarizations of VV + VH. Since Sentinal-1 is operated in the C-Band, it has an estimated penetration depth of 50 cm in very dry, sandy, loose soils 39 . We used ENVI v. 5.7 SARscape software for processing radar imagery. The used SAR processing sequences have generated geo-coded, orthorectified, terrain-corrected, noise free, radiometrically calibrated, and normalized Sentinel-1 images with a pixel size of 12.5 m. In SAR imagery subsurface fluvial deposits appear dark owing to specular reflection of the radar signals away from the receiving antenna, whereas buried coarse and compacted material, such as archeological remains appear bright due to diffuse reflection of radar signals 40 .

Other previous studies have shown that combining radar topographic imagery (e.g., Shuttle Radar Topography Mission-SRTM) with SAR images improves the extraction and delineation of mega paleo-drainage systems and lake basins concealed under present-day topographic signatures 3 , 4 , 22 , 41 . Topographic data represents a primary tool in investigating surface landforms and geomorphological change both spatially and temporally. This data is vital in mapping past river systems due to its ability to show subtle variations in landform morphology 37 . In low lying areas, such as the Nile floodplain, detailed elevation data can detect abandoned channels, fossilized natural levees, river meander scars and former islands, which are all crucial elements for reconstructing the ancient Nile hydrological network. In fact, the modern topography in many parts of the study area is still a good analog of the past landscape. In the present study, TanDEM-X (TDX) topographic data, from the German Aerospace Centre (DLR), has been utilized in ArcGIS Pro v. 3.1 software due to its fine spatial resolution of 0.4 arc-second ( ∼ 12 m). TDX is based on high frequency X-Band Synthetic Aperture Radar (SAR) (9.65 GHz) and has a relative vertical accuracy of 2 m for areas with a slope of ≤20% 42 . This data was found to be superior to other topographic DEMs (e.g., Shuttle Radar Topography Mission and ASTER Global Digital Elevation Map) in displaying fine topographic features even in the cultivated Nile floodplain, thus making it particularly well suited for this study. Similar archeological investigations using TDX elevation data in the flat terrains of the Seyhan River in Turkey and the Nile Delta 43 , 44 allowed for the detection of levees and other geomorphologic features in unprecedented spatial resolution. We used the Topographic Position Index (TPI) module of 45 with the TDX data by applying varying neighboring radiuses (20–100 m) to compute the difference between a cell elevation value and the average elevation of the neighborhood around that cell. TPI values of zero are either flat surfaces with minimal slope, or surfaces with a constant gradient. The TPI can be computed using the following expression 46 .

Where the scaleFactor is the outer radius in map units and Irad and Orad are the inner and outer radius of annulus in cells. Negative TPI values highlight abandoned riverbeds and meander scars, while positive TPI signify the riverbanks and natural levees bordering them.

The course of the Ahramat Branch was mapped from multiple data sources and used different approaches. For instance, some segments of the river course were derived automatically using the TPI approach, particularly in the cultivated floodplain, whereas others were mapped using radar roughness signatures specially in sandy desert areas. Moreover, a number of abandoned channel segments were digitized on screen from rectified historical maps (Egyptian Survey Department scale 1:50,000 collected on years 1910–1911) near the foothill of the Western Desert Plateau. These channel segments together with the former river course segments delineated from radar and topographic data were aggregated to generate the former Ahramat Branch. In addition to this and to ensure that none of the channel segments of the Ahramat Branch were left unmapped during the automated process, a systematic grid-based survey (through expert’s visual observation) was performed on the satellite data. Here, Landsat 8 and Sentinal-2 multispectral images, Sentinal-1 radar images and TDX topographic data were used as base layers, which were thoroughly examined, grid-square by grid-square (2*2 km per a square) at a full resolution, in order to identify small-scale fluvial landforms, anomalous agricultural field patterns and irregular ditches, and determine their spatial distributions. Here, ancient fluvial channels were identified using two key aspects: First, the sinuous geometry of natural and manmade features and, second the color tone variations in the satellite imagery. For example, clusters of contiguous pixels with darker tones and sinuous shapes may signify areas of a higher moisture content in optical imagery, and hence the possible existence of a buried riverbed. Stretching and edge detection were applied to enhance contrasts in satellite images brightness to enable the visualization of traces of buried river segments that would otherwise go unobserved. Lastly, all the pyramids and causeways in the study site, along with ancient harbors and valley temples, as indicators of preexisting river channels, were digitized from satellite data and available archeological resources and overlaid onto the delineated Ahramat Branch for geospatial analysis.

Geophysical survey and sediment coring

Geophysical measurements using Ground Penetrating Radar (GPR) and Electromagnetic Tomography (EMT) were utilized to map subsurface fluvial features and validate the satellite remote sensing findings. GPR is effective in detecting changes of dielectric constant properties of sediment layers, and its signal responses can be directly related to changes in relative porosity, material composition, and moisture content. Therefore, GPR can help in identifying transitional boundaries in subsurface layers. EMT, on the other hand, shows the variations and thickness of large-scale sedimentary deposits and is more useful in clay-rich soil than GPR. In summer 2022, a geophysical profile was measured using GPR and EMT units with a total length of approximately 1.2 km. The GPR survey was conducted with a central frequency antenna of 35 MHz and a trigger interval of 5 cm. The EMT survey was performed using the multi-frequency terrain conductivity (EM–34–3) measuring system with a spacing of 10–11 meters between stations. To validate the remote sensing and geophysical data, two sediment cores with depths of 20 m (Core A) and 13 m (Core B) were collected using a deep soil driller. These cores were collected from along the geophysical profile in the floodplain. Sieving and organic analysis were performed on the sediment samples at Tanta University sediment lab to extract information about grain size for soil texture and total organic carbon. In soil texture analysis medium to coarse sediment, such as sands, are typical for river channel sediments, loamy sand and sandy loam deposits can be interpreted as levees and crevasse splays, whereas fine texture deposits, such as silt loam, silty clay loam, and clay deposits, are representative of the more distal parts of the river floodplain 47 .

Data availability

Data for replicating the results of this study are available as supplementary files at: https://figshare.com/articles/journal_contribution/Pyramids_Elevations_and_Distances_xlsx/25216259 .

Bunbury, J., Tavares, A., Pennington, B. & Gonçalves, P. Development of the Memphite Floodplain: Landscape and Settlement Symbiosis in the Egyptian Capital Zone. In The Nile: Natural and Cultural Landscape in Egypt (eds. Willems, H. & Dahms, J.-M.) 71–96 (Transcript Verlag, 2017). https://doi.org/10.1515/9783839436158-003 .

Sheisha, H. et al. Nile waterscapes facilitated the construction of the Giza pyramids during the 3rd millennium BCE. Proc. Natl. Acad. Sci. 119 , e2202530119 (2022).

Article   CAS   Google Scholar  

Ghoneim, E. & El-Baz, F. K. DEM‐optical‐radar data integration for palaeohydrological mapping in the northern Darfur, Sudan: implication for groundwater exploration. Int. J. Remote Sens. 28 , 5001–5018 (2007).

Article   Google Scholar  

Ghoneim, E., Benedetti, M. M. & El-Baz, F. K. An integrated remote sensing and GIS analysis of the Kufrah Paleoriver, Eastern Sahara. Geomorphology 139 , 242–257 (2012).

Zaki, A. S. et al. Did increased flooding during the African Humid Period force migration of modern humans from the Nile Valley? Quat. Sci. Rev. 272 , 107200 (2021).

Rohling, E. J., Marino, G. & Grant, K. M. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth Sci. Rev. 143 , 62–97 (2015).

DeMenocal, P. et al. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19 , 347–361 (2000).

Ritchie, J. C. & Haynes, C. V. Holocene vegetation zonation in the eastern Sahara. Nature 330 , 645–647 (1987).

Butzer, K. W. Early Hydraulic Civilization in Egypt: A Study in Cultural Ecology (The University of Chicago press, Chicago [Ill.] London, 1976).

Kröpelin, S. et al. Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years. Science 320 , 765–768 (2008).

Bunbury, J. & Jeffreys, D. Real and Literary Landscapes in Ancient Egypt. Camb. Archaeol. J. 21 , 65–76 (2011).

Sterling, S. Mortality Profiles as Indicators of Slowed Reproductive Rates: Evidence from Ancient Egypt. J. Anthropol. Archaeol. 18 , 319–343 (1999).

Hillier, J. K., Bunbury, J. M. & Graham, A. Monuments on a migrating Nile. J. Archaeol. Sci. 34 , 1011–1015 (2007).

Bunbury, J. & Lutley, K. The Nile on the move. https://api.semanticscholar.org/CorpusID:131474399 (2008).

Hassan, F. A., Hamdan, M. A., Flower, R. J., Shallaly, N. A. & Ebrahem, E. Holocene alluvial history and archaeological significance of the Nile floodplain in the Saqqara-Memphis region, Egypt. Quat. Sci. Rev. 176 , 51–70 (2017).

Bietak, M., Czerny, E. & Forstner-Müller, I. Cities and urbanism in ancient Egypt . Papers from a workshop in November 2006 at the Austrian Academy of Sciences (Austrian Academy of Sciences, 2010).

El-Qady, G., Shaaban, H., El-Said, A. A., Ghazala, H. & El-Shahat, A. Tracing of the defunct Canopic Nile branch using geoelectrical resistivity data around Itay El-Baroud area, Nile Delta, Egypt. J. Geophys. Eng. 8 , 83–91 (2011).

Toonen, W. H. J. et al. Holocene fluvial history of the Nile’s west bank at ancient Thebes, Luxor, Egypt, and its relation with cultural dynamics and basin-wide hydroclimatic variability. Geoarchaeology 33 , 273–290 (2018).

Lehner, M. The Complete Pyramids (Thames and Hudson, New York, 1997).

Kitchen, K. A. The chronology of ancient Egypt. World Archaeol. 23 , 201–208 (1991).

Giddy, L. & Jeffreys, D. Memphis, 1991. J. Egypt. Archaeol. 78 , 1–11 (1992).

Ghoneim, E., Robinson, C. & El‐Baz, F. Radar topography data reveal drainage relics in the eastern Sahara. Int. J. Remote Sens. 28 , 1759–1772 (2007).

Roth, L. & Elachi, C. Coherent electromagnetic losses by scattering from volume inhomogeneities. IEEE Trans. Antennas Propag. 23 , 674–675 (1975).

Hassan, F. A. Holocene lakes and prehistoric settlements of the Western Faiyum, Egypt. J. Archaeol. Sci. 13 , 483–501 (1986).

Woodward, J. C., Macklin, M. G., Krom, M. D. & Williams, M. A. J. The Nile: Evolution, Quaternary River Environments and Material Fluxes. In Large Rivers (ed. Gupta, A.) 261–292 (John Wiley & Sons, Ltd, Chichester, UK, 2007). https://doi.org/10.1002/9780470723722.ch13 .

Krom, M. D., Stanley, J. D., Cliff, R. A. & Woodward, J. C. Nile River sediment fluctuations over the past 7000 yr and their key role in sapropel development. Geology 30 , 71–74 (2002).

Stanley, J.-D., Krom, M. D., Cliff, R. A. & Woodward, J. C. Short contribution: Nile flow failure at the end of the Old Kingdom, Egypt: Strontium isotopic and petrologic evidence. Geoarchaeology 18 , 395–402 (2003).

Stanley, D. J. & Warne, A. G. Nile Delta: Recent Geological Evolution and Human Impact. Science 260 , 628–634 (1993).

Jones, M. A new old Kingdom settlement near Ausim: report of the archaeological discoveries made in the Barakat drain improvements project, https://api.semanticscholar.org/CorpusID:194486461 (1995).

Bunbury, J. M. The development of the River Nile and the Egyptian Civilization: A Water Historical Perspective with Focus on the First Intermediate Period. In A History of Water: Rivers and Society — From the Birth of Agriculture to Modern Times , Vol. 2 (eds. Tvedt, T. & Coopey, R) 50–69 (I.B. Tauris, 2010).

Bubenzer, O. & Riemer, H. Holocene climatic change and human settlement between the central Sahara and the Nile Valley: Archaeological and geomorphological results. Geoarchaeology 22 , 607–620 (2007).

Römer, C. The Nile in the Fayum: Strategies of Dominating and Using the Water Resources of the River in the Oasis in the Middle Kingdom and the Graeco-Roman Period. In The Nile: Natural and Cultural Landscape in Egypt (eds. Willems, H. & Dahms, J.-M.) 171–192 (transcript Verlag, 2017). https://doi.org/10.1515/9783839436158-006 .

Mansour, K. et al. Investigation of Groundwater Occurrences Along the Nile Valley Between South Cairo and Beni Suef, Egypt, Using Geophysical and Geodetic Techniques. Pure Appl. Geophys. 180 , 3071–3088 (2023).

McCauley, J. F. et al. Subsurface Valleys and Geoarcheology of the Eastern Sahara Revealed by Shuttle Radar. Science 218 , 1004–1020 (1982).

El-Baz, F. & Robinson, C. A. Paleo-channels revealed by SIR-C data in the Western Desert of Egypt: Implications to sand dune accumulations. In Proceedings of the 12th International Conference on Applied Geologic Remote Sensing , Vol. 1, I–469 (Environmental Research Institute of Michigan, Ann Arbor, 1997).

Robinson, C. A., El-Baz, F., Al-Saud, T. S. M. & Jeon, S. B. Use of radar data to delineate palaeodrainage leading to the Kufra Oasis in the eastern Sahara. J. Afr. Earth Sci. 44 , 229–240 (2006).

Ghoneim, E. Rimaal: A Sand Buried Structure of Possible Impact Origin in the Sahara: Optical and Radar Remote Sensing Investigation. Remote Sens. 10 , 880 (2018).

Ghoneim, E. M. Ibn-Batutah: A possible simple impact structure in southeastern Libya, a remote sensing study. Geomorphology 103 , 341–350 (2009).

Schaber, G. G., Kirk, R. L. & Strom, R. Data base of impact craters on Venus based on analysis of Magellan radar images and altimetry data. U.S. Geological Survey, Open-File Report, https://doi.org/10.3133/ofr98104 , https://pubs.usgs.gov/of/1998/0104/report.pdf (1998).

Ghoneim, E. & El-Baz, F. K. Satellite Image Data Integration for Groundwater Exploration in Egypt, https://api.semanticscholar.org/CorpusID:216495993 (2020).

Skonieczny, C. et al. African humid periods triggered the reactivation of a large river system in Western Sahara. Nat. Commun. 6 , 8751 (2015).

Wessel, B. et al. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 139 , 171–182 (2018).

Erasmi, S., Rosenbauer, R., Buchbach, R., Busche, T. & Rutishauser, S. Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey. Remote Sens. 6 , 9475–9493 (2014).

Ginau, A., Schiestl, R. & Wunderlich, J. Integrative geoarchaeological research on settlement patterns in the dynamic landscape of the northwestern Nile delta. Quat. Int. 511 , 51–67 (2019).

JENNESS, J. Topographic position index (tpi_jen.avx_extension for Arcview 3.x, v.1.3a, Jenness Enterprises [EB/OL], http://www.jennessent.com/arcview/tpi.htm (2006).

Weiss, A. D. Topographic position and landforms analysis, https://api.semanticscholar.org/CorpusID:131349144 (2001).

Verstraeten, G., Mohamed, I., Notebaert, B. & Willems, H. The Dynamic Nature of the Transition from the Nile Floodplain to the Desert in Central Egypt since the Mid-Holocene. In The Nile: Natural and Cultural Landscape in Egypt (eds. Willems, H. & Dahms, J.-M.) 239–254 (transcript Verlag, 2017). https://doi.org/10.1515/9783839436158-009 .

Meyer, F. Spaceborne Synthetic Aperture Radar: Principles, data access, and basic processing techniques. In Synthetic Aperture Radar the SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. 21–64 (2019). https://doi.org/10.25966/nr2c-s697 , https://gis1.servirglobal.net/TrainingMaterials/SAR/SARHB_FullRes.pdf .

Download references

Acknowledgements

This work was funded by NSF grant # 2114295 awarded to E.G., S.O. and T.R. and partially supported by Research Momentum Fund, UNCW, to E.G. TanDEM-X data was awarded to E.G. and R.E by the German Aerospace Centre (DLR) (contract # DEM_OTHER2886). Permissions for collecting soil coring and sampling were obtained from the Faculty of Science, Tanta University, Egypt by coauthors Dr. Amr Fhail and Dr. Mohamed Fathy. Bradley Graves at Macquarie University assisted with preparation of the sedimentological figures. Hamada Salama at NRIAG assisted with the GPR field data collection.

Author information

Authors and affiliations.

Department of Earth and Ocean Sciences, University of North Carolina Wilmington, Wilmington, NC, 28403-5944, USA

Eman Ghoneim

School of Natural Sciences, Macquarie University, Macquarie, NSW, 2109, Australia

Timothy J. Ralph

Department of History, The University of Memphis, Memphis, TN, 38152-3450, USA

Suzanne Onstine

Near Eastern Languages and Civilizations, University of Chicago, Chicago, IL, 60637, USA

Raghda El-Behaedi

National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, 11421, Egypt

Gad El-Qady, Mahfooz Hafez, Magdy Atya, Mohamed Ebrahim & Ashraf Khozym

Geology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt

Amr S. Fahil & Mohamed S. Fathy

You can also search for this author in PubMed   Google Scholar

Contributions

Eman Ghoneim conceived the ideas, lead the research project, and conducted the data processing and interpretations. The manuscript was written and prepared by Eman Ghoneim. Timothy J. Ralph co-supervised the project, contributed to the geomorphological and sedimentological interpretations, edited the manuscript and the figures. Suzanne Onstine co-supervised the project, contributed to the archeological and historical interpretations, and edited the manuscript. Raghda El-Behaedi contributed to the remote sensing data processing and methodology and edited the manuscript. Gad El-Qady supervised the geophysical survey. Mahfooz Hafez, Magdy Atya, Mohamed Ebrahim, Ashraf Khozym designed, collected, and interpreted the GPR and EMT data. Amr S. Fahil and Mohamed S. Fathy supervised the soil coring, sediment analysis, drafted sedimentological figures and contributed to the interpretations. All authors reviewed the manuscript and participated in the fieldwork.

Corresponding author

Correspondence to Eman Ghoneim .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Communications Earth & Environment thanks Ritambhara Upadhyay and Judith Bunbury for their contribution to the peer review of this work. Primary Handling Editors: Patricia Spellman and Joe Aslin. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Peer review file, supplementary information file, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Ghoneim, E., Ralph, T.J., Onstine, S. et al. The Egyptian pyramid chain was built along the now abandoned Ahramat Nile Branch. Commun Earth Environ 5 , 233 (2024). https://doi.org/10.1038/s43247-024-01379-7

Download citation

Received : 06 December 2023

Accepted : 10 April 2024

Published : 16 May 2024

DOI : https://doi.org/10.1038/s43247-024-01379-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

research findings by

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Heart-Healthy Living
  • High Blood Pressure
  • Sickle Cell Disease
  • Sleep Apnea
  • Information & Resources on COVID-19
  • The Heart Truth®
  • Learn More Breathe Better®
  • Blood Diseases and Disorders Education Program
  • Publications and Resources
  • Blood Disorders and Blood Safety
  • Sleep Science and Sleep Disorders
  • Lung Diseases
  • Health Disparities and Inequities
  • Heart and Vascular Diseases
  • Precision Medicine Activities
  • Obesity, Nutrition, and Physical Activity
  • Population and Epidemiology Studies
  • Women’s Health
  • Research Topics
  • Clinical Trials
  • All Science A-Z
  • Grants and Training Home
  • Policies and Guidelines
  • Funding Opportunities and Contacts
  • Training and Career Development
  • Email Alerts
  • NHLBI in the Press
  • Research Features
  • Past Events
  • Upcoming Events
  • Mission and Strategic Vision
  • Divisions, Offices and Centers
  • Advisory Committees
  • Budget and Legislative Information
  • Jobs and Working at the NHLBI
  • Contact and FAQs
  • NIH Sleep Research Plan
  • < Back To Home

Thirty years later, the Women’s Health Initiative provides researchers with key messages for postmenopausal women

A physician shows a medical tablet to a patient in a clinical setting.

Researchers from the NHLBI-supported Women’s Health Initiative , the largest women’s health study in the U.S., published findings from a 20-year review that underscores the importance of postmenopausal women moving away from a one-size-fits-all approach to making medical decisions. Through this lens, the researchers encourage women and physicians to work together to make shared and individualized decisions based on a woman’s medical history, age, lifestyle, disease risks, symptoms, and health needs and preferences, among other factors. These findings support the concept of “whole-person health” and published in  JAMA .  After reviewing decades of data following clinical trials that started between 1993 and 1998, the researchers explain that estrogen or a combination of estrogen and progestin, two types of hormone replacement therapies, had varying outcomes with chronic conditions. The evidence does not support using these therapies to reduce risks for chronic diseases, such as heart disease, stroke, cancer, and dementia. However, the authors caution that the study was not designed to assess the effects of FDA-approved hormone therapies for treating menopausal symptoms . These benefits had been established before the WHI study began.  Another finding from the study is that calcium and vitamin D supplements were not associated with reduced risks for hip fractures among postmenopausal women who had an average risk for osteoporosis. Yet, the authors note women concerned about getting sufficient intake of either nutrient should talk to their doctor. A third finding was that a low-fat dietary pattern with at least five daily servings of fruits and vegetables and increased grains did not reduce the risk of breast or colorectal cancer, but was associated with reduced risks for breast cancer deaths. 

Media Coverage

  • The Women's Health Initiative trials: clinical messages
  • HRT for menopause is safe for some women, new study shows
  • Major study supports safety of HRT in early menopause
  • Hormone therapy for menopause doesn't reduce heart disease risk
  • No need to fear menopause hormone drugs, finds major women's health study
  • Researchers review findings and clinical messages from the Women’s Health Initiative 30 years after launch

IMAGES

  1. 10 Easy Steps: How to Write Findings in Research

    research findings by

  2. Types of Research Report

    research findings by

  3. 5 Steps to Present Your Research in an Infographic

    research findings by

  4. Summary of the Findings, Conclusion and Recommendation

    research findings by

  5. How To Write A Findings Section For Qualitative Research

    research findings by

  6. Infographic: Top 5 Findings from the 2019 SMFE Research Report

    research findings by

VIDEO

  1. Atheist MIT Professor Converts to Christianity After Shocking Findings In Research!

  2. Metadata Enrichment using AI

  3. How to identify a research problem? What are the major sources of research problems? -22-Fiza Rajper

  4. How to Find Relevant Researchers in Your Field with Scopus Researcher Discovery? #Scopus #phd

  5. Critical Findings From 12 Key NMN Human Studies

  6. HOW TO READ and ANALYZE A RESEARCH STUDY

COMMENTS

  1. Research Findings

    Research findings can be used in a variety of situations, depending on the context and the purpose. Here are some examples of when research findings may be useful: Decision-making: Research findings can be used to inform decisions in various fields, such as business, education, healthcare, and public policy.

  2. Organizing Your Social Sciences Research Paper

    The results section should state the findings of the research arranged in a logical sequence without bias or interpretation. A section describing results should be particularly detailed if your paper includes data generated from your own research. Annesley, Thomas M. "Show Your Cards: The Results Section and the Poker Game." ...

  3. How to Write a Results Section

    Checklist: Research results 0 / 7. I have completed my data collection and analyzed the results. I have included all results that are relevant to my research questions. I have concisely and objectively reported each result, including relevant descriptive statistics and inferential statistics. I have stated whether each hypothesis was supported ...

  4. How to use and assess qualitative research methods

    Abstract. This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions ...

  5. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  6. PDF Results/Findings Sections for Empirical Research Papers

    The Results (also sometimes called Findings) section in an empirical research paper describes what the researcher(s) found when they analyzed their data. Its primary purpose is to use the data collected to answer the research question(s) posed in the introduction, even if the findings challenge the hypothesis.

  7. Organizing Your Social Sciences Research Paper

    The discussion section is often considered the most important part of your research paper because it: Most effectively demonstrates your ability as a researcher to think critically about an issue, to develop creative solutions to problems based upon a logical synthesis of the findings, and to formulate a deeper, more profound understanding of the research problem under investigation;

  8. PDF Analyzing and Interpreting Findings

    forth between the findings of your research and your own perspectives and understandings to make sense and meaning. Meaning can come from looking at differences and similari-ties, from inquiring into and interpreting causes, consequences, and relationships. Data analysis in qualitative research remains somewhat mysterious (Marshall & Rossman,

  9. Communicating Research Findings

    7.1 Method of Communicating Your Research Findings. Research is a scholarship activity and a collective endeavor, and as such, its finding should be disseminated. Research findings, often called research outputs, can be disseminated in many forms including peer-reviewed journal articles (e.g., original research, case reports, and review ...

  10. Looking forward: Making better use of research findings

    Implementing knowledge. Research findings can influence decisions at many levels—in caring for individual patients, in developing practice guidelines, in commissioning health care, in developing prevention and health promotion strategies, in developing policy, in designing educational programmes, and in performing clinical audit—but only if clinicians know how to translate knowledge into ...

  11. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research. There are often many possible paths you can take to answering ...

  12. Communicating and Disseminating Research Findings

    Research findings are most frequently and directly communicated to one's peers via scholarly publications. These publications typically undergo peer review to assure their value and have been the traditional method of research communication since the first scientific journal, Philosophical Transactions of the Royal Society, was founded in 1665 (Kronick 1976).

  13. How to Write the Results/Findings Section in Research

    Step 1: Consult the guidelines or instructions that the target journal or publisher provides authors and read research papers it has published, especially those with similar topics, methods, or results to your study. The guidelines will generally outline specific requirements for the results or findings section, and the published articles will ...

  14. Communicating and disseminating research findings to study participants

    Translating research findings into practice requires understanding how to meet communication and dissemination needs and preferences of intended audiences including past research participants (PSPs) who want, but seldom receive, information on research findings during or after participating in research studies. Most researchers want to let ...

  15. Organizing Your Social Sciences Research Paper

    How do the findings relate to my research interests and to other works which I have read? Adapted from text originally created by Holly Burt, Behavioral Sciences Librarian, USC Libraries, April 2018. Another Reading Tip. When is it Important to Read the Entire Article or Research Paper.

  16. Organizing Your Social Sciences Research Paper

    The conclusion is intended to help the reader understand why your research should matter to them after they have finished reading the paper. A conclusion is not merely a summary of the main topics covered or a re-statement of your research problem, but a synthesis of key points derived from the findings of your study and, if applicable, where you recommend new areas for future research.

  17. Writing a Research Paper Conclusion

    Having summed up your key arguments or findings, the conclusion ends by considering the broader implications of your research. This means expressing the key takeaways, practical or theoretical, from your paper—often in the form of a call for action or suggestions for future research. Argumentative paper: Strong closing statement

  18. Striking findings from 2021

    Striking findings from 2021. As 2021 draws to a close, here are some of Pew Research Center's most striking research findings from the past year. These 15 findings cover subjects ranging from extreme weather to the COVID-19 pandemic and ongoing demographic shifts in the United States.

  19. Research Results Section

    Research results refer to the findings and conclusions derived from a systematic investigation or study conducted to answer a specific question or hypothesis. These results are typically presented in a written report or paper and can include various forms of data such as numerical data, qualitative data, statistics, charts, graphs, and visual aids.

  20. Breast cancer incidence and mortality by metabolic syndrome and obesity

    Cancer is an international interdisciplinary journal publishing articles on the latest clinical cancer research findings, spanning the breadth of oncology disciplines. Abstract Background In the Women's Health Initiative (WHI) randomized trial, dietary intervention significantly reduced breast cancer mortality, especially in women with more ...

  21. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  22. Reporting Research Findings

    Reporting research findings is important for dissemination and for synthesis and evidence-based management (EBM). Primarily, the importance lies in dissemination across conferences, journals, books, and increasingly digital media. Understanding and replication by outside scholars depend on complete and accurate reporting; this centrality to the ...

  23. Research 101: Understanding Research Studies

    The basis of a scientific research study follows a common pattern: Define the question. Gather information and resources. Form hypotheses. Perform an experiment and collect data. Analyze the data ...

  24. 20 striking findings from 2020

    As 2020 draws to a close, here are 20 striking findings from Pew Research Center's studies this year, covering the pandemic, race-related tensions, the presidential election and other notable trends that emerged during the year. Since the very beginning of the U.S. coronavirus outbreak, Democrats have been far more likely than Republicans to ...

  25. Research Methodology

    Replicability: Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy. Reliability: Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.

  26. Research Methods In Psychology

    The peer reviewers assess: the methods and designs used, originality of the findings, the validity of the original research findings and its content, structure and language. Feedback from the reviewer determines whether the article is accepted. The article may be: Accepted as it is, accepted with revisions, sent back to the author to revise and ...

  27. Presenting and Evaluating Qualitative Research

    The validity of research findings refers to the extent to which the findings are an accurate representation of the phenomena they are intended to represent. The reliability of a study refers to the reproducibility of the findings. Validity can be substantiated by a number of techniques including triangulation use of contradictory evidence ...

  28. What Is Research, and Why Do People Do It?

    Abstractspiepr Abs1. Every day people do research as they gather information to learn about something of interest. In the scientific world, however, research means something different than simply gathering information. Scientific research is characterized by its careful planning and observing, by its relentless efforts to understand and explain ...

  29. The Egyptian pyramid chain was built along the now abandoned Ahramat

    More recent research conducted further north by Sheisha et al. 2, ... It is the hope that our findings can improve conservation measures and raise awareness of these sites for modern development ...

  30. Thirty years later, the Women's Health Initiative provides researchers

    Researchers from the NHLBI-supported Women's Health Initiative, the largest women's health study in the U.S., published findings from a 20-year review that underscores the importance of postmenopausal women moving away from a one-size-fits-all approach to making medical decisions. , the researchers explain that estrogen or a combination of estrogen and progestin, two types of hormone ...